Supporting Information

Mixed Two-Dimensional Organic-Inorganic Halide Perovskites for Highly Efficient and Stable Photovoltaic Application

Jia-Yi Dong ${ }^{1,}$ Zi-Qian Ma ${ }^{2}$, Ye Yang ${ }^{1}$, Shuang-Peng Wang ${ }^{1,3, *}$ and Hui Pan ${ }^{1,3, *}$

${ }^{1}$ Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China; yb67446@connect.um.edu.mo (J.-Y.D); yeyang@um.edu.mo (Y.Y.)
2 School of Mechanical Engineering, Zhuhai College of Jilin University, Zhuhai, 519000, China; Yb47433@connect.umac.mo (Z.-Q.M.)
${ }^{3}$ Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, China

* Correspondence: spwang@um.edu.mo (S.-P.W.); huipan@um.edu.mo (H.P.); Tel.: +85-38-822-4427 (H.P.); Fax: +85-38-822-2425 (H.P.)

Table S1. Calculated lattice constants (\AA) of $\mathrm{BA}_{2} \mathrm{MA}_{2} \mathrm{~B}_{3} \mathrm{X}_{10}\left(\mathrm{~B}=\mathrm{Pb}^{2+}\right.$ or $\mathrm{Sn}^{2+} ; \mathrm{X}=\mathrm{Br}^{-}$or $\left.\mathrm{I}^{-}\right)$with the mixed Cs atom.

Rb atom	SnI-based			PbI-based			SnBr-based			PbBr-based		
	a	b	c	a	b	c	a	b	c	a	b	C
0\%	8.83	8.83	26.57	8.92	8.92	26.69	8.34	8.34	25.55	8.42	8.42	25.65
25\%	8.79	8.79	26.5	8.91	8.91	26.63	8.33	8.33	25.28	8.4	8.4	25.61
50\%	8.8	8.8	26.34	8.82	8.82	26.76	8.31	8.31	25.17	8.3	8.3	25.59
75\%	8.77	8.77	26.3	8.76	8.76	26.64	8.24	8.24	25.18	8.26	8.26	25.58
100\%	8.69	8.69	26.37	8.76	8.76	26.63	8.15	8.15	25.3	8.23	8.23	25.61

Table S2. Calculated lattice constants (\AA) of $\mathrm{BA}_{2} \mathrm{MA}_{2} \mathrm{~B}_{3} \mathrm{X}_{10}\left(\mathrm{~B}=\mathrm{Pb}^{2+}\right.$ or $\mathrm{Sn}^{2+} ; \mathrm{X}=\mathrm{Br}^{-}$or $\left.\mathrm{I}^{-}\right)$with the mixed Rb atom.

Cs atom	SnI-based			PbI-based			SnBr-based			PbBr-based		
	a	b	C	a	b	C	a	b	C	a	b	C
0\%	8.83	8.83	26.57	8.92	8.92	26.69	8.34	8.34	25.55	8.42	8.42	25.65
25\%	8.84	8.84	26.49	8.85	8.85	26.75	8.33	8.33	25.44	8.4	8.4	25.65
50\%	8.83	8.83	26.44	8.85	8.85	26.77	8.33	8.33	25.27	8.33	8.33	25.7
75\%	8.82	8.82	26.4	8.83	8.83	26.97	8.32	8.32	25.24	8.33	8.33	25.7
100\%	8.8	8.8	26.48	8.8	8.8	26.85	8.28	8.28	25.15	8.28	8.28	25.75

Table S3. Calculated lattice constants (\AA) of $\mathrm{BA}_{2} \mathrm{MA}_{2} \mathrm{Sn}_{3} \mathrm{I}_{10}$ with the mixed Ge atom.

Ge atom	SnI-based			SnBr-based		
	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{a}	\mathbf{b}	\mathbf{c}
	8.83	8.83	26.57	8.34	8.34	25.55
16.67%	8.83	8.83	26.42	8.33	8.33	25.37
33.33%	8.81	8.81	26.35	8.33	8.33	25.22
50%	8.75	8.75	26.25	8.29	8.29	25.18
66.67%	8.72	8.72	26.17	8.25	8.25	25.25
83.33%	8.71	8.71	26.04	8.24	8.24	25.23

Table S4. Calculated lattice constants (\AA) of $\mathrm{BA}_{2} \mathrm{MA}_{2} \mathrm{Sn}_{3} \mathrm{I}_{10}$ with the mixed Pb atom.

$\mathbf{P b}$ atom	SnI-based			SnBr-based		
	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{a}	\mathbf{b}	\mathbf{c}
0%	8.83	8.83	26.57	8.34	8.34	25.55
16.67%	8.86	8.86	26.54	8.31	8.31	25.51
33.33%	8.88	8.88	26.57	8.38	8.38	25.53
50%	8.89	8.89	26.59	8.38	8.38	25.53
66.67%	8.89	8.89	26.65	8.41	8.41	25.53
83.33%	8.91	8.91	26.77	8.4	8.4	25.63

Pbl-Cs

Figure S1. Calculated band structures of PbI-based 2D HOIP by mixing Cs atom with different concentrations: (a) pure (0%), (b) Cs-1 (25%), (c) Cs-2 (50%), and (d) Cs-3 (75%), (e) Cs-4 (100%). Calculated partial densities of states (PDOSs) of PbI-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

$\mathrm{PbBr}-\mathrm{Cs}$

Figure S2. Calculated band structures of PbBr -based 2D HOIP by mixing Cs atom with different concentrations: (a) pure, (b) Cs-1, (c) Cs-2, (d) Cs-3, and (e) Cs-4. Calculated partial densities of states (PDOSs) of PbBr-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

Snl-Cs

Figure S3. Calculated band structures of SnI-based 2D HOIP by mixing Cs atom with different concentrations: (a) pure, (b) Cs-1, (c) Cs-2, (d) Cs-3, and (e) Cs-4. Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

SnBr-Cs

Figure S4. Calculated band structures of SnBr-based 2D HOIP by mixing Cs atom with different concentrations: (a) pure, (b) Cs-1, (c) Cs-2, (d) Cs-3, and (e) Cs-4. Calculated partial densities of states (PDOSs) of SnBr-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

Pbl-Rb

Figure S5. Calculated band structures of PbI-based 2D HOIP by mixing Rb atom with different concentrations: (a) Rb-1 (25\%), (b) Rb-2 (50\%), (c) Rb-3 (75\%), and (d) Rb-4 (100\%). Calculated partial densities of states (PDOSs) of PbI-based 2D HOIP by mixing Rb atom with different concentrations: (e) Rb-1, (f) Rb-2, (g) Rb-3, and (h) Rb-4.

Figure S6. Calculated band structures of PbBr -based 2D HOIP by mixing Rb atom with different concentrations: (a) Rb-1, (b) Rb-2, (c) Rb-3, and (d) Rb-4. Calculated partial densities of states (PDOSs) of PbBr-based 2D HOIP by mixing Rb atom with different concentrations: (e) Rb-1, (f) Rb-2, (g) Rb-3, and (h) Rb-4

Snl-Rb

Figure S7. Calculated band structures of SnI-based 2D HOIP by mixing Rb atom with different concentrations: (a) pure, (b) Rb-1, (c) Rb-2, (d) Rb-3. Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Rb atom with different concentrations: (e) pure, (f) $\mathrm{Rb}-1$, (g) Rb-2, and (h) Rb-3.

Figure S8. Calculated band structures of SnBr-based 2D HOIP by mixing Rb atom with different concentrations: (a) Rb-1, (b) Rb-2, (c) Rb-3, (d) Rb-4. Calculated partial densities of states (PDOSs) of SnBr-based 2D HOIP by mixing Rb atom with different concentrations: (e) Rb-1, (f) Rb-2, (g) Rb-3, and (h) Rb-4.

Snl-Ge

Figure S9. Calculated band structures of SnI-based 2D HOIP by mixing Ge atom with different concentrations: (a) Ge-1 (16.67%), (b) Ge-2 (33.33\%), (c) Ge-3 (50\%), (d) Ge-4 (66.67\%), (e) Ge-5 (83.33%). Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Ge atom with different concentrations: (f) Ge-1, (g) Ge-2, (h) Ge-3, (i) Ge-4, and (j) Ge-5.

$\mathrm{SnBr}-\mathrm{Ge}$

Figure S10. Calculated band structures of SnBr-based 2D HOIP by mixing Ge atom with different concentrations: (a) Ge-1, (b) Ge-2, (c) Ge-3, (d) Ge-4, (e) Ge-5. Calculated partial densities of states (PDOSs) of SnBr -based 2D HOIP by mixing Ge atom with different concentrations: (f) Ge-1, (g) Ge-2, (h) Ge-3, (i) Ge-4, and (j) Ge-5.

Snl-Pb

Figure S11. Calculated band structures of SnI-based 2D HOIP by mixing Pb atom with different concentrations: (a) $\mathrm{Pb}-1$ (16.67%), (b) $\mathrm{Pb}-2$ (33.33%), (c) $\mathrm{Pb}-3$ (50%), (d) $\mathrm{Pb}-4$ (66.67%), and (e) $\mathrm{Pb}-5$ (83.33\%). Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Pb atom with different concentrations: (f) $\mathrm{Pb}-1$, (g) $\mathrm{Pb}-2$, (h) $\mathrm{Pb}-3$, (i) $\mathrm{Pb}-4$, and (j) $\mathrm{Pb}-5$.

$\mathrm{SnBr}-\mathrm{Pb}$

Figure S12. Calculated band structures of SnBr-based 2D HOIP by mixing Pb atom with different concentrations: (a) $\mathrm{Pb}-1$, (b) $\mathrm{Pb}-2$, (c) $\mathrm{Pb}-3$, (d) $\mathrm{Pb}-4$, (e) $\mathrm{Pb}-5$. Calculated partial densities of states (PDOSs) of SnBr -based 2D HOIP by mixing Pb atom with different concentrations: (f) $\mathrm{Pb}-1,(\mathrm{~g}) \mathrm{Pb}-2$, (h) $\mathrm{Pb}-3$, (i) $\mathrm{Pb}-4$, and (j) $\mathrm{Pb}-5$.

Figure S13. Calculated band structures of the various atoms ($\mathrm{Cs}, \mathrm{Rb}, \mathrm{Ge}$, and Pb) mixed 2D SnI-based system: (a) BA2Cs2Gel.5Sn1.5I10, (b) BA2Cs2Pb1.5Sn1.5I10, (c) BA2CsRbSn3I10, (d) BA2CsRbGe1.5Sn1.5I10, (e)
 $\mathrm{BA}_{2} \mathrm{Rb}_{2} \mathrm{~Pb}_{1.5} \mathrm{Sn}_{1.5 \mathrm{I}}^{10}$.

Figure S14. Calculated partial densities of states (PDOSs) of the various atoms ($\mathrm{Cs}, \mathrm{Rb}, \mathrm{Ge}$, and Pb) mixed 2D SnI-based system: (a) BA2Cs2Gel.5Sn1.510, (b) $\mathrm{BA}_{2} \mathrm{Cs}_{2} \mathrm{~Pb}_{1.5 \mathrm{Sn} 1.5 \mathrm{I} 10, ~(c) ~} \mathrm{BA}_{2} \mathrm{CsRbSn}_{3} \mathrm{I}_{10}$, (d)
 (h) $\mathrm{BA}_{2} \mathrm{Rb}_{2} \mathrm{~Pb}_{1.5} \mathrm{Sn}_{1.5} \mathrm{~S}_{10}$.

Figure S15. Calculated band structures with SOC effect for the various atoms ($\mathrm{Cs}, \mathrm{Rb}, \mathrm{Ge}$, and Pb)

 $\mathrm{BA}_{2} \mathrm{Rb}_{2} \mathrm{Ge}_{1.5 \mathrm{Sn}}^{1.5 \mathrm{I} 10}$, and (i) $\mathrm{BA}_{2} \mathrm{Rb}_{2} \mathrm{~Pb}_{1.5 \mathrm{Sn}}^{1.5 \mathrm{I} 10}$.

