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Abstract: Machine learning classification algorithms are widely used for the prediction and
classification of the different properties of molecules such as toxicity or biological activity.
The prediction of toxic vs. non-toxic molecules is important due to testing on living animals,
which has ethical and cost drawbacks as well. The quality of classification models can be determined
with several performance parameters. which often give conflicting results. In this study, we
performed a multi-level comparison with the use of different performance metrics and machine
learning classification methods. Well-established and standardized protocols for the machine learning
tasks were used in each case. The comparison was applied to three datasets (acute and aquatic
toxicities) and the robust, yet sensitive, sum of ranking differences (SRD) and analysis of variance
(ANOVA) were applied for evaluation. The effect of dataset composition (balanced vs. imbalanced)
and 2-class vs. multiclass classification scenarios was also studied. Most of the performance metrics
are sensitive to dataset composition, especially in 2-class classification problems. The optimal machine
learning algorithm also depends significantly on the composition of the dataset.

Keywords: classifiers; performance metrics; ROC; toxicity prediction; ranking; ANOVA;
machine learning

1. Introduction

Model evaluation and selection is an integral, however non-trivial, part of both regression and
classification tasks. Especially in the present day, when machine learning [1] and deep learning [2]
models are all the rage in drug discovery and related areas, getting proper feedback on model
performance is a must: the controversial “black-box” nature [3] of predictive models must be
counterbalanced by a thorough understanding from the modeller’s side. This entails proper knowledge
of the performance metrics that are used to evaluate classification models and to select the best (or the
best few) options. A great number of performance metrics were collected earlier this year by Berrar [4];
his comprehensive work (along with other literature sources) has formed the basis of this study.

In this work, a large number of classification performance metrics from diverse domains are
compared in evaluating machine learning-based classification models on three toxicity-related datasets,
in 2-class and multiclass scenarios. For the comparison, we apply our proven methodology based on
novel and classical chemometric methods, such as sum of ranking differences (SRD) [5] and analysis of
variance (ANOVA). For some context on our results for regression/QSAR performance metrics, we
direct the reader’s attention to our earlier works [6,7]. A particularly relevant conclusion from these
studies is that machine learning methods usually outperform “classic” regression methods; however,
principal component regression and partial least squares regression have proven themselves to be the
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most robust (in terms of the difference between the coefficients of determination for the training set
and test set R2 and Q2, respectively), meaning that special care must be taken with the validation of
machine learning models [8]. (Ironically, multiple linear regression (MLR), which produces the largest
gap between R2 and Q2, is still the most popular regression method, based on a recent review of 1533
QSAR publications by Maran et al. [9].)

In addition to a statistical comparison of 28 performance metrics, we also examine the effect
of 2-class vs. multiclass classification, as well as dataset composition (balanced vs. imbalanced) on
performance metrics. A comparison of 11 widely-available machine learning classifiers is also reported.
The workflow applied for the comparisons is summarized in Figure 1.

Figure 1. Workflow of the comparative study. Briefly, after descriptor generation and reduction, eleven
machine learning methods are applied for model building (for each combination of 2-class/multiclass
and balanced/imbalanced cases). After the calculation of the performance parameters, statistical
analysis of the results is carried out with sum of ranking differences (SRD) and factorial analysis of
variance (ANOVA). The complete process is carried out on three datasets.

2. Results and Discussion

2.1. Statistical Evaluation of Performance Parameters

The three toxicity datasets (aqueous and acute toxicities, see Section 3.1) were used with the
training and test splits indicated at their respective sources. The dataset-specific splits are included in
Figure 2A for the balanced and imbalanced designs and the 2-class and multiclass cases.

The number of molecular descriptors (after variable reduction) was always above one thousand,
and variable selection was omitted in order to exclude the differences between the applied algorithms
and to make the process standardized across different methods. After model building with the eleven
machine learning algorithms (see Experimental section), 28 performance parameters were calculated
with cross-validation and on the external test sets as well. Then, sum of ranking differences (SRD) was
used on the following matrix: the models based on the different algorithms were arranged in rows
(22 rows in total, for cross-validation and test validation altogether) and the performance parameters
were arranged in columns (28). SRD was used for the three datasets together, with normalization to
unit length as data pretreatment. We also tested the effect of balanced vs. imbalanced and 2-class vs.
multiclass cases. Thus, the combinations of balanced/imbalanced and 2-class/multiclass versions of the
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models were handled separately in the SRD analysis. In total, four SRD analyses were carried out on
the merged datasets. This part of the analysis is summarized in Figure 2B.

Figure 2. (A) Summary of the number of molecules for the three datasets with specific conditions.
(B) Illustration of merged datasets for the SRD analyses. Datasets 1, 2 and 3 contain the performance
parameters of the calculated models. (CV is short for cross-validation.)

The SRD analyses were carried out with Monte Carlo fivefold cross-validation in ten iterations,
and the normalized SRD values were used for the further evaluation of the performance parameters
with factorial ANOVA. An example (Balanced 2-class version) of the SRD results can be seen in Figure 3.

Figure 3. SRD analysis (for the balanced 2-class version). Normalized SRD values are plotted on the X
and left Y axes (to make the ordering visually illustrative) - the smaller the better. The abbreviations of
the performance metrics can be found in the Section 3.3. The cumulative relative frequencies (right
Y axis) correspond to the randomization test (see Section 3.4). Here, the diagnostic odds ratio (DOR)
is closest to the reference (smallest SRD value), while AUAC (area under the accumulation curve)
overlaps with the cumulative frequency curve, and is therefore statistically indistinguishable from
random ranking.

In the ANOVA process, we examined the effect of the following factors on the final results (SRD
values): (i) balanced/imbalanced-F1; (ii) 2-class/multiclass-F2; and (iii) performance parameters-F3.

SRD = b0 + b1F1 + b2F2 + b3F3 + b12F1F2 + b13F1F3 + b23F2F3 + b123F1F2F3 (1)
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For all three factors and all of their combinations, the effects were significant at the α = 0.05 level,
meaning that the 2-class vs. multiclass, and the balanced vs. imbalanced distribution between the
classes resulted in significantly different SRD values for the performance parameters. On the other
hand, the performance metrics were also significantly different, meaning that the final decision in
model selection depends strongly on the applied performance metric.

If we break down the results according to the 2-class vs. multiclass, and balanced vs. imbalanced
cases, we can see how these factors are influencing the SRD values (Figure 4A). Moreover, by combining
these factors with the third factor (performance metrics), we can highlight which performance metrics
are most sensitive to the specific classification scenario (Figure 4B).

Figure 4. (A) SRD values are, on average, higher for 2-class classification scenarios (farther from the
reference), meaning that there is a greater degree of disagreement between the performance metrics
in this case, highlighting the importance for their informed selection and application during model
evaluation. The difference is even more pronounced if the dataset is imbalanced. (B) Most of the
performance metrics are quite robust in multiclass scenarios, while in 2-class cases, the balanced or
imbalanced datasets have a much greater effect on model ranking. (Normalized SRD values are shown
always on the Y axis. The markers denote average values, and the vertical lines denote 95% confidence
intervals.)
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In multiclass cases, the SRD values are lower, which indicates more consistent model ranking by
the various performance metrics. Differences are greater in the case of 2-class classification (Figure 4A),
where model ranking is significantly less consistent in the case of imbalanced datasets (which is the
most common case in virtual screening tasks!). Figure 4B highlights the performance parameters that
are the least consistent between the balanced and imbalanced datasets; these include BEDROC values,
average precision (AP), sensitivity (or true positive rate, TPR), the Matthews correlation coefficient
(MCC), accuracy (ACC) and balanced accuracy (BACC) as well (!), among others. By comparison,
two less-known metrics, markedness (MK) and the diagnostic odds ratio (DOR) are among the most
consistent options.

Focusing only on the performance parameters, the results of the four SRD runs are merged in
Figure 5, showing the average SRD values for each performance parameter. If we define two separation
thresholds based on the observations, it can be concluded that the most consistent performance
parameters are the diagnostic odds ratio (DOR), the ROC enrichment factor at 5% (ROC_EF5) and the
markedness (MK). Accuracy is also close the most consistent ones, but interestingly, its balanced analog
(BACC) seems to be somewhat worse. At the other end of the scale, area under the accumulation curve
(AUAC) and the Brier score loss are not recommended.

Figure 5. ANOVA result of the performance parameters based on the SRD (%) values. Arbitrary
dotted lines denote the classification of the performance parameters into good, medium and not
recommended categories.

The performance parameters were also compared with each other in a pairwise manner on
SRD heatmaps (Comparison with One Variable at a Time, COVAT [10]). With this method, clusters
of similarly behaving performance parameters can be detected along the diagonal of the heatmap.
(The rows and columns of the matrix are reordered in the increasing order of the row-wise average of the
SRD values from each run, with different performance metrics as the reference vector.) The heatmaps
are included in Figure 6.
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Figure 6. Results of the SRD-COVAT method: 2-class classification with balanced (A) and imbalanced
(B) classes; and multiclass classification with balanced (C) and imbalanced (D) classes. Clusters of
similarly behaving performance parameters are separated with black lines (squares) on the plot based
on visual inspection.

The heatmap is arranged in the increasing order of row-wise (and column-wise) sum of SRD
scores, with the smallest sums corresponding to the most consistent performance parameters on
average. This analysis provides information about the distances between the individual performance
metrics (rather than their distance from the consensus-based reference method). The most conserved
cluster to be observed consisted of the ACC, BM, Cohen and MCC metrics.

2.2. Statistical Evaluation of Machine Learning Models

With the same procedure (after transposing the input matrix), machine learning models can
also be compared. To briefly recapitulate, the datasets were classified with eleven different machine
learning algorithms (Section 3.2), and 28 performance parameters (Section 3.3) were calculated with
sevenfold cross-validation and external test validation, as well. Sum of ranking differences (SRD) was
applied to the (transposed) input matrices, for balanced vs. imbalanced and for 2-class vs. multiclass
cases separately. (In total, 3 × 2 × 2 SRD analyses were carried out with sevenfold cross-validation,
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one example is included in Figure 7.) A hypothetical best classifier was selected as the reference
method; this means row-wise maximums for greater-the-better performance metrics (e.g., AUC values
or accuracies) and row-wise minimums for smaller-the-better performance metrics (e.g., negative
likelihood ratios or Brier score losses). The ANOVA model was the same as in Equation (1) with one
difference: classifiers (11 levels) were applied as factor 3 (instead of the performance parameters).

Figure 7. SRD analysis (for the Daphnia Magna dataset in the multiclass case, with imbalanced classes).
Normalized SRD values are plotted on the X and left Y axes. The abbreviations of the classifiers can
be found in Section 3.2. The cumulative relative frequencies (black curve, right Y axis) correspond to
the randomization test. The “T” suffix indicates external test validated predictions, the lack thereof
indicates cross-validated predictions.

In Figure 7, the classifiers are tightly grouped and some of them are close to random ranking
(however, all of them are significantly better). The relatively small distance from the reference (SRD = 0)
suggests that the hypothetical best classifier is well approximated with the bagging (Bag), k-nearest
neighbor (lBk), and Decorate (Dec) methods.

To allow for more general conclusions, the results of the different SRD runs are summarized in a
box-and-whisker plot in Figure 8A. Here, again, Bagging and Decorate seem to be the best, k-nearest
neighbor has an intermediate position, while others are indistinguishable from each other, and SVM
seems to be the worst.

In Figure 8B, characteristic differences can be seen among the classifiers according to the
balanced–imbalanced design. Some classifiers, such as Bagging, Decorate, Support vector machine and
Naïve Bayes are not sensitive to dataset composition, whereas others, e.g., hyperpipes (hip), k-nearest
neighbors (lBk), random forest (RF) are highly sensitive. This highlights that the best (or suitable)
classifiers can only be selected if the dataset composition is also considered. Interestingly, most machine
learning algorithms approximate the ideal reference method more in the case of imbalanced datasets.
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Figure 8. (A) Normalized SRD values for the eleven classifiers. Error bars mean 95% confidence
intervals. Recommended classifiers are below the dotted line, dotted circle shows an intermediate one.
(B) Decomposition of the classifiers according to dataset composition (balanced vs. imbalanced classes).
Normalized SRD [%] was scaled between 0 and 100.

3. Methods

3.1. Datasets

Three toxicity case studies were used for the multi-level analysis: i) case study 1 contained the
96-hour 50% lethal concentration (LC50) values for fathead minnow (Ecotox); ii) case study 2 contained
the 48-hour 50% lethal concentration (LC50) values for daphnia magna (Ecotox); and iii) case study 3
contained the oral rat 50% lethal dose (LD50) values (TOXNET) [11].

In all three cases, the toxicity categories (aquatic and acute) were determined based on the Globally
Harmonized System of Classification and Labelling of Chemicals (GHS). Four category groups were
examined (including non-toxic) in the case of aquatic toxicity data and six groups (including non-toxic)
in the case of acute oral toxicity data [12]. The dataset compositions are summarized briefly in
Figure 2A, and in more detail in Table 1.

Table 1. Dataset compositions for the three case studies.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Dataset 1 Balanced Training 116 116 116 116

Test 29 50 48 37

Imbalanced Training 116 166 213 164

Test 29 50 48 37

Dataset 2 Balanced Training 28 28 28 28

Test 8 8 24 15

Imbalanced Training 48 65 58 84

Test 8 8 24 15

Dataset 3 Balanced Training 199 199 199 199 199 199

Test 58 132 267 587 291 14

Imbalanced Training 199 557 1053 2325 1178 619

Test 58 132 267 587 291 14

Descriptor generation was carried out with DRAGON 7.0 (Kode Cheminformatics). In total,
3839 descriptors were generated (1D and 2D descriptors). Correlated variables (above 0.997) and near
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constant variables (standard deviation below 0.001) were excluded from further analysis [13]. Training
and test splits were applied in the same way as in the original databases.

For 2-class classification, the two extreme classes, i.e., the non-toxic and the most toxic classes of
the same datasets were used. For both 2-class and multiclass cases, balanced datasets were prepared
by keeping n randomly selected compounds for each class, where n is the number of compounds in the
smallest class.

3.2. Machine Learning Algorithms

The machine learning algorithms in the WEKA node package of the KNIME Analytics Platform
3.7.1 (KNIME GmbH, Konstanz, Germany) were applied in this study. Eleven machine learning
algorithms were tested: these are summarized in Table 2.

Table 2. Summary of the machine learning algorithms. Abbreviations are the names found in the
WEKA package. Classification schemes are more general categories (types) of the algorithms. (* Func.
is short for “Function”.)

Name (Abbreviation) Class. Scheme Details

Naïve Bayes (NaiB) Bayes

This algorithm is based on the Bayes theorem and the
assumption of the independence of all attributes. The
samples are examined separately and the individual

probability of belonging to a class is calculated for each
particular class. Standard options were used in WEKA

NäiveBayes node [14].

FilteredClassifier (Fil) Meta

The algorithm is running an arbitrary classifier on data
that has been passed through an arbitrary filter. Attribute
selection filter was used with CfsSubset Evaluation and the

best first search method [15].

lBk, k-nearest neighbour
(lBk) Lazy

One of the simplest algorithms, where the class
membership is assigned based on the majority vote of the

k-nearest neighbours of an instance.
Euclidean distance was used as distance measure and k = 1

was the number of used neighbours [16].

HyperPipe (Hip) Misc

Fast and simple algorithm, which is working well with
many attributes. The basic idea of the method is the

construction of pipes with different pattern of attributes to
each class. The samples are monitored and selected to each
class based on the pipes and the corresponding class [17].

MultiboostAB (Mboo) Meta

This algorithm is the modified version of the AdaBoost
technique with wagging. The idea of wagging is to assign
random weights to the cases in each training set based on

Poisson distribution.
In this case Decision stump classifier was used. The

number of iteration was 10 and the weight threshold was
100. The number of subcommittees was set to 3 [18].

libSVM, library SVM
(SVM) Func.*

Support vector machine can define hyperplane(s) in a
higher dimensional space to separate the classes of

samples distinctly. The plane should have the maximum
margin between data points. Support vectors (points) can

maximize the margin of the classifier. Different kernel
functions and optimization parameters can be used for the
classification task with SVM [19]. In this case radial basis

function (RBF) was used as the kernel.
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Table 2. Cont.

Name (Abbreviation) Class. Scheme Details

oneR, based on 1-rule,
(OneR) Rule

This algorithm ranks the attributes based on the error rate
(on the training set). The basic concept is connected to

1-rules algorithms, where the samples are classified based
on a single attribute [20]. Numeric values are treated as

continuous ones. In this case, bucket size was 6 (standard)
for the discretizing procedure of the attributes.

Bagging (Bag) Meta

The basic concept of bagging is the creation of different
models based on the bootstrapped training sets. The

average (or vote) of these multiple versions are used for the
prediction of class memberships for each sample [21]. In

this case the number of iterations for bagging was set to 10.

Ensemble Selection (EnS) Meta

It combines several classifier algorithms in the ensemble
selection. The average prediction of the models in the

ensemble is applied for the class membership
determination. The selection of the models is based on an

error metric (in our case RMSE). Forward selection was
used for the optimization process of the ensemble.

Iterations (here, 100) are also carried out such as in the case
of Bagging.

Decorate (Dec) Meta

It is also an ensemble-type algorithm, where the ensembles
are constructed directly with diverse hypotheses with the
application of additional artificially-constructed training
examples to the original one. The classifier is working on

the union of the original training and the artificial data
(diversity data). The new classifiers are added to the

ensemble, if the training error is not increased [22]. Several
iterations are carried out to make the prediction stronger.

Here, we applied 10 iterations.

Random Forest (RF) Trees

Random forest is a tree-based method, which can be used
for classification and regression problems alike. The basic
idea is that it builds many trees and each of them predicts
a classification. The final classification is made by a voting

of the sequences of trees. The trees are weak predictors,
but together they produce an ensemble; with the vote of
each tree, the method can make good predictions [23].

The machine learning models were applied for each combination of balanced vs. imbalanced
distribution, and 2-class vs. multiclass classification, in order to examine the effect of these parameters
on the results. During each model building phase, fivefold randomized cross-validation with stratified
sampling was used.

3.3. Performance Metrics

The models were evaluated with 28 different performance metrics. We calculated these metrics for
the cross-validation and the external test sets as well. The classifiers provided probability values for
each molecule and each class: predicted class labels were assigned based on the class with the highest
probability value (for both 2-class and multiclass cases).

Most performance metrics use the confusion matrix of the observations (number of samples
from actual class A, predicted to class B, for each combination of the available classes) in some way.
As the simplest example, the confusion matrix for 2-class classification problems can be seen in Table 3.
To summarize the most typical classification scenarios in drug discovery/cheminformatics, the reader
is referred to Figure 9.

In the present work, 28 performance metrics were collected and applied, most of which were
introduced specifically for 2-class classification. To generalize these to multiclass scenarios, weighted
averages of each such performance metric were calculated after evaluating them k times: each time
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labelling one of the classes as the positive class, while labelling the rest as the negative class (k: number
of classes). Metrics that are readily generalized to more classes are highlighted in their description in
Table 5.

The metrics can be grouped according to their properties in 2-class classification; they can either
operate with one specific classifier threshold (we term these local performance metrics here, see Tables 4
and 5) or encompass the whole range of possible classifier thresholds (global metrics, Table 6). Local
metrics are further divided into one-sided (Table 4) and two-sided (Table 5). One-sided metrics account
for exactly two cells of the 2-class confusion matrix (either a row or a column) and always have a
complementary metric, providing the same information on a reversed scale. By contrast, two-sided
metrics account for more than two cells of the 2-class confusion matrix, and are often derived from
one-sided metrics (see for example the definitions of the F1 score, or markedness).

Table 3. Confusion matrix of observations in 2-class classification.

Predicted + (PP) Predicted − (PN)

Actual + (P) True positive (TP) False negative (FN)

Actual − (N) False positive (FP) True negative (TN)
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Figure 9. Mock datasets to showcase common classification scenarios. (A) In structure-based virtual screening, a docking score is commonly used as a rough estimator
of the free energy of binding between ligand and protein (the smaller the better). Predicting a ligand to be active/positive requires setting a threshold value of the
docking score (T): each ligand with a better score will be considered a predicted active/positive. (B) In 2-class classification, machine learning methods typically output
probability values for each sample, for belonging to the positive class. A probability value of 0.5 or higher is a natural choice to assign the samples into the positive
class. Naturally, other choices can be applied as well: in the above example, setting the threshold value to either 0.6 or 0.4 would reduce the number of misclassified
samples by one. (C) In multiclass classification, the most straightforward option is to assign each sample to the class with the highest predicted probability. (Green:
correct, red: incorrect classification.).
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Table 4. Local performance metrics for 2-class classification—One-sided.

Name Alternative Names Formula Complementary
Metric

Complementary
Metric Formula

True positive rate (TPR) Sensitivity, recall, hit rate TPR = TP
P = TP

TP+FN = 1− FNR False negative rate (FNR), miss
rate FNR = FN

P = FN
TP+FN = 1− TPR

True negative rate (TNR) Specificity, selectivity TNR = TN
N = TN

TN+FP = 1− FPR False positive rate (FPR), fall-out FPR = FP
N = FP

TN+FP = 1− TNR

Positive predictive value (PPV) precision PPV = TP
TP+FP = 1− FDR False discovery rate (FDR) FDR = FP

TP+FP = 1− PPV

Negative predictive value
(NPV) NPV = TN

TN+FN = 1− FOR False omission rate (FOR) FOR = FN
TN+FN = 1−NPV

Table 5. Local performance metrics for 2-class classification—Two-sided. (n: total number of samples, k: total number of classes).

Name Formula Description

Accuracy (ACC), or Correct classification rate (CC)
ACC = TP+TN

P+N = TP+TN
TP+TN+FP+FN

ACC =
correctly predicted

total

Readily generalized to multiple classes.
Complementary metric: misclassification rate (or zero-one

loss, or Hamming loss).

Balanced accuracy (BACC)
BACC = TPR+TNR

2

BACC =

∑k
j=1

nj,corr.
nj,actual

k

Alternative of accuracy for imbalanced datasets.
Readily generalized to multiple (k) classes.

n j,corr.: number of samples correctly predicted into class j
n j,actual: actual number of samples in class j

F1 score (F1), or F measure F = 2× PPV×TPR
PPV+TPR = 2TP

2TP+FP+FN Harmonic mean of precision and recall

Matthews correlation coefficient (MCC) [24], ϕ
coefficient (Pearson) [25]

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

MCC =
ncorrect×n−

∑k
j=1 n j,pred.×n j,actual√(

n2−
∑k

j=1 n j,pred.
2
)
×

(
n2−

∑k
j=1 n j,actual

2
)

Readily generalized to multiple classes.
n j,pred.: number of samples predicted into class j

n j,actual: actual number of samples in class j
ncorrect: total no. of correctly predicted samples

n: total no. of samples

Bookmaker informedness (BM), or Informedness
[26] BM = TPR + TNR− 1

Markedness (MK) [26] MK = PPV + NPV − 1

Positive likelihood ratio (LR+) LR+ = TPR
FPR
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Table 5. Cont.

Name Formula Description

Negative likelihood ratio (LR−) LR− = FNR
TNR

Diagnostic odds ratio (DOR) DOR = LR+
LR−

Enrichment factor (EF) EFx% =
TP
PP
P

P+N

Ratio of true positives in the top x% of the predictions,
divided by ratio of positives in the whole dataset.

ROC enrichment (ROC_EF) [27] ROC_EFx% = TPR
FPRx%

= TPR
x

Ratio of TPR and FPR at a fixed FPR value (x). Independent
of dataset composition.

Cohen’s kappa [28]

κ = ACC−baseline
1−baseline

baseline = (PP×P)+(PN×N)

(P+N)2

baseline =
k∑

j=1

n j,pred.×n j,actual

n2

Readily generalized to multiple classes.
baseline corresponds to the random agreement probability.

n j,pred.: number of samples predicted into class j
n j,actual: actual number of samples in class j

n: total no. of samples

Jaccard score (J) J = TP
TP+FN+FP = TP

P+FP
Jaccard-Tanimoto similarity between the sets of predicted and

actual (true) labels for the complete set of samples.

Brier score loss (B) B = 1
n

n∑
i=1

k∑
j=1

(
fi, j − oi, j

)2

Readily generalized to multiple classes.
fi, j is the predicted probability of sample i belonging to class j,

while oi, j is the actual outcome (0 or 1).
Requires predicted probability values for each class. The

smaller the better.

Robust initial enhancement (RIE) [29] RIE =
∑P

i=1 e−αri/n∑P
i=1 e−αri/n

r

ri is the rank of positive sample i in the ordered list of samples
and α is a parameter that defines the exponential weight.
The denominator corresponds to the average sum of the

exponential when P positives are uniformly distributed in the
ordered list containing n samples.
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Table 6. Global performance metrics for 2-class classification.

Name Formula Description

Area under the ROC curve (AUC) [30] Area under the TPR-FPR curve Probability that a randomly selected positive sample
will be ranked before a randomly selected negative.

Area under the accumulation curve (AUAC) Area under the TPR-score (or TPR-rank) curve

If the ranks are normalized, then 0 ≤ AUAC ≤ 1
Probability that a randomly selected positive will be

ranked before a randomly selected sample from a
uniform distribution.

Average precision (AP) Area under the precision-recall (PPV-TPR) curve

Boltzmann-enhanced discrimination of receiver
operating characteristic (BEDROC) [31] BEDROC = RIE−RIEmin

RIEmax−RIEmin

See the definition of RIE above, α is a parameter that
defines the exponential weight.

0 ≤ BEDROC ≤ 1
BEDROC is an analog of AUC that assigns an

(exponentially) greater weight to high-ranked samples,
thus tackling the “early recognition problem”.

Average rank (position) of actives (positives) (r) [32] r = 1
P×(P+N)

P∑
i=1

ri
ri is the rank of positive sample i in the total ranked list

of samples. The smaller the better.
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3.4. Statistical Evaluation

Sum of ranking differences (SRD), a robust and novel statistical method was used to compare
the performance metrics and machine learning methods [33]. The basic concept of this method is
the following: (i) the input dataset should contain the objects (here, molecules) in the rows and the
methods in the columns (here, performance parameters or machine learning classifiers); (ii) a reference
vector (benchmark, or row-wise data fusion, e.g., average, minimum or maximum) should be defined
and added as the last column of the matrix: this corresponds to an ideal reference method; (iii) the
methods (columns) are ranked one-by-one in increasing magnitude (including the reference column);
(iv) the differences between the ranks of each sample between each method and the reference vector
are calculated; and finally (v) these differences are summed for each method: these sums are called
SRD values, with the smaller value being the better (closer to the ideal reference method). The SRD
method is validated with n-fold cross-validation (randomized bootstrap version) and a randomization
test. The latter can help to identify those methods which are not distinguished from random ranking.
Normalized SRD values are also calculated, because this way, the results of different SRD calculations
are comparable. A detailed workflow for the better understanding of the procedure can be found in
our recent work [34].

The cross-validated, normalized SRD values were used for further analysis of different algorithms
and performance parameters. Factorial ANOVA was used for this task, where the effect of three different
factors were decomposed: (i) dataset composition (balanced vs. imbalanced); (ii) classification types
(2-class, multiclass); (iii) performance parameters (28 levels). Similarly, for comparing machine learning
methods, the following factors were considered: (i) dataset composition (balanced vs. imbalanced);
(ii) classification types (2-class, multiclass); (iii) classifiers (11 levels). A complete workflow of the
process from descriptor generation to ANOVA is included in Figure 1 (Introduction).

For comparing the performance metrics, the SRD-COVAT approach was also applied [10]: briefly,
each performance metric is selected as the reference vector, in turn, and the results are summarized in
a heatmap format. An absolute coloring scheme was applied for the heatmaps, because we wanted to
compare the four different combinations of balanced vs. imbalanced datasets and 2-class vs. multiclass
scenarios (see Figures 2B and 6). For more information about the SRD algorithm, with downloadable
VBA scripts, consult our website: http://aki.ttk.mta.hu/srd.

4. Conclusions

A statistical comparison of 28 classification performance metrics and 11 machine learning classifiers
was carried out on three toxicity datasets, in 2-class and multiclass classification scenarios, with balanced
and imbalanced dataset compositions.

Our analysis highlighted two lesser-known performance metrics, the diagnostic odds ratio
(DOR), and markedness (MK) as the best options, along with the ROC enrichment factor at 5%
(ROC_EF5%). By contrast, the following performance parameters are not recommended for model
selection: Brier score loss, Area under the accumulation curve (AUAC), true negative rate (TNR) and
true positive rate/sensitivity (TPR). DOR and MK are also among the least sensitive metrics to dataset
composition. Conversely, BEDROC values, average precision (AP), sensitivity (or true positive rate,
TPR), the Matthews correlation coefficient (MCC), accuracy (ACC) and, surprisingly, even balanced
accuracy (BACC) are among the most sensitive ones. Most of the performance metrics are sensitive to
dataset composition, especially in 2-class classification problems.

From machine learning classifiers, Bagging and Decorate were the best options based on the SRD
analysis, while SVM was the weakest, probably due to the non-optimal, automatic selection of the
regularization parameters (although, naturally, it is significantly better than random ranking, as well).
Bagging, Decorate, Support vector machine and Naïve Bayes are not sensitive to dataset composition,
whereas others e.g., hyperpipes (hip), k-nearest neighbors (lBk) and random forest (RF) are highly
sensitive. Therefore, the best (or suitable) classifiers can only be selected if the dataset composition is
also considered.

http://aki.ttk.mta.hu/srd
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Sum of ranking differences (SRD), coupled with variance analysis (ANOVA), provides a unique and
unambiguous ranking of performance parameters and classifiers, in which even small differences are
detected; the methods are comparable in a pair-wise manner as well, with the SRD-COVAT heatmaps.
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10. Andrić, F.; Bajusz, D.; Rácz, A.; Šegan, S.; Héberger, K. Multivariate assessment of lipophilicity
scales—computational and reversed phase thin-layer chromatographic indices. J. Pharm. Biomed. Anal. 2016,
127, 81–93. [CrossRef]

11. Toxicity Estimation Software Tool (TEST)—EPA. Available online: https://www.epa.gov/chemical-research/

toxicity-estimation-software-tool-test (accessed on 10 July 2019).
12. Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Available online: https:

//pubchem.ncbi.nlm.nih.gov/ghs/ (accessed on 5 July 2019).
13. Rácz, A.; Bajusz, D.; Héberger, K. Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR.

Mol. Inform. 2019, 28. [CrossRef]
14. John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the

UAI’95 Eleventh Conference on Uncertainty in Artificial Intelligence, Montréal, QC, Canada, 18–20 August
1995; pp. 338–345.

15. Software Documentation. WEKA API—Filtered Classifier. Available online: http://weka.sourceforge.net/doc.
stable/ (accessed on 17 July 2019).

16. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66.
[CrossRef]

17. Smusz, S.; Kurczab, R.; Bojarski, A.J. A multidimensional analysis of machine learning methods performance
in the classification of bioactive compounds. Chemom. Intell. Lab. Syst. 2013, 128, 89–100. [CrossRef]

18. Webb, G.I. MultiBoosting: A Technique for Combining Boosting and Wagging. Mach. Learn. 2000, 40,
159–196. [CrossRef]

http://dx.doi.org/10.1038/s41573-019-0024-5
http://dx.doi.org/10.1016/j.drudis.2018.01.039
http://www.ncbi.nlm.nih.gov/pubmed/29366762
http://dx.doi.org/10.1038/s42256-019-0048-x
http://dx.doi.org/10.1016/j.trac.2009.09.009
http://dx.doi.org/10.1080/1062936X.2015.1084647
http://dx.doi.org/10.1080/1062936X.2018.1505778
http://dx.doi.org/10.1289/EHP3264
http://dx.doi.org/10.1016/j.jpba.2016.04.001
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://pubchem.ncbi.nlm.nih.gov/ghs/
https://pubchem.ncbi.nlm.nih.gov/ghs/
http://dx.doi.org/10.1002/minf.201800154
http://weka.sourceforge.net/doc.stable/
http://weka.sourceforge.net/doc.stable/
http://dx.doi.org/10.1007/BF00153759
http://dx.doi.org/10.1016/j.chemolab.2013.08.003
http://dx.doi.org/10.1023/A:1007659514849


Molecules 2019, 24, 2811 18 of 18

19. Chang, C.C.; Lin, C.J. LIBSVM—A lbrary for support vector machines. ACM Trans. Intell. Syst. Technol.
(TIST) 2011, 2, 27.

20. Holte, R.C. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Mach. Learn.
1993, 91, 63–90. [CrossRef]

21. Breiman, L.E.O. Bagging Predictors. Mach. Learn. 1996, 140, 123–140. [CrossRef]
22. Melville, P.; Mooney, R.J. Constructing Diverse Classifier Ensembles using Artificial Training Examples.

In Proceedings of the IJCAI-2003, Acapulco, Mexico, 9–15 August 2003; pp. 505–510.
23. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
24. Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

Biochim. Biophys. Acta Protein Struct. 1975, 405, 442–451. [CrossRef]
25. Cramer, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946;

ISBN 0-691-08004-6.
26. Powers, D.M.W. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness &

Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63.
27. Nicholls, A. Confidence limits, error bars and method comparison in molecular modeling. Part 1:

The calculation of confidence intervals. J. Comput. Aided. Mol. Des. 2014, 28, 887–918. [CrossRef]
28. Czodrowski, P. Count on kappa. J. Comput. Aided. Mol. Des. 2014, 28, 1049–1055. [CrossRef] [PubMed]
29. Sheridan, R.P.; Singh, S.B.; Fluder, E.M.; Kearsley, S.K. Protocols for Bridging the Peptide to Nonpeptide Gap

in Topological Similarity Searches. J. Chem. Inf. Comput. Sci. 2001, 41, 1395–1406. [CrossRef] [PubMed]
30. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
31. Truchon, J.F.; Bayly, C.I. Evaluating Virtual Screening Methods: Good and Bad Metrics for the “Early

Recognition” Problem. J. Chem. Inf. Model. 2007, 47, 488–508. [CrossRef] [PubMed]
32. Kairys, V.; Fernandes, M.X.; Gilson, M.K. Screening Drug-Like Compounds by Docking to Homology Models:

A Systematic Study. J. Chem. Inf. Model. 2006, 46, 365–379. [CrossRef] [PubMed]
33. Kollár-Hunek, K.; Héberger, K. Method and model comparison by sum of ranking differences in cases of

repeated observations (ties). Chemom. Intell. Lab. Syst. 2013, 127, 139–146. [CrossRef]
34. Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based

similarity calculations? J. Cheminform. 2015, 7, 20. [CrossRef] [PubMed]

Sample Availability: Not available.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1022631118932
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1007/s10822-014-9753-z
http://dx.doi.org/10.1007/s10822-014-9759-6
http://www.ncbi.nlm.nih.gov/pubmed/25012930
http://dx.doi.org/10.1021/ci0100144
http://www.ncbi.nlm.nih.gov/pubmed/11604041
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1021/ci600426e
http://www.ncbi.nlm.nih.gov/pubmed/17288412
http://dx.doi.org/10.1021/ci050238c
http://www.ncbi.nlm.nih.gov/pubmed/16426071
http://dx.doi.org/10.1016/j.chemolab.2013.06.007
http://dx.doi.org/10.1186/s13321-015-0069-3
http://www.ncbi.nlm.nih.gov/pubmed/26052348
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Statistical Evaluation of Performance Parameters 
	Statistical Evaluation of Machine Learning Models 

	Methods 
	Datasets 
	Machine Learning Algorithms 
	Performance Metrics 
	Statistical Evaluation 

	Conclusions 
	References

