Supplementary Materials:

Insights into the phytochemistry of the Cuban endemic medicinal plant *Phyllanthus orbicularis*: Fideloside, a novel bioactive 8-C-glycosyl 2,3-dihydroflavonol

Antonio Francioso^{1,2,3*}, Katrin Franke¹, Claudio Villani⁴, Luciana Mosca², MariaD'Erme², Stefan Frischbutter^{5,6}, Wolfgang Brandt¹, Angel Sanchez-Lamar³ and LudgerWessjohann^{1,*}

- ¹ Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany;
- ² Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Roma, Italy;
- ³ Department of Plant Biology, Faculty of Biology, University of Havana, La Habana, Cuba
- ⁴ Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Roma, Italy;
- ⁵ Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- ⁶ German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany

Content:

Page:

Figure S1: Chemical structure of natural products extracted from <i>Phyllanthus</i> species	2
Figure S2. ¹ H NMR spectrum of compound 3 (DMSOd6, 400 MHz)	3
Figure S3. ¹³ C NMR spectrum of compound 3(DMSOd6, 400 MHz)	3
Figure S4. COSY spectrum of compound 3(DMSOd6, 400 MHz)	4
Figure S5. HSQC spectrum of compound 3(DMSOd6, 400 MHz)	5
Figure S6. HMBC spectrum of compound 3 (DMSOd6, 400 MHz)	6
Figure S7. NOESY spectrum of compound 3 (DMSOd6, 400 MHz)	7
Figure S8:ATR infrared spectrum of compound 3	8
Figure S9: Moststable conformation of the 2 <i>S</i> ,3 <i>S</i> enantiomer for compound 3	9
Table S1:DFT calculations for the 2S,3S enantiomer (compound 3)	9

Figure S1:Chemical structure of natural products extracted from *Phyllanthus* species

Figure S2. ¹H NMR spectrum of compound 3 (DMSOd6, 400 MHz)

Figure S3. ¹³C NMR spectrum of compound 3(DMSOd6, 400 MHz)

Figure S4. COSY spectrum of compound 3(DMSOd6, 400 MHz)

Figure S5. HSQC spectrum of compound 3(DMSOd6, 400 MHz)

Figure S6. HMBC spectrum of compound **3** (DMSOd6, 400 MHz)

Figure S7. NOESY spectrum of compound 3 (DMSOd6, 400 MHz)

Figure S8:ATR infrared spectrum of compound 3

Figure S9. Comparison of experimental CD spectrum (black line) with Boltzmann weighted calculated CD spectrum (see Table S1) for the 2*S*,3*S* enantiomer with a similarity factor S = 0.5276 for sigma =0.3 eV and -2 nm shift. right: Calculated most stable conformation of the 2*S*,3*S* enantiomer.

Conformation	O-C2-C1'-C2'	С2'-С3'-О-Н	Energy	Boltzmann	CD-fit
	(in °)	(in°)	(kcal/mol)	weight	
1	67.1	2.9	0.00	31.0	0.6105
2	64.7	-179.5	0.04	29.0	0.5841
3	-113.7	179.5	0.14	24.5	0.4789
4	-113.1	0.3	0.41	15.5	0.5555
Boltzmann					0.5276

Table S1: Results of DFT calculations for the 2S, 3S enantiomer