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Abstract: Phenolic compounds are an important class of plant secondary metabolites which
play crucial physiological roles throughout the plant life cycle. Phenolics are produced under
optimal and suboptimal conditions in plants and play key roles in developmental processes like cell
division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction.
Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic
stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid
biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity,
high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic
compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species.
Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the
scientific community. In the present article, we discuss the biochemical and molecular mechanisms
related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress
tolerance in plants. An attempt has been made to provide updated and brand-new information about
the response of phenolics under a challenging environment.
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1. Introduction

Plants face a plethora of biotic and abiotic stresses during their entire life which have negative
impact on their growth, development, and productivity [1–3]. Biotic factors include insect pests, fungi,
and weeds whereas abiotic stresses include salinity, drought, heavy metals, pesticides, ultraviolet (UV)
radiation, as well as heat and cold stress [3–18]. The amplitude of these abiotic stresses has increased
severely in recent years principally due to anthropogenic activities [7,19]. Plants, being sessile,
are persistently exposed to these factors and require a set of effective mechanisms which can be
activated under unfavorable circumstances to sustain their life cycle [20]. According to some reports,
the projection of these stresses contributes significantly and affects the growth and productivity
by reducing crop yield and overall crop production by 70% and 50%, respectively [21,22]. Thus,
it is imperative to reduce the crop productivity losses by improving crop performance through
various approaches, including application of plant bio-stimulant products as well as stimulation
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of plant secondary metabolism [11,23,24]. Plants need to endure different abiotic stresses and
polyphenols accumulate in response to these stresses helping plants to acclimatize to unfavorable
environments [25,26]. Hence, the concentration of phenols in plant tissue is a good indicator to predict
the extent of abiotic stress tolerance in plants which varies greatly in different plant species under an
array of external factors.

Phenolic compounds influence the plant growth and development, including seed germination,
biomass accumulation, and improved plant metabolism [27–30]. In this regard, we summarized
different studies showing a broad spectrum of different effects of abiotic stresses and discussed how
endogenous phenol levels can help in mitigating abiotic stress in plants. Moreover, physiological and
molecular mechanisms connected to the phenylpropanoid pathway underlying abiotic stress tolerance
have extensively discussed. At the end, we explained phenol-mediated stress tolerance and suggestions
have been made to further escalate the extent of deep mechanistic studies.

2. Biosynthetic Pathway of Polyphenols in Plants

Phenolics are known to be the largest groups of secondary metabolites in plants varying from
simpler aromatic rings to more complex ones, such as lignins. These compounds originated from
phenylalanine therefore are also called as phenylpropanoids. Polyphenols are characterized by the
presence of large multiples of phenol structural units. The number and characteristics of these phenol
structures underlie the unique physical, chemical, and biological properties of particular members
of each class. Phenols are indeed divided into several groups such as phenolic acids, flavonoids,
stilbenes, and lignans with peculiar properties. Plant phenolics are synthesized biogenetically through a
shikimate/phenylpropanoid pathway, whereas a mevalonate pathway generates terpenoids. Both these
secondary pathways produce a wide array of monomeric and polymeric structures encompassing a
comprehensive array of physiological and biochemical roles in plants. The term “secondary metabolites”
refers to the metabolites or phytochemicals synthesized through secondary metabolism. During the
biosynthesis of phenolic compounds, erythrose 4-phosphate is combined with phosphoenolpyruvate
(PEP) to form phenylalanine. Then phenylalanine ammonia lyase (PAL) catalyzes the conversion
of phenylalanine to trans-cinnamic acid. Several other phenolic compound such as flavonoids,
coumarins, hydrolysable tannins, monolignols, lignans, and lignins are formed through this pathway,
formally known as the phenylpropanoid pathway (see complete details in [26,31–33]).

3. Physiological Roles of Phenolics in Plants

Phenolics are widely distributed and are involved in key metabolic and physiological process
in plants [34,35]. Phenolics influence different physiological processes related to growth and
development in plants including seed germination, cell division, and synthesis of photosynthetic
pigments [36]. Phenolic compounds have been exploited for several application including
bioremediation, allelochemical, promotion of plant growth, and antioxidants as food additives [37].
In plants, phenolic accumulation is usually a consistent feature of plants under stress, which represents a
defensive mechanism to cope with multiple abiotic stresses [31]. Plant phenolics play an important role
in several physiological processes to improve the tolerance and adaptability of plants under suboptimal
conditions [38–40]. In particular, a large number of secondary metabolites having antioxidant properties
belong to this group [41] which can ameliorate plant performance under stress conditions.

Plants interact with their living environment through secondary metabolites. Polyphenols are,
for example, involved in signal transduction from the root to the shoot and also help in nutrient
mobilization. The roots exudates contain phenolic compounds which alter the physiochemical
properties of the rhizosphere. Soil microbes transform phenolics into compounds which help in
N mineralization and humus formation [42]. Furthermore, phenolics improve nutrient uptake
through chelation of metallic ions, enhanced active absorption sites, and soil porosity with accelerated
mobilization of elements like calcium (Ca), magnesium (Mg), potassium (K), zinc (Zn), iron (Fe),
and manganese (Mn) [43]. Recently, Rehman, et al. [44] found that Zn application and plant growth
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promoting rhizobacteria (PGPRs) treatment enhanced the contents of phenolics and organic acids
(pyruvic acid, tartaric acid, citric acid, malonic acid, malic acid, succinic acid, oxaloacetic acid,
oxalic acid, and methyl malonic acid) in root exudates of wheat, which helped in nutrient mobilization
of Zn, N, and Ca and their uptake [44,45]. Phenolic compounds also help in N fixation in legumes.
Legumes release several secondary metabolites from roots, principally flavonoid compounds (flavanols
and iso-flavonoids) which play crucial role in Nod factors synthesis and in the production of infection
tube during nodulation, given that they inhibits auxin transport and facilitate cell division [46].

Plant phenolics, as physiological regulator or chemical messenger, inhibit the IAA catabolism
(dihydroxy B-ring flavonoids) or limit the IAA synthesis (monohydroxy B-ring flavonoids) [47].
Flavonoids play a key role in the development of functional pollen. For instance, addition of a very
small dose of flavonol aglycones kaempferol or quercetin restored the fertility in mature pollen during
pollination [48,49]. Some phenolic compounds (trans-cinnamic acid, coumarin, p-hydroxybenzoic
acid, and benzoic acid) might be potentially phytotoxic if accumulated in high quantity and can
inhibit germination and seedling growth [50] due to the disruption of cellular enzyme functioning and
impairment of cell division. For instance, some phenolic compounds inhibit the prolyl aminopeptidase
and phosphatase enzyme involved in seed germination in legumes [51]. Conversely, high phenolic
acid contents have been reported to exert positive effects in seed germinating. In a recent study,
Chen et al. [52] found a substantial increase in free (1042%), bound (120%), and total phenolic acid content
(741%) in canary grass during germination. The spruce bark extract containing polyphenols stimulated
the germination rate in Lycopersicon esculentum while inhibited root elongation [53]. Phenolics reduced
the thickness and increased the seed tegument porosity which help in water imbibition and boost
the germination rate [54]. Polyphenolic extracts of spruce bark intensified the photosynthetic activity
and biosynthesis of assimilatory pigment (chlorophyll a and b) in maize and sunflower [55,56].
Phenolics reduced the energy required for ion transfer by modifying the structure of thylakoids and
mitochondrial membranes [57]. As antioxidants, phenolic compounds participate in the scavenging
of reactive oxygen species (ROS), catalyzing oxygenation reactions through formation of metallic
complexes, and inhibiting the activities of oxidizing enzymes [58].

In conclusion, polyphenols are produced under optimal and (with higher levels) in suboptimal
conditions in plants and play crucial role in the development encompassing signal transduction,
cell division, hormonal regulation, photosynthetic activity regulation, germination, and reproduction
rate. Plants exhibiting increased synthesis of polyphenols under abiotic stresses usually show a better
adaptability to limiting environments.

4. Abiotic Stresses and Their Toxic Effects on Plants

In recent times, producing more food and preventing crop losses to meet the demands of
ever-increasing human populations has gained unprecedented importance. Nevertheless, a large
proportion of arable land face abiotic stresses (drought, salinity, cold, heat, heavy metal toxicity,
UV radiation, etc.) which are expected to increase due to climate change and the incidence of these
environmental stresses are further fueled by anthropogenic activities. These abiotic stresses cause
alteration in physiological and biochemical processes of plants which results in diminished plant growth
and poor yield [59]. These stresses bring rapid changes in cellular redox homeostasis with excessive
reactive oxygen species (ROS) generation which eventually damage cell organelles and interfere in
ROS-promoted signaling pathways [60]. Contrary to over production of ROS, a physiological redox
state hampers normal cell functions and affects the plant immune system, suggesting that a threshold
level of ROS is necessary for normal plant functioning (Figure 1; Farooq, et al. [61]). Increased ROS
generation under abiotic stresses enhanced itself exponentially the production of ROS [62], which result
in peroxidation and destabilization of cellular membranes. Recently Rehman, et al. [63] observed that
heat stress and Zn deficiency cause reductions in growth (shoot and root biomass, and root length),
and consequently impeded nutrient uptake, enhanced lipid peroxidation and impaired photosynthetic
performance. In plants, ROS is produced from 1–2% of total O2 consumed in high active cell organelles
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like chloroplasts, mitochondria, and peroxisomes (Figure 1; [64]). The most common ROS are singlet
oxygen (1O2), superoxide radicle (O2

•–), hydrogen peroxide (H2O2), and hydroxyl radicle (•OH) [65].
Abiotic stresses disturb the balance between ROS generation and scavenge and accelerate ROS

propagation which damages vital macromolecules (nucleic acids, proteins, carbohydrates, and lipids)
and eventually leads to cell death. ROS-induced protein damage is caused by oxidation of amino acid
residues (e.g., cysteine) for disulphide bond formation, oxidation of arginine, lysine, and threonine
residues resulting in irreversible carbonylation in side chains and oxidation of methionine residue
to form methionine sulphoxide [66]. ROS production also limits CO2 fixation in chloroplasts which
are the main site for ROS generation in green plants [67]. ROS reacts with chlorophyll during
photosynthesis and forms the chlorophyll triplet state which can rapidly generate (1O2), thus causing
damage to photosynthetic complexes (principally PSII) and perturbing the molecular reaction of
the photosynthetic pathway [68]. Apart from the chloroplast, the mitochondria also increase ROS
production under abiotic stress which influences plant cellular processes [24]. In mitochondria, ~1–5%
of O2 consumed leads to H2O2 formation which is subsequently transformed in •OH during the Fenton
reaction [69]. Furthermore, intensive respiratory/photorespiratory metabolism demands high electron
input leading to escalated ROS production which results in protein oxidation [61]. Peroxisomes are also
major sites for ROS production, particularly H2O2, and have two- and 50-fold higher concentration
of H2O2 than chloroplasts and mitochondria, respectively [70]. This H2O2 is involved in stress
induced oxidative damage given that it can freely pass lipid membranes. Under the physiological
level, different antioxidant defense mechanism detoxify ROS. However, over production of ROS can
overwhelm the defense system, resulting in oxidative stress, cell damage, and cell death (Figure 1) [71].
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Figure 1. Schematization of signal transmission and transduction in plant cells. Abbreviation: ABA,
abscisic acid; APX, ascorbate peroxidase; HSF, redox-sensitive transcription factor; JA, jasmonic acid;
MAPK, mitogen-activated protein kinase; NADP, oxidized nicotinamide adenine dinucleotide;
NADPH, reduced nicotinamide adenine dinucleotide; NPR1, redox-sensitive transcription factor;
OXI1, serine/threonine kinase; PA, phosphatidic acid; PLC/PLD, phospholipases class C and D; POX,
peroxidase; ROS, reactive oxygen species; SA, salicylic acid; SOD, superoxide dismutase.

5. Response and Role of Endogenous Phenolics in Plants against Abiotic Stress

In response to abiotic stresses, biosynthesis of secondary metabolites, including polyphenols,
is usually increased in plants. Phenolics confer indeed higher tolerance to plants against various stress
conditions like heavy metals, salinity, drought, temperature, pesticides, and UV radiations [33,72–77].
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Plants growing under stressful environments have the ability to biosynthesize more phenolic
compounds in comparison to plants growing under normal conditions [78]. These compounds
have antioxidative properties and are capable of scavenging free radicals, resulting in reduction
of cell membrane peroxidation [79], hence protecting plant cells from ill effects of oxidative stress.
Biosynthesis of phenolics under stressful environments is regulated by the altered activities of various
key enzymes of phenolic biosynthetic pathways like PAL and CHS (chalcone synthase). Enhanced
performance of enzymes is also accompanied by the up-regulation of the transcript levels of genes
encoding key biosynthetic enzymes like PAL, C4H (cinnamate 4-hydroxylase), 4CL (4-coumarate:
CoA ligase), CHS, CHI (chalcone isomerase), F3H (flavanone3-hydroxylase), F3′H (flavonoid
3′-hydroxylase), F3′5′H (flavonoid 3′5′-hydroxylase), DFR (dihydroflavonol 4-reductase), FLS (flavonol
synthase), IFS (isoflavone synthase), IFR (isoflavone reductase), and UFGT (UDP flavonoid
glycosyltransferase) [74,80–86]. The responses of phenolic compounds under different abiotic stresses
have been discussed in individual sections mentioned below.

5.1. Heavy Metal

Metal stress causes oxidative stress to plants by triggering the generation of harmful ROSs and
ultimately cause toxicity and retarded growth [11,87,88]. However, enhanced biosynthesis of phenolics
in plants under metal stress helps in protecting plants from oxidative stress [72,89,90]. Flavonoids can
enhance the metal chelation process which helps in reducing the levels of harmful hydroxyl radical in
plant cells [91,92] and this fits well with the observation that the levels of flavonoids in plants have
found to be enhanced by metal excess [90,93]. Under metal toxicity, accumulation of specific flavonoids
which are involved in aiding to the plant’s defense mechanism is also enhanced including anthocyanins
and flavonols [72,94–96]. Accumulation of phenolic compounds is due to the up-regulation of the
biosynthesis of phenylpropanoid enzymes including phenylalanine ammonia-lyase, chalcone synthase,
shikimate dehydrogenase, cinnamyl alcohol dehydrogenase, and polyphenol oxidase [95,97], which in
turn, is dependent on the modulation of transcript levels of genes encoding biosynthetic enzymes
under metal stress [72,85]. Flavonoids are also known for their scavenging capability of H2O2 and are
considered to play a crucial role in the phenolic/ascorbate-peroxidase cycle [98,99].

Shikimate dehydrogenase (SKDH) and glucose-6-phosphate dehydrogenase (G6PDH) are two
important enzymes which catalyze the biological reaction required for the production of important
precursors of phenylpropanoid pathways [100]. Another enzyme cinnamyl alcohol dehydrogenase
(CADH) catalyzes biochemical reactions which produce precursors required for synthesis of lignin [101].
Heavy metals stimulate phenylpropanoid the biosynthetic pathway in plants by up-regulating the
activities of key biosynthetic enzymes like PAL, SKDH, G6PDH, and CADH [101]. Additionally,
polyphenol oxidase (PPO) helps during the process of ROS scavenging, and enhancing a plant’s
resistance to abiotic stress conditions like heavy metals [100–102]. Table 1 summarizes the impact of
metal stress on phenolic composition of plants.

Table 1. Summary table describing the impact of heavy metal stress on the endogenous levels of
various phenolic compounds in plants.

Plant Species Heavy
Metal Response of Endogenous Phenolics and Related Parameters Reference

Brassica juncea

Cu
Increase in contents of total phenols, anthocyanins and other
phenolic compounds like catechin, caffeic acid, coumaric acid,

kaempferol.
[103]

Cr
Increase in total contents of phenols, flavonoids and

anthocyanins, accompanied by enhanced expressions of PAL
and CHS.

[72]

Cr Increase in anthocyanins accompanied by up-regulation of
CHS gene. [93]
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Table 1. Cont.

Cd Increase in the contents of total flavonoids and anthocyanins. [90]

Cd Increase in total contents of flavonoids and anthocyanins,
accompanied by enhanced expressions of PAL and CHS. [104]

Cd Increase in total contents of phenols, polyphenols, flavonoids
and anthocyanins. [105]

Pb
Increase in total contents of phenols, flavonoids and

anthocyanins, accompanied by enhanced expressions of PAL
and CHS.

[106]

Pb Increase in total contents of phenols, polyphenols, flavonoids
and anthocyanins. [89]

Fagopyrum
esculentum Al Increase in total phenolic, flavonoid and anthocyanin contents.

Increase in the activity of PAL enzyme. [77]

Kandelia obovata Cd and Zn

Enhanced levels of total phenolics accompanied by increased
activities of phenol metabolic enzymes like shikimate
dehydrogenase, cinnamyl alcohol dehydrogenase and

polyphenol oxidase.

[97]

Prosopis farcta Pb

Increase in total contents of phenols accompanied by
enhanced activity of PAL enzyme.

Contents of other phenolic compounds were also increased
including ferulic acid, cinnamic acid, caffeic acid, daidzein,

vitexin, resveratrol, myricetin, quercetin, kaempferol,
naringinine, luteolin and diosmin.

[95]

Vitis vinifera Cu
Enhanced transcript levels of various genes encoding enzymes
involved in biosynthesis of phenolics (PAL, C4H, CHS, F3H,

DFR) and down-regulation of UFGT and ANR.
[85]

Withania
somnifera Cd Increase in total contents of flavonoids and phenolics [101]

Zea mays Cu, Pb, Cd Increase in the contents of total phenols and some
polyphenols like chlorogenic and vanillic acid. [96]

PAL (phenylalanine ammonia lyase); CHS (chalcone synthase); CHI (chalcone isomerase); C4H (cinnamate
4-hydroxylase); 4CL (4-coumarate: CoA ligase); F3H (flavanone3-hydroxylase); UFGT (UDP flavonoid
glycosyltransferase); IFS (isoflavone synthase); DFR (dihydroflavonol 4-reductase).

5.2. Drought

Phenolic accumulation is very crucial to counteract the negative impacts of drought stress in
plants [33]. Transcriptomic and metabolomic studies carried out on Arabidopsis plants confirmed that
enhanced flavonoid accumulation under drought stress is very helpful to provide resistance [107].
Biosynthesis and accumulation of flavonols were also stimulated in plants under water deficit conditions
accompanied by enhanced resistance against drought stress [108,109]. Drought stress also regulated
the biosynthetic pathways of phenolic acids and flavonoids, leading to enhanced accumulation of these
compounds [82,110,111] which acted as antioxidants and prevented plants from adverse effects of
water deficit conditions [112]. For example, contents of flavonoids like kaempferol and quercetin were
enhanced in tomato plants accompanied by enhanced drought tolerance [113]. Flavonoid accumulation
in cytoplasm can efficiently detoxify harmful H2O2 molecules generated as a result of drought stress
and, at the end oxidation of flavonoids is followed by ascorbic acid mediated re-conversion of flavonoids
into primary metabolites [114]. The main reason for this drought-induced accumulation of phenolic
compounds is the modulation of phenylpropanoid biosynthetic pathway. Drought regulates many key
genes encoding main enzymes of phenylpropanoid pathway, which results in stimulated biosynthesis
of phenolic compounds. The impact of drought stress on accumulation of phenolics and related
processes has been summarized in Table 2.
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Table 2. Summary table describing the impact of drought stress on the endogenous levels of various
phenolic compounds in plants.

Plant Species Response of Endogenous Phenolics and Related Parameters Reference

Achillea spp.

Increase in the contents of chlorogenic acid, caffeic acid, rutin,
luteolin-7-O-glycoside, 1,3-dicaffeoylquinic acid, luteolin, apigenin and

kaempferol under 21 days exposure of drought.
Enhanced transcript levels of PAL, CHS, CHI, F3H, F3′H, F3′5′H and FLS.

[82]

Increase in contents of total phenols and flavonoids. [115]

Brassica napus
Increase in contents of total phenols, flavonoid and flavonol.

Increase in PAL enzyme activity accompanied by enhanced expression of
PAL.

[110]

Chrysanthemum
morifolium

Increase in contents of total phenolics, anthocyanins, chlorogenic acid,
luteolin, rutin, ferulic acid, apigenin and quercetin.

Enhanced expression of PAL, CHI, and F3H, particularly in cultivar Taraneh.
[116]

Cucumis sativus Up-regulation of phenolic metabolites including vanillic acid and
4-hydroxycinnamic acid. [111]

Fragaria ananassa Enhanced transcript levels of PAL, C4H, 4CL, DFR, ANS, FLS and UFGT. [81]

Lactuca sativa Increase in the contents of phenolic compounds such as caftaric acid and
rutin. [117]

Larrea spp. Increase in the contents of polyphenols including flavonoids,
proanthocyanidins and flavonols. [118]

Lotus japonicus
Increase in the contents of kaempferol and quercetine.

Up-regulation of the expression of PAL, C4H, 4CL, CHS, CHI, DFR, IFS and
IFR

[119]

Nicotiana tabacum Increase in PAL enzyme activity and lignin content. [120]

Ocimum spp. Increase in content of total phenols [121]

Thymus vulgaris Increase in the contents of total flavonoids and polyphenols. [122]

Triticum aestivum

Increase in content of total phenols [123]

Increase in the total contents of phenolics, flavonoids and anthocyanins.
Enhanced expression of genes like CHS, CHI, F3H, FNS, FLS, DFR and ANS. [84]

Vitis vinifera

Increase in the contents of polyphenols including 4-coumaric acid, caffeic
acid, ferulic acid, cis-resveratrol-3-O-glucoside,

trans-resveratrol-3-O-glucoside, catechin, epicatechin, caftaric acid,
epicatechin gallate, kaempferol-3-O-glucoside, cyanidin-3-O-glucoside,

quercetin-3-O-glucoside and quercetin-3-O glucuronide.

[124]

Increase in anthocyanin content accompanied by up-regulation of
associated biosynthetic genes like UFGT, CHS and F3H. [125]

PAL (phenylalanine ammonia lyase); CHS (chalcone synthase); CHI (chalcone isomerase); C4H (cinnamate
4-hydroxylase); 4CL (4-coumarate: CoA ligase); F3H (flavanone3-hydroxylase); F3′H (flavonoid 3′-hydroxylase);
F3′5′H (flavonoid 3′5′-hydroxylase); FLS (flavonol synthase); FNS (flavone synthase) UFGT (UDP flavonoid
glycosyltransferase); IFS (isoflavone synthase); IFR (isoflavone reductase); DFR (dihydroflavonol 4-reductase); ANS
(anthocyanidin synthase).

5.3. Salinity

Salt stress results in generation of ROS like superoxide anions, hydrogen peroxide, and hydroxyl
ions [126,127] and require activation of well-orchestrated and finely-tuned plants antioxidant system
to contrast ROS propagation [128,129]. Phenolic compounds have powerful antioxidant properties
and help in scavenging of harmful ROS in plants under salt stress [130–132]. Moreover, in response to
salt stress, phenylpropanoid biosynthetic pathway gets stimulated and results in production of various
phenolic compounds which have strong antioxidative potential [131,133,134].

Some genes like VvbHLH1 are involved in the enhanced production of flavonoids by regulating
the genes of the biosynthetic pathways and confer salt tolerance to plants [135,136]. In tobacco plants,
NtCHS1 plays a crucial role in the biosynthesis of flavonoids under salt stress, where accumulation
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directly favors the scavenging of ROS [130]. Flavone biosynthesis also was enhanced under saline
conditions and in Glycine max, it was observed that salinity up-regulates the expression of flavone
synthase genes, GmFNSII-1 and GmFNSII-2 [137]. Some phenolic acids also accumulate in plants
under saline conditions including caffeic acid, caftaric acid, cinnamylmalic acid, gallic acid, ferulic acid,
and vanillic acid [131,138–140]. Biosynthesis of anthocyanins also was promoted in plants growing
under saline conditions [141,142]. A detailed explanation about the effect of salt stress on phenolic
composition has been provided in Table 3.

Table 3. Summary table describing the impact of salt stress on the endogenous levels of various
phenolic compounds in plants.

Plant Species Response of Endogenous Phenolics and Related Parameters Reference

Amaranthus tricolor

Increase in contents of total phenolics, hydroxybenzoic acids
(gallic acid, vanilic acid, syringic acid, p-hydroxybenzoic acid,
ellagic acid), hydroxycinnamic acids (caffeic acid, chlorogenic
acid, p-coumaric acid, m-coumaric acid, ferulic acid, sinapic

acid, trans-cinnamic acid) and flavonoids (iso-quercetin,
hyperoside, rutin)

[140]

Asparagus aethiopicus Increase in the levels of phenolics like robinin, rutin, apigein,
chlorogenic acid and caffeic acid. [134]

Carthamus tinctorius Increase in contents of total phenols and flavonoids. [136]

Chenopodium quinoa Increase in total polyphenol and flavonoid contents. [143]

Cynara cardunculus

Increase in contents of phenolic compounds like
luteolin-O-glucoside, apigenin 6-c-glucoside 8-c-arabinoside,

gallocatechin, leucocyanidin and quercitrin.
Decrease in contents of compounds like apigenin, chrysin,

genistein, daidzein and ferulic acid

[144]

Fragaria ananassa Enhanced transcript levels of PAL, C4H, F3H, DFR and FLS. [81]

Hordeum vulgare Increase of total phenolic contents. [145]

Mentha piperita Increase of total phenolic contents. [146]

Ocimum basilicum
Increase in the contents of various phenolic compounds like

caffeic acis, caftaric acid, cinnamyl malic acid, feruloyl tartaric
acid, quercetin-rutinoside and rosmarinic acid.

[139]

Olea europaea
Increase in contents of total phenolics, kaempf erol and

quercetin.
Regulation of transcript levels of PAL, C4H, 4CL, CHS and CHI.

[133]

Salvia mirzayanii Increase of total phenolic contents. [132]

Salvia mirzayanii and Salvia
acrosiphon

Increase in total phenolic content and PAL activity
accompanied by enhanced expression of PAL. [147]

Solanum lycopersicon Increase in total caffeoylquinic acid content [129]

Solanum villosum
Increase in total phenolic, caffeic acid, and quercetin

3-β-D-glucoside contents.
Up-regulation of the expression of PAL and FLS

[138]

Thymus spp.

Increase in the contents of various phenolic compounds like
caffeic acid, gallic acid, trans-2-hydroxycinnamic acid,

cinnamic acid, rosmarinic acid, rutin, syringic acid, vanillic
acid, apigenin, quercitrin, naringenin and luteolin.

[131]

Triticum aestivum Increase in contents of total phenols [123]

PAL (phenylalanine ammonia lyase); CHS (chalcone synthase); CHI (chalcone isomerase); C4H (cinnamate
4-hydroxylase); 4CL (4-coumarate: CoA ligase); F3H (flavanone3-hydroxylase); FLS (flavonol synthase);
DFR (dihydroflavonol 4-reductase).
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5.4. UV Light

Exposure of UV-B radiations to plants causes damage to their protein structure, causes harmful
mutations to DNA and generates harmful ROS. To counteract the negative effects of UV-B exposure,
endogenous phenolics accumulated in plant cells and protect cell components by making a shield
under epidermal layer. They further reduce DNA damage by preventing dimerization of thymine
along with reducing photo-damage of important enzymes like NAD/NADP [33,148]. Moreover,
flavonoids also act as light screens due to their capability of absorbing both visible (anthocyanins)
and UV radiations (anthocyanins and colorless flavonoids), hence protecting plants from these
harmful radiations [26,149]. This fact was supported by various researchers who observed enhanced
biosynthesis of flavonoids in plants under UV radiations, accompanied by enhanced UV absorption
and plant tolerance to these radiations [98,150] and powerful antioxidant capacity [151]. Moreover, it is
also well known that plants growing at high altitude accumulate more phenolics like flavonoids than
plants of a temperate region. This enhanced flavonoid accumulation under high light/UV exposure
is because of stimulated flavonoid biosynthetic pathways and their corresponding gene transcript
levels [33,83,152,153]. The key genes which are up-regulated in plants upon UV exposure include:
CHS (chalcone synthase); CHI (chalcone isomerase); FLS (flavonol synthase); DFR (dihydroflavonol
4-reductase); FHT (flavanone 3β-hydroxylase), FGT (flavonoid glycosyltransferases); and PAL
(phenylalanine ammonia lyase) [154,155]. It is also believed that UV light also utilizes jasmonate
dependent/independent pathways to stimulate the biosynthesis of phenols in plants [156]. Additionally,
abscisic acid (ABA) is also known to modulate the phenolic biosynthetic pathway in presence of UV
light [157]. Table 4 provides a brief summary about impact of UV exposure on the endogenous phenolic
composition of plants.

Table 4. Summary table describing the impact of UV light exposure on the endogenous levels of various
phenolic compounds in plants.

Plant Species Response of Endogenous Phenolics and Related Parameters Reference

Arbutus unedo Increase in contents of phenolic compounds like theogallin,
avicularin and juglanin. [158]

Brassica oleracea Increase in contents of gallic acid and sinapic acid. [159]

Caryopteris mongolica Increase in contents of flavonoids and anthocyanidins, accompanied
by PAL and CHI activity. [160]

Cuminum cyminum Increase in contents of total phenolics and anthocyanins,
accompanied by enhanced gene expression of DAHP and PAL. [153]

Fragaria x ananassa

Increase in contents of kaempferol, ellagic acid and, glucoside
derivative of cyaniding, pelargonidin and quercetin.

Up-regulation of key genes involved in flavonoid pathway
including CHS, CHI, FHT, DFR, FLS and FGT.

[155]

Kalanchoe pinnata Increase in contents of total flavonoids and quercitrin. [161]

Lactuca sativa

Increase in contents of total phenolics, flavonoids and anthocyanins.
Contents of phenolic acids were also increased including rosmarinic

acid, vanillic acid, p-anisic acid, methoxycinnamic acid and
chlorogenic acid.

[162]

Increase in total anthocyanin and phenolic contents. This is
accompanied by enhanced activity of PAL enzyme and

up-regulation of PAL expression.
[163]

Ribes nigrum Increase in contents of flavonols, anthocyanins, hydroxycinnamic
and hydroxybenzoic acids. [164]

Solanum lycopersicum Increase in total phenolic content [165]
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Table 4. Cont.

Triticum aestivum

After 3 days of UV exposure, increase in contents of total phenolics,
ferulic acid, p-coumaric acid and vanillic acid, whereas no change in
the contents of p-hydroxybenzoic acid, syringic acid and sinapic acid.

Alterations in the transcript levels of PAL, C4H, 4CL, and COMT

[83]

Triticum aestivum Increase in contents of free, bound and total phenolics accompanied
by enhanced PAL activity. [166]

Vigna radiata Increase in total flavonoid and phenol content, accompanied by
enhanced activities of PAL and CHI enzymes. [154]

Vitis vinifera Increase in contents of astilbin, quercetin and kaempferol. [167]

Increase in contents of phenolic compounds like cyaniding,
petunidin, peonidin, malvidin, quercetin, myricetin, kaempferol,

procyanidin, gallic acid, protocatechuic acid and vanillic acid.
[157]

CHS (chalcone synthase); CHI (chalcone isomerase); FLS (flavonol synthase); DFR (dihydroflavonol 4-reductase);
FHT (flavanone 3β hydroxylase), FGT (flavonoid glycosyltransferases) PAL (phenylalanine ammonia lyase);
C4H (cinnamate 4-hydroxylase); 4CL (4-coumarate: CoA ligase); cinnamylalcohol dehydrogenase (CAD);
COMT (caffeic acid O-methyltransferase); DAPH (deoxyribonino heptulosinate 7-phosphate synthase).

5.5. Other Abiotic Factors

Other abiotic factors like temperature, nanoparticles, and pesticides also stimulate the endogenous
phenolic biosynthesis in plants and help in providing resistance against phytotoxic effects of these
abiotic stresses [74,80,153,168–171]. Phenolic biosynthetic pathways also get activated in plants
growing under pesticide stress conditions. This leads to more accumulation of phenolic compounds in
plants, which confer resistance to survive against pesticide toxicity [73,170]. This stimulated phenolic
biosynthesis is due to the activation of key biosynthetic enzymes and up-regulation of key genes of
phenylpropanoid branch, including PAL and CHS [74,80]. Increased accumulation of anthocyanins
in plant leaves promote by application of insecticides also helps in recovery of plant photosynthetic
efficiency [172]. Similarly, under temperature stress (both heat and chilling), plants synthesize more
phenolic compounds such as anthocyanins, flavonoids, flavonols, and phenolic acids, which ultimately
protect plant cells [75,129,168,169,173]. In Festuca trachyphylla plants growing under heat stress,
enhancement in the phenolic compounds was noticed including 4-hydroxybenzoic acid, benzoic acid,
caffeic acid, coumaric acid, cinnamic acid, gallic acid, homovanillic acid, ferulic acid, salicylic acid,
and vanillic acid [76]. The increased accumulation of these phenolic compounds is accompanied by
enhanced tolerance of F. trachyphylla plants against high temperature [76]. In carrot, phenolics like
coumaric acid, caffeic acid, and anthocyanins are suggested to prevent heat induced oxidative damage
by enhancing their accumulation [174]. Some phenolics like salicylic acid also act as stimulant for
phenol biosynthesis in plants under high temperature stress. This leads to enhanced accumulation
of phenolic compounds which further help in detoxification of ROS and providing heat resistance
to plants [175]. Under chilling stress, phenolic compounds like suberin or lignin start accumulating
in plant cell walls which helps in enhancing resistance against chilling stress [176]. This enhanced
thickness of cell wall due to phenolic accumulation is beneficial for prevention of chilling injury
and cell collapse under cold stress [33]. Stimulated phenolic biosynthesis under low temperature
stress is due to the enhanced expression of PAL, CAD (cinnamylalcohol dehydrogenase), and HCT
(hydroxycinnamoyl transferase), and increased phenolic levels play crucial role in protection plants
against chilling stress [86]. This fact is further supported by the research carried out on peach under
chilling stress by Gao et al. [177]. These researchers suggested that 24-epibrassinolide stimulated
biosynthesis of phenolics is involved in reduction of heat generated oxidative stress by helping to
scavenge of ROS. Table 5 provides a detailed overview about how different abiotic factors affect
phenolic metabolism in plants.
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Table 5. Summary table describing the impact of various abiotic factors on the endogenous levels of
various phenolic compounds in plants.

Plant Species Abiotic Factor Response of Endogenous Phenolics and Related
Parameters Reference

Brassica juncea

Insecticide Increase in total phenol and polyphenol contents. [73]

Insecticide
Increase in total phenol, polyphenol and anthocyanin

contents accompanied by enhanced expression of
PAL and CHS.

[74]

Insecticide Increase in total phenol and anthocyanin contents. [178]

Insecticide
Increase in total phenol and anthocyanin contents
accompanied by enhanced expression of PAL and

CHS.
[80]

Dracocephalum
kotschyi Silicon dioxide NP

Increase in total phenol, total flavonoid, rosmarinic
acid and xantomicrol contents, accompanied by

up-regulation of the gene expression of PAL and RAS.
[179]

Festuca
trachyphylla Heat

Increase in the contents of phenolic compounds like
4-hydroxybenzoic acid, benzoic acid, caffeic acid,

coumaric acid, cinnamic acid, gallic acid,
homovanillic acid, ferulic acid, salicylic acid and

vanillic acid.

[76]

Lens culinaris Heat
Enhanced levels of total phenolics and flavonoids.
Increase in the contents of gallic acid, salicylic acid,

chlorogenic acid, ferulic acid and naringenin,
[168]

Nicotiana
tabacum Chilling

Alteration in the contents of various metabolites of
phenylalanine metabolic pathway.

Enhanced expression of PAL, HCT and CAD.
[86]

Nicotiana
langsdorffii Heat

Increase in the contents of total polyphenols and
individual contents of p-coumaric acid, chlorogenic
acid, cryptochlorogenic acid, neochlorogenic acid

and ferulic acid.

[75]

Oryza sativa Insecticide Increase in the contents of phenylalanine,
p-hydroxybenzoic acid and ferulic acid [170]

Prunus persica Chilling

Increase in the activities of enzymes like PAL, C4H,
4CL and CHI.

Increase in the contents of phenolic compounds like
protocatechuic acid, catechin, cholorogenic acid,

neocholorogenic acid, quercetin-3- rutinoside,
quercetin-3-glucoside, kaempferol-3- rutinoside

[169]

Solanum
lycopersicon

Heat Increase in total flavonol content [129]

Silver NP Increase in total phenolic content. [180]

Solanum
tuberosum Zinc NP Increase in contents of total phenolics and

anthocyanins. [181]

Vigna angularis Heat Increase in the contents of anthocyanins and
flavonoids. [173]

Vitis vinifera Titanium NP Increase in contents of total phenolics, caftaric acid,
quercetin derivatives and kaempferol derivatives. [171]

Withania
somnifera Copper NP Increase in contents of total phenolics and flavonoids. [182]

PAL (phenylalanine ammonia lyase); CHS (chalcone synthase); CHI (chalcone isomerase); C4H (cinnamate
4-hydroxylase); 4CL (4-coumarate: CoA ligase); cinnamylalcohol dehydrogenase (CAD); HCT (hydroxycinnamoyl
transferase); COMT (caffeic acid O-methyltransferase); DAPH (deoxyribonino heptulosinate 7-phosphate synthase),
RAS (rosmarinic acid synthase); NP (nanoparticles).
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6. Conclusions

Phenylpropanoid pathway is likely the most studied pathway of secondary metabolism in
planta. In plants growing under challenging environments, accumulation of phenolic compounds
usually parallels enhanced plant tolerance as summarized in Figure 2. Abiotic stresses also activate
the cell signaling process, resulting in transcriptional up-regulation of phenylpropanoid pathway.
The increase in plant’s resistance is correlated with the multiple function of polyphenols in plants,
principally consisting in their ROS scavenging ability and/or the capacity of some polyphenol classes
to protect the plant from excessive light such as UV (flavonoids) and visible light (anthocyanins).
In addition, polyphenols might play other key ecological roles under abiotic stress, acting for example
as infochemicals for other plants. Aside from the huge body of papers on the matter, further research is
needed to deepen, for example, the role of specialized polyphenols as a response to certain abiotic stresses
and to describe the intimal mechanisms which shift from primary metabolism to the up-regulation of
phenylpropanoid pathway, which is as a cross response to several environmental stressors.Molecules 2019, 24, x 13 of 23 
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Figure 2. Diagrammatic explanation for response and role of phenolic compounds in plants
growing under abiotic stress conditions. ROS (reactive oxygen species); PAL (phenylalanine
ammonia lyase); CHS (chalcone synthase); CHI (chalcone isomerase); C4H (cinnamate 4-hydroxylase);
4CL (4-coumarate: CoA ligase); F3H (flavanone3-hydroxylase); F3′H (flavonoid 3′-hydroxylase);
F3′5′H (flavonoid 3′5′-hydroxylase); FLS (flavonol synthase); FNS (flavone synthase) UFGT
(UDP flavonoid glycosyltransferase); IFS (isoflavone synthase); IFR (isoflavone reductase);
DFR (dihydroflavonol 4-reductase); ANS (anthocyanidin synthase).
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