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Abstract: Seafood such as fish, shellfish, and squid are a unique source of nutrients. However,
many marine processing byproducts, such as viscera, shells, heads, and bones, are discarded,
even though they are rich sources of structurally diverse bioactive nitrogenous components. Based on
emerging evidence of their potential health benefits, these components show significant promise
as functional food ingredients. Fish waste components contain significant levels of high-quality
protein, which represents a source for biofunctional peptide mining. The chitin contained in
shrimp shells, crab shells, and squid pens may also be of value. The components produced
by bioconversion are reported to have antioxidative, antimicrobial, anticancer, antihypertensive,
antidiabetic, and anticoagulant activities. This review provides an overview of the extraordinary
potential of processing fish and chitin-containing seafood byproducts via chemical procedures,
enzymatic and fermentation technologies, and chemical modifications, as well as their applications.
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1. Introduction

The amount of shrimp and crab waste from shellfish processing has undergone a dramatic increase
recently. In addition to edible parts, the amount of chitin-containing waste can be as high as 60%—-80%
of the biomass [1,2]. Squid processing also generates a large amount of byproducts. These represent
35% of the total mass caught and include the head, viscera, skin, and bones [3]. To offset environmental
pollution and disposal problems, marine byproducts are used to produce silage, meal, and sauces.
They are also used in the production of value-added products, such as proteins, hydrolysates, bioactive
peptides, collagen, gelatin, and chitin [1,2].

Numerous studies have demonstrated that byproducts from fish, shellfish, and squid processing
are suitable for human consumption, animal food, and other applications with high market value [1-3].
Indeed, these marine byproducts are a source of interest for their collagen, peptide, polyunsaturated
fatty acid, and chitin content. This review provides an overview of the extraordinary potential of fish
processing byproducts and their applications.
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2. Use of Fish Processing Byproducts

When fish are processed, heads, frames, viscera, scales, and skins are the major byproducts
(Table 1) [4-32]. Among these fish processing byproducts, collagen is the main structural protein
in scales and skin, representing up to 70% of their dry weight [32]. Fish viscera is also a potential
source of lipids, native proteins, and hydrolysates [33]. The recovered products may possess functional
and bioactive properties that are important to the food, agricultural, cosmetic, pharmaceutical,
and nutraceutical industries [32,33].

There are three ways to reclaim bioactive materials from fish processing byproducts: (1) Chemical
and/or physical methods that treat fish byproducts with chemicals and/or physical agents; (2) enzymatic
methods that use enzymes (especially commercial proteases) to hydrolyze byproducts; and (3) microbial
fermentation that uses microorganisms as the source of enzymes to obtain bioactive materials. Of the
three, the enzymatic method seems best at recovering bioactive materials from fish heads, frames,
viscera, scales, and skins [32,33].

2.1. Chemical andjor Physical Procedures

2.1.1. Head and Frame

Microwaves and/or chemical treatments have been used to produce fish protein hydrolysates
(FPH) from the heads and frames of kingfish [4]. Microwave intensification can significantly increase
the production yields of enzymatic processes from 42% to 63%. It also increases the production
yields of chemical processes from 87% to 98%. The chemical process and the microwave-intensified
chemical process produce FPH with a low oil-binding capacity (8.66 and 6.25 g oil/g FPH, respectively),
whereas the microwave-intensified enzymatic process produces FPH with the highest oil-binding
capacity (16.4 g oil/g FPH). Due to the high content of histamine, the FPH produced by these processes
demonstrates that the maximum proportion of FPH that can be safely used in food formulation is
10% [4].

Bones from carp and redfish have been used to produce collagen peptides via acid/alkali
hydrolysis [18,19].

2.1.2. Viscera

Blanco et al. reported the isolation and partial characterization of trypsin from the pancreas of the
small-spotted catshark (Scyliorhinus canicula). Fish viscera have been documented to be an important
source of enzymes that can be used in several industrial applications. In one study, trypsin was purified
from the pancreas of S. canicula by ammonium sulfate precipitation and soybean trypsin inhibitor
Sepharose 4B affinity chromatography [17]. The SDS-PAGE (sodium dodecyl sulfate-polyacrylamide
gel electrophoresis) results showed that the isolated trypsin had a molecular weight of approximately
28 kDa and an approximate isoelectric point value of 5.5. The optimum pH and temperature for activity
were 8.0 and 55 °C, respectively [17].

Fish oil can be extracted from fish viscera by various processes, including rendering,
pressing, microwave-assisted extraction, supercritical fluid extraction, solvent extraction, autolysis,
and enzymatic hydrolysis [34]. The wet rendering extraction method has been used to extract fish oil
from tilapia and mackerel viscera. The oil yield obtained from tilapia viscera is about 20% which is 7%
higher than that obtained from mackerel viscera [35].

Studies have examined the extraction of oil from tuna byproducts using the wet press and
enzymatic extraction methods. The quantitative comparison and yield of the extracted oil by the wet
press and enzymatic extraction methods have revealed the suitability of both methods for oil extraction
in terms of quantity [36].

Based on reviewed scientific papers, the most promising green extraction method is oil extraction
using supercritical CO;,; the other methods described are still being developed [34].
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2.1.3. Scales

Carp and redfish scales have been treated by acid/alkali procedures to produce collagen
peptides [18]. To make more effective use of underutilized resources, collagen from redfish scales [18,19]
and croceine croaker [28] has been isolated with acetic acid and characterized for its potential in
commercial applications [19].

The scales of the Nile tilapia have been used for metallic ion removal following acid
demineralization and a basic deproteinization treatment to modify the organic/inorganic matter
ratios [20]. Two main fractions, the organic fraction (protein) and the inorganic fraction (mainly
composed of hydroxyapatite), of Nile tilapia scales have been studied for their adsorptive capacity.
When the pure organic and inorganic parts of the fish scales are used in adsorption experiments,
the inorganic part has a 75% higher removal capacity than the organic fraction. Adsorption experiments
using fish scales with different organic or inorganic fractions have shown a synergistic effect on the
equilibrium amount of metallic ions adsorbed. The main mechanism for metallic ion adsorption by
fish scales is suggested by the ion-exchange reaction [20].

Calcined scales have been used as a catalyst for biodiesel synthesis [25]. In an exploration of
the feasibility of converting waste rohu fish (Labeo rohita) scale into a high-performance, reusable,
and low-cost heterogeneous catalyst for the synthesis of biodiesel from soybean oil, thermo-gravimetric
analysis (TGA) and X-ray diffraction (XRD) analysis revealed that a significant portion of the main
component of fish scale (i.e., hydroxyapatite) can be transformed into (3-tri-calcium phosphate when
calcined above 900 °C for two hours. Scanning electron microscopy morphology studies of the calcined
scale depicted a fibrous layer with a porous structure [25].

Scale-supported Ni catalysis has also been developed for biodiesel synthesis [27]. A novel
Ni—Ca-hydroxyapatite solid acid catalyst was prepared through wet impregnation of Ni(NOjz),-6H,O
on pretreated waste fish scales. The efficacy of the developed catalyst, which possessed a specific
surface area and catalyst acidity, was evaluated through esterification of the free fatty acids of pretreated
waste soybean fry oil in a semibatch reactor [27].

2.1.4. Skin

Skin contains approximately 30% collagen [37]. Skin from tilapia, carp, and redfish was treated
by acid/alkali hydrolysis to produce collagen peptides [18,19,37]. Collagen from tilapia skin has been
studied for biomedical applications [37]. Acid-soluble collagens (ASC) have been prepared from carp
(Cyprinus carpio) skin, scale, and bone. The yields of skin ASC, scale ASC, and bone ASC are 41.3%,
1.35%, and 1.06% (on a dry weight basis), respectively [18]. Skin gelatin hydrolysate from tilapia has
been produced using thermal hydrolysis with retorting treatment (at 121 °C for 30 min); the skin
gelatin hydrolysate showed antioxidant activity [29]. Certain free amino acids and oligopeptides in
hydrolysates of tilapia skin gelatin have been suggested to play an important role in their antioxidant
properties [29].

2.2. Enzymatic Procedure

2.2.1. Head and Frame

The preparation and characterization of fish protein hydrolysates from different species, enzymes,
and hydrolysis conditions have been extensively studied [7]. Most fish protein hydrolysates come
from the head and frame being treated with enzymatic procedures [4-8]. For instance, hydrolysates
from horse mackerel treated with a mixture of subtilisin and trypsin showed antioxidant activity [5].
Defatted salmon backbone treated by enzyme hydrolysis produced hydrolysates that demonstrated
antidiabetic and antihypertensive activities [6]. Waste material from S. canicula (small-spotted catshark)
was hydrolyzed by commercial proteases (Alcalase, Esperase, and Protamex) to produce hydrolysates
with antihypertensive and antioxidant activities [7]. Chondroitin sulfate has been produced from
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the head, skeleton, and fins of S. canicula by a combination of enzymatic, chemical precipitation,
and ultrafiltration methodologies [8].

2.2.2. Viscera

The viscera of catla (Indian carp) and Atlantic cod have been treated by Alcalase hydrolysis to
produce fish food [9], microbial growth medium [10], and fish protein hydrolysates [11]. The enzymatic
hydrolysates of Arctic cod viscera have been developed as a growth medium for lactic acid bacteria [12].
Nile tilapia viscera treated by Alcalase or intestinal hydrolysis have been investigated for the production
of fish protein hydrolysates [13]. Sardine viscera also produce hydrolysates when treated with
pepsin [14] and trypsin [15].

2.2.3. Scales

Almost all studies on fish-scale reutilization have focused on the preparation of collagen
peptides [21-24,28]. Sea bream scales hydrolyzed by protease produce collagen peptides [23]. Likewise,
croaker scales treated by trypsin/pepsin hydrolysis have been found to produce antioxidant collagen
peptides [28]. The antioxidant activities of the obtained three collagen peptides are due to the presence
of hydrophobic amino acid residues within the peptide sequences [28].

The scales of four major cultivated fish in Taiwan, Lates calcarifer, Mugil cephalus, Chanos chanos,
and Oreochromis spp., show Fe(Il)-binding activity when hydrolyzed by papain and Flavourzyme [24].
Tilapia (Oreochromis sp.) scales were hydrolyzed by a given combination of proteases (1% Protease N
and 0.5% Flavourzyme), and the obtained fish-scale collagen peptides (FSCPs) were shown to be able
to effectively penetrate the stratum corneum to the epidermis and dermis [24,38]. Scales have also
been used in scale-supported Ni catalysis during biodiesel synthesis [27].

2.2.4. Skin

It has been suggested that the hydrolysis of salmon skin by bacterial protease produces antioxidant
peptides [30]. Treatment of Alaskan pollock skin by Alcalase hydrolysis has been investigated for its
production of antioxidant peptides [31]. The pepsin-soluble collagen obtained by hydrolyzing the skins
of small-spotted catfish, blue sharks, swordfish, and yellowfin tuna with pepsin also shows antioxidant
activity [32]. Collagen can be degraded much more easily than skin protein, but it commonly shows
weaker antioxidant capability. The hydrolysate of salmon skin proteins prepared with bacterial
extracellular proteases displays the strongest antioxidant activity. The amino acid composition of skin
proteins is more complicated than that of collagen, the amino acids of skin proteins may contain more
potential antioxidant peptide sequences [32,39].

2.3. Fermentation Procedure

S. canicula (small-spotted catshark) viscera have been used as a substrate to produce hyaluronic
acid via Streptococcus zooepidemicus fermentation. This study investigated the production of hyaluronic
acid by Streptococcus equi subsp. zooepidemicus in complex media formulated with peptones obtained
from S. canicula viscera byproducts [16]. Scales have also been used to produce collagenase-like
enzymes via microbial fermentation [26].
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Table 1. Use of fish processing byproducts.

Byproduct Treatment Product (Application) Reference
Fish head and frame
Enzyme
Kingfish head and frame Microwave Fish protein hydrolysate [4]
Chemical
Horse mackerel discard Subtilisin and trypsin Fish p(ra(;:teiiélx?g/adrfslysate 5]
Defatted salmon backbone Enzyme hydrolysis Fls}l(friﬁfil:b:’ifﬁgsate [6]
antihypertensive)
Alcalase, Esperase, and Fish protein hydrolysate
Catshark discard Protamex (antihypertensive and [7]
antioxidant)
Enzyme
Catshark head and frame Chemical Chondroitin sulfate [8]
Physical
Fish viscera
Catla viscera Alcalase Fish diet [9]
Atlantic cod viscera Alcalase Microbiaq growth [10]
medium
Atlantic cod viscera Alcalase Fish protein hydrolysate [11]
Arctic cod viscera Microbial growth [12]
medium
Nile tilapia viscera Alcalase Fish protein hydrolysate [13]
Nile tilapia viscera Intestinal Fish protein hydrolysate [13]
Sardine viscera Pepsin Fish protein hydrolysate [14]
Sardine viscera Trypsin Fish protein hydrolysate [15]
Catshark viscera Conversion by Streptococcus Hyaluronic acid [16]
Catshark pancreas Purification Trypsin [17]
Fish scales
Carp skin, scale, and bone Acid/alkali hydrolysis Collagen peptides [18]
Redfish skin, scale, and bone Acid/alkali hydrolysis Collagen peptides [19]
Nile tilapia scale Acid/alkali hydrolysis Metallic ion removal [20]
Snakehead scale Protease hydrolysis Collagen peptides [21]
Fish scale Protease hydrolysis Collagen peptides [22]
Sea bream scale Protease hydrolysis Collagen peptides [23]
Fish scale Papain and Flavourzyme Collagen peptides [24]
Fish scale Calcination Cataly:;snft%resii:diesel [25]
Scale Conversion by actinomycetes COH:EZe;anS:S-hke [26]
Scale Scale-supported Ni catalysis Biodiesel synthesis [27]
Croaker scale Trypsin/pepsin hydrolysis Antioﬁi;gzlzcs)llagen [28]
Fish skin
Tilapia skin Thermal hydrolysis Ani;gi?;’;izlsaﬁn [29]
Salmon skin Bacterial proteases hydrolysis Antioxidant peptides [30]
Alaskan pollock skin Alcalase Antioxidant peptides [31]
Shark, swordfish, and tuna skin Pepsin Antioxidant peptides [32]




Molecules 2019, 24, 2234 60of 17

3. Use of Shrimp and Crab Processing Byproducts

The amount of shrimp and crab waste produced by the shellfish processing industry has
dramatically increased in recent years. In addition to edible parts, the amount of chitin-containing
waste can be as high as 60%-80% of the biomass. Shrimp and crab shells contain chitin, protein, and a
high ratio of mineral salts. Chitin has a structure similar to cellulose and peptidoglycan and is the
second most abundant biopolymer on earth next to cellulose [2].

Chitin has excellent properties, including biodegradability, biocompatibility, non-toxicity,
and adsorption. Chitosan is a cationic polysaccharide obtained by either the N-deacetylation of
chitin under alkaline conditions or enzymatic hydrolysis in the presence of a chitin deacetylase.
Chitin, chitosan, and their derivatives have a number of industrial and medicinal applications, due to
their antimicrobial and antioxidant activities, biocompatibility, biodegradability, antitumor activity,
hemostatic activity, and antihypertensive and wound-healing properties [40-58].

Chitin is normally produced from shrimp and crab shells via chemical pretreatments of hot-alkali
deproteinization and acid demineralization [2]. As such, most studies on the recycling of chitin-containing
marine byproducts have focused on the preparation of chitin and its derivatives by chemical processes.

3.1. Chemical Procedures

Shrimp and crab shells must be demineralized and deproteinized to obtain chitin and
chitosan [59-66]. Chitin and chitosan are commonly obtained from shrimp and crab shells using
inorganic acids for demineralization and strong alkali for deproteinization. The harvested chitin,
chitosan, and their derivatives have been investigated for their agricultural, food, environmental,
fine chemical, and pharmaceutical applications [2]. Chemical treatments can produce purer chitin and
chitosan than biological procedures; however, the waste materials from acid and alkali treatments
contribute to environmental pollution and reduce the chitin quality. As such, chitin-containing
waste could potentially become a precious bioresource if converted by biological processes to create
high-value-added products [2,67-90] (Table 2).

3.2. Biological Procedures

Traditional biological treatments include enzymatic deproteinization by proteases and fermentation
deproteinization by protease-producing bacteria (Table 2). The use of microbial proteolytic enzymes
for the deproteinization of crustacean waste is a current trend in the conversion of waste into useful
bioactive materials such as chitin [59,67-71,83], proteases [59,89,90], chitinases/ chitosanases [86,88,89,91],
chitin/chitosan oligomers [86,91], and «-glucosidase inhibitors [87,90]. The bioconversion procedure
is a simple, inexpensive alternative to chemical methods employed in the preparation of chitin.
To overcome the drawbacks of chemical procedures, studies have isolated many proteolytic and/or
chitinolytic enzyme-producing bacteria using shrimp and crab shells as their sole carbon/nitrogen (C/N)
source [2,72-91]. It is assumed that the shrimp and crab shells will be deproteinized by the protease
produced by the bacteria during fermentation. Furthermore, the reclamation of chitin waste as the C/N
source not only solves the environmental issue but reduces the production costs of bioconversion (Table 2).

In addition to chitin, shrimp waste also contains several bioactive compounds, such as astaxanthin,
amino acids, and fatty acids [92-101]. These bioactive compounds have a wide range of applications,
including those in the medical, therapeutic, cosmetic, paper, pulp, and textile industries, as well as in
biotechnology and food [95-104]. Pacheco et al. [95] recovered chitin and astaxanthin from shrimp
waste that was fermented using lactic acid bacteria, while Parjikolaei et al. [99] designed a green
extraction method using sunflower oil to recover astaxanthin from shrimp waste. Amado et al. [96]
reported on the recovery of high concentrations of astaxanthin by the ultrafiltration of wastewater used
to cook shrimp and indicated that astaxanthin is associated with retained proteins that have a high
molecular weight. Hydrolysates from these three protein-concentrated fractions showed very potent
angiotensin-I-converting enzyme (ACE)-inhibitory and {3-carotene bleaching activities compared to
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hydrolysates from other fish and seafood species [96]. The extracted astaxanthin has been investigated
as a possible food ingredient or color additive [100,101].

Table 2. Use of shrimp and crab processing byproducts.

Byproduct Treatment Product (Application) Reference
Shrimp shells Enzymatic/chemical Chitin, chitosan [60]
Shrimp shells Enzymatic/chemical Chitin [61]
Shrimp shells Chemical Chitin, chitosan [62-65]
Shrimp shells Bacillus protease Chitin [67]
Shrimp shells Paracoccus protease Chitin [68]
Shrimp shells Pseudomonas protease Chitin [69,70]
Shrimp shells Crab viscera protease Chitin [71]
Shrimp shells Bacillus Chitin [72-75]
Shrimp shells Lactic acid bacteria Chitin [76,77]
Shrimp shells Lactic acid bacteria Chitin, carotenoid [78]
Shrimp shells Lactic acid bacteria Chitin [79]
Shrimp shells Lactobacillus/Serratia/Rhizopus Chitin [80]
Shrimp shells Lactobacillus/Serratia Chitin [81]
Shrimp shells Conversion by Bacillus Chitin [2]
Shrimp shells Conversion by Chryseobacterium Chitinase, protease [2]
Shrimp shells Conversion by Pseudomonas Chitinase, protease [2]
Shrimp shells Conversion by Paenibacillus a-glucosidase inhibitors [82]
Shrimp shells Conversion by Serratia Chitinase, protease [2]

Crab shells Conversion by Vibrio Protease 2]

Crab shells Crab viscera protease Chitin [71]

Crab shells Conversion by Pseudomonas Chitin [83]
Lobster shells Conversion by Paenibacillus a-glucosidase inhibitors [82]
Shrimp heads Chemical Chitin [66]
Shrimp heads Autolysis Protein hydrolysate [92]
Shrimp heads Chemical process Chitin, glycosaminoglycan [92]
Shrimp heads Ethanol extraction Carotenoid [92]
Shrimp heads Conversion by Bacillus/Rhizobium a-glucosidase inhibitors [84]
Shrimp heads Conversion by Brevibacillus Protease, chitin, chitin oligomers [59]
Shrimp heads Conversion by Paenibacillus a-glucosidase inhibitors [85]
Shrimp waste Conversion by Paenibacillus Chitosanase, chitosan oligomers [86]
Shrimp waste Autolysis Chitin [93]
Shrimp waste QOil extraction Astaxanthin [94]

Shrimp cooking Lactic acid bacteria Chitin, astaxanthin [95]
wastewater
Shrimp waste Ultrafiltration/hydrolysis Astaxanthin/bioactive peptides [96]
Shrimp waste Sunflower oil extraction Astaxanthin [99]
Shrimp waste Lipid extraction AStaX;igSg}’)fi;Zladds’ [100]
Shrimp waste Lipid extraction Astaxanthin [101]

4. Use of Squid Processing Byproducts

Squid is an important commercial seafood worldwide. After processing, there are many byproducts

and waste materials, including the heads, viscera, skin, and ink (Table 3). Many researchers
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have investigated the reclamation and potential use of these byproducts following different
treatments [2,87-91,102-133]. For instance, chemical and/or biological processes were used to produce
peptides with antioxidant activity from squid viscera autolysates [102]. Enzymatic hydrolysis of
dried squid heads resulted in a high protein content with elevated levels of glutamic acid [103].
B-chitin was produced from squid pens following chemical and biological procedures [111,112].
Acid- and pepsin-soluble collagens were isolated from the outer skins of squid [104], and peptides
with angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive activities were produced

from pepsin-hydrolysates of squid skin gelatin [105].

Table 3. Use of squid processing byproducts.

8of 17

Byproduct Treatment Product (Application) Reference
Squid viscera/head/skin
Viscera Autolysis Antioxidant peptides [102]
Head Enzymatic hydrolysis Sweet, umami amino acids [103]
Skin Acid/pepsin soluble Collagen [104]
Skin Enzymatic hydrolysis Gelatin hydrolysates [105]
Viscera/head/skin Endogenous proteases Squid hydrolysate [106]
Whole byproducts Fast fermentation Low-salt fish sauce [107]
Squid hepatopancreas Extraction Carboxypeptidase [108]
Squid viscera Subcritical water hydrolysis Squid oil and fat [109]
Squid pens
Squid pens éﬁ‘;‘ﬁ;i Chitin/chitosan [110-112]
Squid pens Chemical modification Anti0xidan‘;(ellli::;l‘)](;:yethylated [113]
Squid pens Conversion by lactic acid bacteria Biofertilizers, proteases [2]
Squid pens Conversion by Paenibacillus Exopolysaccharides, biosurfactants [114-116]
Squid pens Conversion by Paenibacillus Homogentisic acid, tryptophan [117]
Squid pens Conversion by Paenibacillus a-Glucosidase inhibitors [118]
Squid pens Conversion by Paenibacillus a_Gﬁz;i)s;ist?sii:};ﬁgors’ [87]
Squid pens Conversion by Paenibacillus Chitosanases [88]
Squid pens Conversion by Paenibacillus Chitosanases, proteases [89,90]
Squid pens Conversion by Burkholderia Tyrosinase inhibitors [119]
Squid pens Conversion by Bacillus Chitosanases, chitooligomers [120]
Squid pens Chemical Chitin [121]
Squid pens Chemical Chitosan [122]
Squid pens Conversion by Penicillium Chitosanases, chitooligomers [123]
Squid pens Conversion by Streptomyces Chitinases; chitin oligomers [91]
Chitosan extraction effluent Protease hydrolysis Antioxidant peptides [124]
Squid ink
Squid ink Non treatment Antioxidant, anti-inflammation [125,126]
Squid ink Non treatment Anti-neoplastic [127]
Squid ink Chemical Antitumor [128]
Squid ink Chemical Antihypertensive [129]
Squid ink Chemical Functional food [130,131]
Squid ink Squid ink polysaccharide-chitosan Wound-healing sponge [132]
Squid ink Squid ink melanin-Fe Iron deficiency anemia [133]
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During squid pen fermentation, owing to the liquefaction of protein and chitin,
a bioactive-material-rich liquor is formed, containing peptides, amino acids, chitooligomers, and other
materials [2,59]. Most research on the recycling of squid pens has concentrated mainly on the chemical
preparation of chitin and chitosan [110]. To further enhance utilization, the conversion of squid pens
by microbial fermentation has recently been investigated for its production of bioactive materials
(Table 3) [2]. Examples include the production of biofertilizers from squid pens by Lactobacillus
subsp. paracasei fermentation [2], production of exopolysaccharides [114-116], biosurfactants [115],
homogentisic acid [87,117], x-glucosidase inhibitors [87,118], chitosanases [88,89], and proteases [89]
from squid pens by Paenibacillus fermentation [114-116], production of tyrosinase inhibitors and
insecticidal materials from squid pens by Burkholderia cepacia [119], and production of chitosanases [120]
and protease with anti-a-glucosidase activity [90] from squid pens by Bacillus fermentation.

4.1. Squid Viscera/Heads/Skin

It is estimated that more than 40% of the total body weight of squid ends up as processing
byproducts, including the viscera, pens, and skins. The major component in these byproducts
is protein, which may be hydrolyzed by enzymes or acid to generate peptides and free amino
acids. Acid hydrolysis causes the destruction of hydrolysates and the formation of NaCl following
neutralization, which can make the end product unpalatable. However, both autolysis by protease
present in squid viscera and enzymatic hydrolysis produce fewer undesirable byproducts [108].
Biologically hydrolyzed products demonstrate antioxidant activity [102], contain collagen [102] and
amino acids with umami [103], are used in fish sauce [105], and show growth-promoting and attractant
properties in fish culture [134]. There have also been reports about the extraction of protease [108],
squid oil, and squid fat [109] from viscera (Table 3).

Squid skin is an excellent source of collagen and is used in the manufacturing of cosmetics [104,105].
Collagen-based biomaterials have been widely used due to their binding capabilities. However,
the properties and potential uses of new collagen sources are still under investigation. Squid collagen
was investigated as a potential plasticizer in the preparation of biofilms in combination with
chitosan [135]. The chitosan/collagen (85/15) blend produced a transparent and brittle film with
a high percentage of elongation at the break, and low tensile strength in comparison to chitosan
films [135]. Due to the anti-bacteriostatic properties of chitosan and the cellular functions of collagen,
chitosan/collagen blend biofilms may have the potential to be used as a wound dressing [135,136].
Similar results were also reported when cartilaginous fish collagen was used in combination with
chitosan to produce a composite film. When compared to collagen films, the chitosan/collagen blend
film showed lower water solubility and lightness [137]. The chitosan/collagen-based biofilm has
potential UV barrier properties and antioxidant activity, and they could possibly be used as a green
bioactive film to preserve nutraceutical products [137].

Squid tentacles have suckers which allow them to adhere to surfaces and move the organism.
The structural, mechanical, and bioprocessing strategies of the biological systems involved in squid
sucker rings have recently been investigated in order to develop environmentally benign ways to
synthesize novel materials for biomedical and engineering applications [138-141].

4.2. Squid Pens

Unlike shrimp and crab shells (both major sources of «-chitin), squid pens are a rich source
of 3-chitin and contain low amounts of inorganic compounds [2,142]. Squid pens contain protein
(61%), chitin (38%), and trace amounts of mineral salts [2,134]. The major product from squid
pens is 3-chitin, which is normally prepared via chemical processes [111,112] or a combination of
chemical and enzymatic procedures [104]. Such 3-chitin preparations are further modified by chemical,
physical, and/or biological procedures to improve their properties. As shown in Table 3, squid pens
are valuable as a starting material in the preparation of (3-chitin [111,112] and the production of
bioactive compounds via bioconversion with microbial fermentation [2,114-123,142] and enzymatic
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hydrolysis [110]. The bioactive materials obtained include biofertilizers and proteases by Lactobacillus
fermentation [2]; exopolysaccharides [114-116], biosurfactants [114-116], homogentisic acid [87,117],
tryptophan [117], a-glucosidase inhibitors [87,118] by Paenibacillus fermentation; chitosanases [88,89]
and proteases [89] by Paenibacillus fermentation; tyrosinase inhibitors by Burkholderia fermentation [119];
chitosanases [120], chitooligomers [120], and protease with anti-x-glucosidase activity by Bacillus [90],
chitosanases and chitooligomers [121] by Penicillium; and chitinases [91] and chitin oligomers [91] by
Streptomyces.

4.3. Squid Ink

Among the components of squid ink, melanin has received the most interest and has been used in
comparative studies of melanogenesis. Squid ink melanin is the most commonly used melanin. The ink
is a mixture of secretions from the ink sac, including melanin, glycosaminoglycan-like polysaccharides,
enzymes, proteins, and lipids [125-133]. Melanin is the main component, resulting in its dark
color. As shown in Table 3, recent medical investigations suggest that squid ink is a multifunctional
bioactive marine drug that has antioxidative [125,126], anti-inflammatory [125], anti-neoplastic [127],
antitumor [128], antihypertensive [129], anti-radiation, antimicrobial, and anticoagulant activities,
as well as the ability to protect against testicular damage [143].

5. Conclusions

Globally, fish, shrimp, crab, and squid are some of the most important commercial marine
resources. Processing the byproducts of these organisms provides rich sources of proteins, lipids,
and chitin. The reclamation of these components via chemical, physical, and biological procedures can
aid in solving the environmental problems associated with cost of other bioactive materials, such as
enzymes, antioxidants, antidiabetic materials, and exopolysaccharides. If these issues are dealt with in
a serious and continuous manner, the costs of fishery processing should not pose a problem.
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