Supporting Information for

Effect of the substitution position on the electronic and solvatochromic properties of isocyanoaminonaphthalene (ICAN) fluorophores

Sándor Lajos Kovács¹, Miklós Nagy^{1*}, Péter Pál Fehér², Miklós Zsuga¹, Sándor Kéki¹

¹Department of Applied Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary ²Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1519 Budapest, Hungary

* Corresponding author: miklos.nagy@science.unideb.hu, fax: +36 52 518662; *H*-4032 Debrecen, HUNGARY

Synthesis of 2-amino-6-isocyanonaphthalene

A 200 ml round-bottom flask was charged with 2,6-diaminonaphthalene (0.50 g, 3.16 mmol) dissolved in chloroform (80 ml) and with potassium hydroxide (7.00 g, 125 mmol) dissolved in water (5 ml) and vigorously stirred with a magnetic stirrer at 40 °C for a day in argon atmosphere. After cooling down, the organic phase was filtered, washed with water 3 times, dried on anhydrous magnesium sulfate and the solvent was removed on a rotary evaporator. The crude product was purified on a column filled with normal-phase silica gel, using dichloromethane as eluent. Yield: 0.550 g, 14% (pale yellow powder)

¹H NMR (360 MHz, Chloroform-*d*) δ 7.86 – 7.75 (m, 1H), 7.70 (d, *J* = 8.7 Hz, 1H), 7.63 (d, *J* = 8.7 Hz, 1H), 7.43 – 7.30 (m, 1H), 7.15 – 6.96 (m, 2H), 4.10 (s, 3H), 2.25 (s, 0H), 1.34 (s, 4H), 1.05 – 0.88 (m, 1H).

¹³C NMR (91 MHz, Chloroform-*d*) δ 145.93 , 134.67 , 123.83 , 119.59 , 108.05 , 77.44 , 76.74 , 29.77 .

Fig. S1.¹H-NMR spectrum of 2-amino-6-isocyanonaphthalene in chloroform.

Fig. S2.¹³C-NMR spectrum of 2-amino-6-isocyanonaphthalene in chloroform.

Fig. S3. UV-vis spectra of 2-amino-6-isocyanonaphthalene 20° C, V = 3 cm³, c = 2.4×10^{-5} M

Fig. S4. Normalized emission spectra of 2-amino-6-isocyanonaphthalene 20°C, V = 3 cm³, c = $4.12x \ 10^{-6} M$

Fig. S5. Normalized excitation spectra of 2-amino-6-isocyanonaphthalene 20°C, V = 3 cm³, c = $4.12 \cdot 10^{-6}$ M

Fig. S6. Excitation spectra of 2-amino-6-isocyanonaphthalene 20°C, $V = 3 \text{ cm}^3$, $c = 4.12 \cdot 10^{-6} \text{ M}$

Synthesis of 1-amino-4-isocyanonaphthalene

A 200 ml round-bottom flask was charged with 1,4-diaminonaphthalene hydrochloride salt (2,00 g, 12,8 mmol) dissolved in chloroform (20 ml) and with potassium hydroxide (10.0 g, 536 mmol) dissolved in water (5 ml) and vigorously stirred with a magnetic stirrer at 40 °C for 6 hours in argon atmosphere. After cooling down, the organic phase was filtered, dried on anhydrous magnesium sulfate and the solvent was removed on a rotary evaporator. The crude product was purified on a column filled with normal-phase silica gel, using dichloromethane as eluent. Yield: 0.50 g, 25% (yellow powder)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.73 – 7.64 (m, 1H), 7.58 (t, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.28 (s, 0H), 6.68 (d, *J* = 8.0 Hz, 1H), 5.32 (s, 0H), 4.47 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 164.68 , 143.85 , 129.03 , 127.91 , 126.10 , 125.75 , 107.65 , 77.35 , 76.87 (d, J = 31.9 Hz), 29.70 .

Fig. S7. ¹H-NMR spectrum of 1-amino-4-isocyanonaphthalene in chloroform

Fig. S9. UV-vis spectra of 1-amino-4-isocyanonaphthalene 20°C, $V = 3 \text{ cm}^3$, $c = 2.4 \cdot 10^{-5} \text{ M}$

Fig. S10. Normalized emission spectra of 1-amino-4-isocyanonaphthalene 20°C, V = 3 cm³, c = $4.12 \cdot 10^{-6}$ M

Fig. S11. Normalized excitation spectra of 1-amino-4-isocyanonaphthalene 20°C, V = 3 cm³, c = $4.12 \cdot 10^{-6}$ M

Fig. S12. Excitation spectra of 1-amino-4-isocyanonaphthalene 20°C, $V = 3 \text{ cm}^3$, $c = 4.12 \cdot 10^{-6} \text{ M}$

Table S1. Comparison of the results obtained by different functionals for the absorption wavelength calculations for the ICAN isomers in different solvents. The last column indicates the number of isomers for which the calculated data was inside 30 nm of the measured one. The higher this value is, the higher is the precision of the given functional.

ABSORPTION			CAN	1,4-ICAN		2,6-ICAN			
	method	λ	Δλ	λ	Δλ	λ	Δλ	n° inside 30 nm (~8.5%)	
	CAM-B3LYP (cLR on M06							()	
n-hexane	geom.)								
n-hexane	CAM-opt (cLR)	319	-19	303	-32	303	-49	1	
n-hexane	CAM-opt (eq)	319	-19	306	-29	304	-48	2	
n-hexane	M06 (cLR)	363	25	335	0	332	-20	3	
n-hexane	EXP	338	0	335	0	352	0	-	
	CAM-B3LYP (cLR on M06								
DMSO	geom.)	331	-16					1	
DMSO	CAM-opt (cLR)	326	-21	306	-53	305	-59	1	
DMSO	CAM-opt (eq)	323	-24	310	-49	305	-59	1	
DMSO	M06 (cLR)	375	28	337	-22	336	-28	3	
DMSO	EXP	347	0	359	0	364	0	-	
	CAM-B3LYP (cLR on M06								
water	geom.)	316	-20					1	
water	CAM-opt (cLR)	311	-25					1	
water	CAM-opt (eq)	310	-26					1	
water	M06 (eq)	351	15					1	
water	M06 (cLR)	355	19					1	
water	EXP	336	0					-	

Table S2. Comparison of the results obtained by different functionals for the emission wavelength calculations for the ICAN isomers in different solvents. The last column indicates the number of isomers for which the calculated data was inside 30 nm of the measured one. The higher this value is, the higher is the precision of the given functional.

EMISSION			1,5-ICAN		1,4-ICAN		CAN	
	2	• 2	2	• •	<u>,</u>	• 2	nº inside 30 nm	
	method	r	Δλ	x	Δλ	r	$\Delta \lambda$	(~7.5%)
n-hexane	CAM-B3LYP (cLR on M06 geom.)	391	-18	361	-41	346	-49	1
n-hexane	CAM-opt (cLR)	392	-17	362	-40	346	-49	1
n-hexane	CAM-opt (eq)	392	-17	368	-34	348	-47	1
n-hexane	M06 (cLR)	440	31	392	-10	375	-20	2
n-hexane	EXP	409	0	402	0	395	0	-
DMSO	CAM-B3LYP (cLR on M06 geom.)	429	-68	367	-58	359	-61	0
DMSO	CAM-opt (cLR)	427	-70	368	-57	361	-59	0
DMSO	CAM-opt (eq)	416	-81	386	-39	365	-55	0
DMSO	M06 (cLR)	495	-2	399	-26	392	-28	3
DMSO	EXP	497	0	425	0	420	0	-
water	CAM-opt (cLR)	460	-53					0
water	CAM-opt (eq)	434	-79					0
water	M06 (opt)	484	-29					1
water	M06 (cLR)	537	24					1
water	EXP	513	0					-

Figure S13. Normalized calculated (a) and measured (b) emission spectra for the 1,4-ICAN, 1,5-ICAN and 2,6-ICAN isomers in DMSO. The measured fluorescence emission spectrum for the 1,5-ICAN are taken from Ref. [15].

Figure S14. HOMO, LUMO, HOMO-1 (H-1) and LUMO+1 (L+1) molecular orbitals for the 1,4-ICAN (**a**), 1,5-ICAN (**b**) and 2,6-ICAN (**c**) isomer.

Fig. S15. Atomic indices for the calculation of the Mulliken charges presented in Tables S3-S5 for the 1,4-ICAN (**a**), 2,6-ICAN (**b**) and 1.5-ICAN (**c**) isomer.

	G	round State	S1 (ve	rtical)	S1 (relaxed)				
		Mulliken	Mulliken	ΔQ	Mulliken	ΔQ (GS)	ΔQ (S1-vert.)		
1	С	-0.1503	-0.1671	-0.0167	-0.1656	-0.0153	0.0015		
2	С	-0.0899	-0.1662	-0.0763	-0.1602	-0.0703	0.0060		
3	С	-0.1707	-0.1374	0.0333	-0.2337	-0.0630	-0.0963		
4	С	-0.3212	-0.3241	-0.0029	-0.2707	0.0506	0.0535		
5	С	-0.0458	-0.1019	-0.0561	-0.0915	-0.0457	0.0104		
6	С	-0.1579	-0.1986	-0.0407	-0.2019	-0.0439	-0.0033		
7	Н	0.1573	0.1502	-0.0071	0.1513	-0.0060	0.0010		
8	Н	0.1719	0.1678	-0.0041	0.1554	-0.0165	-0.0124		
9	С	0.1300	0.1232	-0.0068	0.3034	0.1734	0.1802		
10	С	0.1676	0.2236	0.0560	0.1680	0.0004	-0.0557		
11	Н	0.1605	0.1512	-0.0093	0.1525	-0.0081	0.0013		
12	С	-0.1604	-0.2156	-0.0552	-0.1946	-0.0342	0.0210		
13	С	-0.1502	-0.0943	0.0559	-0.1742	-0.0240	-0.0799		
14	Н	0.1821	0.1895	0.0074	0.1919	0.0098	0.0024		
15	Н	0.1722	0.1905	0.0183	0.1914	0.0193	0.0009		
16	Н	0.1741	0.1694	-0.0048	0.1691	-0.0051	-0.0003		
17	С	-0.1059	-0.1020	0.0039	-0.1109	-0.0050	-0.0089		
18	Ν	-0.1133	-0.1020	0.0113	-0.1002	0.0131	0.0018		
19	Ν	-0.3778	-0.3113	0.0665	-0.3731	0.0047	-0.0618		
20	Н	0.2659	0.2797	0.0138	0.2977	0.0318	0.0180		
21	Н	0.2617	0.2754	0.0137	0.2960	0.0342	0.0205		

 Table S3. Calculated atomic charges for the ground and excited states of the 1,4-ICAN isomer.

hydrogens summed into heavy atoms

		Mulliken	Mulliken	ΔQ	Mulliken	ΔQ (GS)	ΔQ (S1-vert.)
1	С	0.0070	-0.0168	-0.0238	-0.0143	-0.0213	0.0025
2	С	0.0820	0.0016	-0.0804	-0.0048	-0.0868	-0.0064
3	С	-0.1707	-0.1374	0.0333	-0.2337	-0.0630	-0.0963
4	С	-0.3212	-0.3241	-0.0029	-0.2707	0.0506	0.0535
5	С	0.1283	0.0674	-0.0609	0.0776	-0.0508	0.0101
6	С	0.0026	-0.0474	-0.0500	-0.0494	-0.0520	-0.0020
9	С	0.1300	0.1232	-0.0068	0.3034	0.1734	0.1802
10	С	0.1676	0.2236	0.0560	0.1680	0.0004	-0.0557
12	С	0.0217	-0.0261	-0.0478	-0.0027	-0.0244	0.0234
13	С	0.0220	0.0962	0.0742	0.0172	-0.0048	-0.0789
17	С	-0.1059	-0.1020	0.0039	-0.1109	-0.0050	-0.0089
18	Ν	-0.1133	-0.1020	0.0113	-0.1002	0.0131	0.0018
19	Ν	0.1498	0.2438	0.0940	0.2206	0.0708	-0.0232

	G	round State	S1 (ve	rtical)	S1 (relaxed)				
		Mulliken	Mulliken	ΔQ	Mulliken	ΔQ (GS)	ΔQ (S1-vert.)		
1	С	-0.1950	-0.2266	-0.0316	-0.2131	-0.0181	0.0135		
2	С	-0.0902	-0.1302	-0.0400	-0.1253	-0.0351	0.0049		
3	С	-0.1820	-0.1932	-0.0112	-0.2265	-0.0446	-0.0334		
4	С	-0.1871	-0.1599	0.0272	-0.1425	0.0446	0.0174		
5	С	-0.0787	-0.1857	-0.1070	-0.2038	-0.1252	-0.0182		
6	С	0.0593	0.0873	0.0280	0.0938	0.0344	0.0065		
7	Н	0.1919	0.1858	-0.0060	0.1879	-0.0040	0.0021		
8	Н	0.1623	0.1576	-0.0047	0.1602	-0.0021	0.0026		
9	С	-0.0924	-0.0443	0.0481	-0.0987	-0.0064	-0.0545		
10	С	-0.1035	-0.1239	-0.0204	-0.1410	-0.0375	-0.0171		
11	С	-0.1748	-0.2235	-0.0487	-0.2184	-0.0435	0.0052		
12	С	0.0493	0.0737	0.0244	0.1844	0.1350	0.1106		
13	Н	0.1862	0.1856	-0.0006	0.1877	0.0015	0.0021		
14	Н	0.1952	0.1897	-0.0055	0.1865	-0.0087	-0.0032		
15	Ν	-0.4003	-0.3050	0.0952	-0.3585	0.0418	-0.0534		
16	Н	0.2608	0.2821	0.0213	0.3018	0.0410	0.0197		
17	Н	0.2618	0.2878	0.0260	0.3001	0.0383	0.0124		
18	Н	0.1802	0.2041	0.0239	0.2016	0.0215	-0.0025		
19	Н	0.1616	0.1566	-0.0050	0.1554	-0.0062	-0.0013		
20	С	-0.1076	-0.1239	-0.0163	-0.1354	-0.0278	-0.0115		
21	Ν	-0.0970	-0.0942	0.0029	-0.0962	0.0008	-0.0021		

Table S4. . Calculated atomic charges for the ground and excited states of the 2,6-ICAN isomer.

hydrogens summed into heavy atoms

		Mulliken	Mulliken	ΔQ	Mulliken	ΔQ (GS)	ΔQ (S1-vert.)
1	С	-0.0032	-0.0408	-0.0376	-0.0252	-0.0221	0.0156
2	С	0.0721	0.0274	-0.0447	0.0350	-0.0372	0.0075
3	С	-0.1820	-0.1932	-0.0112	-0.2265	-0.0446	-0.0334
4	С	-0.1871	-0.1599	0.0272	-0.1425	0.0446	0.0174
5	С	0.1165	0.0040	-0.1125	-0.0173	-0.1338	-0.0213
6	С	0.0593	0.0873	0.0280	0.0938	0.0344	0.0065
9	С	0.0878	0.1598	0.0720	0.1029	0.0151	-0.0569
10	С	0.0582	0.0327	-0.0254	0.0144	-0.0437	-0.0183
11	С	0.0113	-0.0379	-0.0492	-0.0307	-0.0420	0.0073
12	С	0.0493	0.0737	0.0244	0.1844	0.1350	0.1106
15	Ν	0.1223	0.2648	0.1425	0.2435	0.1212	-0.0213
20	С	-0.1076	-0.1239	-0.0163	-0.1354	-0.0278	-0.0115
21	Ν	-0.0970	-0.0942	0.0029	-0.0962	0.0008	-0.0021

Ground State		ound State	Hirsh	nfeld	S1 (vertical) Hirsh			nfeld				S1 (relaxed)		
		Mulliken	Q-H	Q-CM5	Mulliken	ΔQ	Q-H	Q-CM5	ΔQ (H)	ΔQ (CM5)	Mulliken	ΔQ (GS)	ΔQ (S1-vert.)	
1	С	-0.1845	-0.0338	-0.0891	-0.1929	-0.0084	-0.0260	-0.0812	0.0079	0.0079	-0.1804	0.0041	0.0125	
2	С	-0.0443	-0.0729	-0.1236	0.0645	0.1087	0.0119	-0.0387	0.0849	0.0849	0.0237	0.0680	-0.0407	
3	С	-0.3143	-0.0047	-0.0032	-0.3531	-0.0389	-0.0123	-0.0108	-0.0075	-0.0075	-0.3311	-0.0168	0.0220	
4	С	-0.1770	-0.0168	-0.0167	-0.1255	0.0515	-0.0108	-0.0107	0.0060	0.0060	-0.1852	-0.0082	-0.0597	
5	С	0.0953	0.0545	0.1085	0.1116	0.0163	0.0916	0.1457	0.0371	0.0372	0.2630	0.1676	0.1514	
6	С	-0.1328	-0.0720	-0.1201	-0.0637	0.0691	-0.0125	-0.0606	0.0595	0.0595	-0.1362	-0.0034	-0.0725	
7	Н	0.1539	0.0483	0.1044	0.1682	0.0143	0.0570	0.1131	0.0087	0.0087	0.1684	0.0145	0.0002	
8	Н	0.1736	0.0319	0.0938	0.1995	0.0259	0.0541	0.1159	0.0221	0.0221	0.1938	0.0202	-0.0057	
9	С	0.1510	0.0488	0.1113	0.1337	-0.0173	0.0002	0.0627	-0.0486	-0.0486	0.1470	-0.0040	0.0133	
10	С	-0.0590	-0.0294	-0.0811	-0.1666	-0.1076	-0.1003	-0.1521	-0.0710	-0.0710	-0.1411	-0.0821	0.0255	
11	Н	0.1659	0.0432	0.1025	0.1913	0.0254	0.0635	0.1228	0.0203	0.0203	0.1936	0.0277	0.0023	
12	С	-0.1602	-0.0366	-0.0921	-0.1593	0.0010	-0.0521	-0.1076	-0.0155	-0.0155	-0.1664	-0.0061	-0.0071	
13	С	-0.1308	-0.0275	-0.0740	-0.2330	-0.1022	-0.0772	-0.1236	-0.0497	-0.0497	-0.2435	-0.1127	-0.0105	
14	Н	0.1810	0.0484	0.1094	0.1726	-0.0084	0.0251	0.0861	-0.0233	-0.0233	0.1552	-0.0258	-0.0174	
15	Н	0.1590	0.0528	0.1090	0.1496	-0.0094	0.0421	0.0983	-0.0107	-0.0107	0.1502	-0.0089	0.0005	
16	Н	0.1874	0.0577	0.1176	0.1731	-0.0143	0.0372	0.0971	-0.0205	-0.0205	0.1736	-0.0138	0.0005	
17	Ν	-0.3905	-0.1681	-0.6250	-0.2949	0.0956	-0.0769	-0.5338	0.0912	0.0912	-0.3554	0.0351	-0.0605	
18	н	0.2577	0.1262	0.3176	0.2834	0.0257	0.1527	0.3441	0.0265	0.0265	0.3043	0.0465	0.0208	
19	н	0.2591	0.1337	0.3244	0.2837	0.0246	0.1609	0.3515	0.0272	0.0272	0.3055	0.0464	0.0218	
20	С	-0.0808	-0.1336	-0.0197	-0.2086	-0.1278	-0.2480	-0.1341	-0.1144	-0.1144	-0.2123	-0.1315	-0.0037	
21	Ν	-0.1099	-0.0502	-0.2538	-0.1337	-0.0239	-0.0803	-0.2840	-0.0301	-0.0302	-0.1267	-0.0169	0.0070	

 Table S5. . Calculated atomic charges for the ground and excited states of the 1,5-ICAN isomer.

	hydrogens summed into heavy atoms												
		Mulliken	Q-H	Q-CM5	Mulliken	ΔQ	Q-H	Q-CM5	ΔQ (H)	ΔQ (CM5)	Mulliken	ΔQ (GS)	ΔQ (S1-vert.)
1	С	-0.0306	0.0145	0.0153	-0.0247	0.0059	0.0311	0.0319	0.0166	0.0166	-0.0119	0.0186	0.0127
2	С	0.1294	-0.0410	-0.0298	0.2640	0.1346	0.0660	0.0772	0.1070	0.1070	0.2176	0.0882	-0.0464
3	С	-0.3143	-0.0047	-0.0032	-0.3531	-0.0389	-0.0123	-0.0108	-0.0075	-0.0075	-0.3311	-0.0168	0.0220
4	С	-0.1770	-0.0168	-0.0167	-0.1255	0.0515	-0.0108	-0.0107	0.0060	0.0060	-0.1852	-0.0082	-0.0597
5	С	0.0953	0.0545	0.1085	0.1116	0.0163	0.0916	0.1457	0.0371	0.0372	0.2630	0.1676	0.1514
6	С	0.0330	-0.0287	-0.0176	0.1276	0.0945	0.0510	0.0621	0.0798	0.0798	0.0574	0.0243	-0.0702
9	С	0.1510	0.0488	0.1113	0.1337	-0.0173	0.0002	0.0627	-0.0486	-0.0486	0.1470	-0.0040	0.0133
10	С	0.1220	0.0191	0.0283	0.0060	-0.1160	-0.0752	-0.0660	-0.0943	-0.0943	0.0142	-0.1079	0.0082
12	С	-0.0012	0.0162	0.0169	-0.0097	-0.0085	-0.0100	-0.0093	-0.0262	-0.0262	-0.0162	-0.0150	-0.0066
13	С	0.0566	0.0302	0.0437	-0.0599	-0.1165	-0.0399	-0.0265	-0.0701	-0.0701	-0.0699	-0.1265	-0.0100
17	Ν	0.1263	0.0919	0.0170	0.2723	0.1460	0.2368	0.1619	0.1449	0.1449	0.2543	0.1280	-0.0180
20	С	-0.0808	-0.1336	-0.0197	-0.2086	-0.1278	-0.2480	-0.1341	-0.1144	-0.1144	-0.2123	-0.1315	-0.0037
21	Ν	-0.1099	-0.0502	-0.2538	-0.1337	-0.0239	-0.0803	-0.2840	-0.0301	-0.0302	-0.1267	-0.0169	0.0070

Figure S16. Calculated electronic density differences calculated for the emission between the relaxed excited state and the corresponding vertical ground state in DMSO for the 1,4-ICAN (a) 2,6-ICAN (b) and 1,5-ICAN (c) isomers.

Figure S17. Fluorescence decay of 1,4-ICAN in different solvents.

Figure S18. Fluorescence decay of 2,6-ICAN in different solvents.