SUPPORTING INFORMATION

Tables

Table 1. Transverse relaxation times deduced for the fluorine-containing monosaccharide library using the CPMG spin echo pulse sequence.

Peak	δ (ppm)	Assigment	T_{2} free (s)
1	-195.041	$3 \mathrm{~F}-\beta$-Glc	1.46
2	-198.140	4F- α-Glc	1.59
3	-198.675	3F- β-Man	1.58
4	-199.151	$3 \mathrm{~F}-\beta$-Gal	1.74
5	-199.273	$2 \mathrm{~F}-\beta$-Glc	1.61
6	-199.412	2F-a-Glc	1.90
7	-199.939	3F-a-Glc	1.42
8	-200.153	4F- β-Glc	1.56
9	-203.250	3F- α-Gal	1.77
10	-203.870	3F- α-Man	1.30
11	-204.747	2F- α-Man	1.68
12	-204.802	4F- α-Man	0.70
13	-207.385	$2 \mathrm{~F}-\beta$-Gal	1.66
14	-207.542	2F- α-Gal	1.94
15	-207.730	$2 \mathrm{~F}-\beta$-Fuc	1.89
16	-207.974	$2 \mathrm{~F}-\alpha$-Fuc	2.16
17	-208.374	4F- β-Man	1.54
18	-217.479	$4 \mathrm{~F}-\beta$-Gal	1.57
19	-220.024	4F- α-Gal	1.73
20	-223.158	$2 \mathrm{~F}-\beta$-Man	1.80
21	-229.641	$6 \mathrm{~F}-\beta$-Gal	1.40
22	-229.779	6F- α-Gal	1.40
23	-233.625	6F- β-Man	0.99
24	-234.449	$6 \mathrm{~F}-\alpha$-Man	0.83
25	-234.773	6F- β-Glc	0.92
26	-235.497	6F- α-Glc	0.90

Table 2. Main interactions found on the MD simulations for L-Fuc bound to DC-SIGN in the XRay crystal structure. Fraction is referred to the number of frames in which the complex is fully associated. In this case, ca. 100% of the total simulation time (100 ns).

	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	α-Fuc HO4	Glu347 O	2.6	1
	α-Fuc HO2	Glu354 O	2.6	1
	α-Fuc HO3	Glu354 O	2.7	0.89
	Asn365 NH	α-Fuc O3	3.2	0.81
	Asn349 NH	α-Fuc O4	3	0.70
Charge-dipole	α-Fuc O3	Ca2+	2.65	0.99
	α-Fuc O4	Ca2+	2.6	1
	Atom1	Atom2	Avg Distance (A)	Fraction
Van der Waals	Val351 H	α-Fuc H2	2.4	0.90

Table S3. Main interactions found on the MD simulations performed for D-Man bound to DCSIGN in the X-Ray crystal structure. Fraction is referred to the number of frames in which the complex is fully associated. In this case, ca. 100% of the total simulation time (100 ns).

	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	β-Man HO4	Glu354 O	2.65	0.99
	Asn365 NH	β-Man O4	3.1	0.96
	β-Man HO3	Glu347 O	2.65	0.88
	Asn349 NH	β-Man O3	3.1	0.50
Charge-dipole	β-Man O3	Ca2+	2.6	1
	β-Man O4	$\mathrm{Ca2}+$	2.65	0.96

Table S4. Major stabilizing interactions found on the first part (ca. 112 ns) of the MD simulation performed for D-Man in binding pose A and DC-SIGN. Fraction is referred to the number of frames in which the complex is fully associated before the switch in the binding pose occurs. In this case, ca. 56% of the simulation time (200 ns).

	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	β-Man HO4	Glu354 O	2.7	0.95
	β-Man HO2	Glu347 O	2.6	0.94
	β-Man HO3	Glu354 O	2.7	0.91
	Asn365 NH	β-Man O3	3.1	0.87
	Asn349 NH	β-Man O2	3.1	0.51
Charge-dipole	β-Man O2	Ca2+	2.6	1
	β-Man O3	Ca2+	2.6	0.96
	Atom1	Atom2	Avg Distance (A)	Fraction
Van der Waals	Val351 H	β-Man H4	2.8	0.86

Table S5. Major stabilizing interactions found on the second part (ca. 113-185 ns) of the MD simulation performed for DC-SIGN and D-Man in binding pose A as the starting configuration. These interactions are similar to those found on the X-Ray structure of D-Man at DC-SIGN's binding site (Table S3). Fraction is referred to the number of frames in which the complex is fully associated after the switch in the binding pose (113-185 ns). In this case, ca. 36% of the simulation time (200 ns).

	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	β-Man HO4	Glu354 O	2.7	1
	Asn365 NH	β-Man O4	3.0	0.98
	β-Man HO3	Glu347 O	2.7	0.91
	Asn349 NH	β-Man O3	3.1	0.17
Charge-dipole	β-Man O3	Ca2+	2.6	1
	β-Man O4	Ca2+	2.7	1

Table S6. Main interactions found on the complete MD simulations of the complex between DC-SIGN/D-Man starting from binding pose A. Fraction is referred to the number of frames in which the complex is fully associated. In this case, ca. 93.5% of the total simulation time (187 ns). The relative populations of both binding modes in this MD simulation can be extracted from the relative fractions of the oxygen-calcium interactions.

Type of interaction	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	β-Man HO2	Glu354 O	2.7	1
	β-Man HO2	Glu347 O	2.7	0.59
	β-Man HO3	Glu354 O	2.7	0.57
	Asn365 NH	β-Man O3	3.1	0.54
	Asn365 NH	β-Man O4	3	0.40
	β-Man HO3	Glu347 O	2.7	0.39
Charge-dipole	β-Man O2	Ca2+	2.6	0.62
	β-Man O3	Ca2+	2.6	0.99
	β-Man O4	Ca2+	2.7	0.4
	Atom1	Atom2	Avg Distance (A)	Fraction
Van der Waals	Val351 H	β-Man H4	2.8	0.57

Table S7. Key interactions in the MD simulations performed for the complex between D-Man and DC-SIGN using binding pose B as starting geometry. Fraction is referred to the number of frames in which the complex is fully associated. In this case, ca. 100% of the total simulation time (200 ns).

	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	Man HO4	Glu347 O	2.7	0.98
	Asn365 NH	Man O2	3.1	0.95
	Man HO2	Glu354 O	2.7	0.91
	Asn349 NH	Man O3	3.2	0.36
	Man HO3	Glu347 O	2.8	0.28
Charge-dipole	$\beta-$ Man O2	Ca2+	2.6	1
	$\beta-M a n ~ O 3 ~$	Ca2+	2.7	1

Table S8. Main interactions in the MD simulations performed for the complex between 4-F-Man and DC-SIGN using binding pose A as starting geometry. Fraction is referred to the number of frames in which the complex is fully associated. In this case, ca. 15% of the total simulation time (100 ns).

	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	$\beta-4 \mathrm{~F}-\mathrm{Man} \mathrm{HO2}$	Glu347 0	2.6	1
	$\beta-4 \mathrm{~F}-\mathrm{Man} \mathrm{HO} 3$	Glu354 0	2.7	0.98
	Asn365 NH	$\beta-4 \mathrm{~F}-\mathrm{Man} \mathrm{O} 3$	3.2	0.71
	Asn349 NH	$\beta-4 \mathrm{~F}-\mathrm{Man} \mathrm{O} 2$	3	0.55
Charge-dipole	$\beta-4 \mathrm{~F}-\mathrm{Man} \mathrm{O} 2$	Ca2+	2.6	1
	β-4F-Man O3	Ca2+	2.6	1
	Atom1	Atom2	Avg Distance (A)	Fraction
Van der Waals	Val351 H	$\beta-4 \mathrm{~F}-\mathrm{Man} \mathrm{H} 4$	2.7	0.94

Table S9. Main interactions In the MD simulations performed for the complex between 4-F-Man and DC-SIGN using binding pose B as starting geometry. Fraction is referred to the number of frames in which the complex is fully associated. In this case, ca. 40% of the total simulation time (100 ns).

	Donor	Aceptor	Avg Distance (A)	Fraction
Hydrogen Bond	Asn365 NH	$\beta-4 F-$ Man O2	3.05	0.99
	β-4F-Man HO3	Glu347 O	2.7	0.94
	β-4F-Man HO2	Glu354 O	2.8	0.75
	Ser360 OH	$\beta-4 F-M a n ~ O 6 ~$	3.0	0.23
Charge-dipole	$\beta-4 F-M a n ~ O 2 ~$	Ca2+	2.63	0.98
	$\beta-4 F-M a n ~ O 3 ~$	Ca2+	2.58	1

Table S10. Initial STD slope ($\mathrm{t}=0$) for each proton of the $4 \mathrm{~F}-\mathrm{Man} \alpha \mathrm{OM}$ e derivative calculated from the fitted exponential equation. \% STD (fit) values are normalized with respect to H 4 , set to 100%. As expected, T_{1} relaxation values for H 6 s are considerable lower than those exhibited by the other protons, highlighting the importance of using initial slopes (at $\mathrm{t}_{\text {sat }}=0$) to avoid misinterpretation of ligand-receptor proton distances. H 5 and H 6 build-up curves practically converge at 3.5 of protein saturation, whereas H 2 and H 4 are still growing at that point.

STDmax*Ksat*10 $^{-}$ $\mathbf{3}$			
\% STD (fit)	T1 (s)		
H4	4.323	100.00	2.24
H3	1.987	52.07	2.26
H2	1.662	40.25	2.86
H6	2.808	64.94	0.94
H5	2.590	59.90	-

Figures

Figure S1. The complete MD simulation of the complex between DC-SIGN/D-Man starting from binding pose A shows the sugar moiety switching its position from the starting geometry. The distance between Man $\mathrm{O} 2, \mathrm{O} 3$ and O 4 groups and the $\mathrm{Ca} 2+$ ion is shown. Top) frequency and trajectory of the O2-Ca2+ distance. Middle) frequency and trajectory of the O4-Ca2+ distance. Bottom) frequency and trajectory of the O3-Ca2+ distance. The positional switch between binding pose $\mathrm{A}(\mathrm{O} 2 / \mathrm{O} 3$ attached to the $\mathrm{Ca} 2+$ ion) and the X -Ray binding pose ($\mathrm{O} 3 / \mathrm{O} 4$ attached to the $\mathrm{Ca} 2+$) ion takes place at ca. 113 ns .

Hydrogen bond analysis

Figure S2. Populations of the different HB found along the MD simulation (187 ns) of the D-Man/DC-SIGN complex using binding pose A as starting geometry, which switches to the X-Ray crystallographic pose. The blue bar refers to the HB shared in both binding modes. The green and orange are characteristic for Man in binding pose A and in the X-Ray structure, respectively.

Figure S3. Populations of the different HB found along the MD simulation of the D-Man/DCSIGN, 4-F-Man/DC-SIGN, and L-Fuc/DC-SIGN complexes using the corresponding binding poses A as starting geometries. For D-Man and L-Fuc, the data refer to the complete 100 ns simulation time, while for 4-F-Man, it is referred to the time the complex remain fully associated, 15 ns .

Figure S4. Populations of the different HBs found along the MD simulation of the D-Man/DCSIGN and 4-F-Man/DC-SIGN complexes using binding pose B as starting geometry. The role of Man HO3 as donor is drastically enhanced in the 4-F-Man analogue with respect to Man, obviously due to the lack of HO 4 in the fluorinated compound. For D-Man, the data refer to the complete 200 ns MD simulation time, while for 4-F-Man, it is referred to the time the complex remain fully associated, 50 ns .

Figure S5. Superimposition of two snapshots taken from the MD simulations carried out for DMan and 4-F-Man (yellow) bound to DC-SIGN using pose B. The green backbone corresponds to the complex with 4-F-Man. The key difference involves the role of Glu347, which establishes HB interactions with OH 4 (D-Man) and with OH3 (4-F-Man).

Figure S6. STD build-up curves for 4F-Man α OMe as a function of the saturation time. The STD ${ }^{\max }$ value and the saturation rate constant $\mathrm{k}_{\text {sat }}$ were derived by least-squares fitting of the experimental data (triangle) to the monoexponential function $\operatorname{STD}=\operatorname{STD}^{\max }\left(1-e^{\left(-k_{s a t} * t\right)}\right)$.

Figure S7. Superimposition of ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ relaxation filter spectra in absence (green) and presence (red and blue) of a competing molecule (Mana1-3Mana1-6-Man) to assess the specific binding of some fluorinated monosaccharides to DC-SIGN. The T_{2} relaxation filter duration was 241 ms . The equivalents of the competitor are with respect to the concentration of the fluorinated monosaccharide mixture (for each sugar type the concentration of each anomer is: $[\alpha]+[\beta] \cong$ 0.55 mM). The close-ups corresponds to the binders α - and $\beta-2-F-F u c(a)), \alpha-$ and $\beta-4-F-M a n$ (b)), and the non-binders α - and $\beta-3-F-M a n$.

Figure S8. Electron microscopy pictures using negative staining. Representative areas of digital micrographs are shown at the left. Selected class averages resulting from 2D reference-free alignment at the right. Model exhibit a tail with a length of 245-250 \AA and a diameter of 25-30 \AA, whereas the head has a length of $70-75 \AA$ and transverse dimensions in the range of 50 to 80 Å.

