

Mixed Two-Dimensional Organic-Inorganic Halide Perovskites for Highly Efficient and Stable Photovoltaic Application

Jia-Yi Dong ¹, Zi-Qian Ma ², Ye Yang ¹, Shuang-Peng Wang ^{1,3,*} and Hui Pan ^{1,3,*}

- ¹ Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China; yb67446@connect.um.edu.mo (J.-Y.D); yeyang@um.edu.mo (Y.Y.)
- ² School of Mechanical Engineering, Zhuhai College of Jilin University, Zhuhai, 519000, China; Yb47433@connect.umac.mo (Z.-Q.M.)
- ³ Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, China
- * Correspondence: spwang@um.edu.mo (S.-P.W.); huipan@um.edu.mo (H.P.); Tel.: +85-38-822-4427 (H.P.); Fax: +85-38-822-2425 (H.P.)

Rb atom	SnI-based			PbI-based			SnBr-based			PbBr-based		
	а	b	с	а	b	с	а	b	с	а	b	с
0%	8.83	8.83	26.57	8.92	8.92	26.69	8.34	8.34	25.55	8.42	8.42	25.65
25%	8.79	8.79	26.5	8.91	8.91	26.63	8.33	8.33	25.28	8.4	8.4	25.61
50%	8.8	8.8	26.34	8.82	8.82	26.76	8.31	8.31	25.17	8.3	8.3	25.59
75%	8.77	8.77	26.3	8.76	8.76	26.64	8.24	8.24	25.18	8.26	8.26	25.58
100%	8.69	8.69	26.37	8.76	8.76	26.63	8.15	8.15	25.3	8.23	8.23	25.61

Table S1. Calculated lattice constants (Å) of BA₂MA₂B₃X₁₀ (B = Pb²⁺ or Sn²⁺; X = Br⁻ or I⁻) with the mixed Cs atom.

Table S2. Calculated lattice constants (Å) of $BA_2MA_2B_3X_{10}$ (B = Pb²⁺ or Sn²⁺; X = Br⁻ or I⁻) with the mixed Rb atom.

Cs atom	SnI-based			PbI-based			SnBr-based			PbBr-based		
	а	b	с	а	b	с	а	b	с	а	b	с
0%	8.83	8.83	26.57	8.92	8.92	26.69	8.34	8.34	25.55	8.42	8.42	25.65
25%	8.84	8.84	26.49	8.85	8.85	26.75	8.33	8.33	25.44	8.4	8.4	25.65
50%	8.83	8.83	26.44	8.85	8.85	26.77	8.33	8.33	25.27	8.33	8.33	25.7
75%	8.82	8.82	26.4	8.83	8.83	26.97	8.32	8.32	25.24	8.33	8.33	25.7
100%	8.8	8.8	26.48	8.8	8.8	26.85	8.28	8.28	25.15	8.28	8.28	25.75

Table S3. Calculated lattice constants (Å) of BA2MA2Sn3I10 with the mixed Ge atom.

Casham		SnI-based	đ	SnBr-based						
Ge atom	a	b	с	а	b	с				
0%	8.83	8.83	26.57	8.34	8.34	25.55				
16.67%	8.83	8.83	26.42	8.33	8.33	25.37				
33.33%	8.81	8.81	26.35	8.33	8.33	25.22				
50%	8.75	8.75	26.25	8.29	8.29	25.18				
66.67%	8.72	8.72	26.17	8.25	8.25	25.25				
83.33%	8.71	8.71	26.04	8.24	8.24	25.23				

Table S4. Calculated lattice constants (Å) of BA2MA2Sn3I10 with the mixed Pb atom.

Ph atom	_	SnI-base	d	SnBr-based				
I D atom	а	b	с	а	b	с		
0%	8.83	8.83	26.57	8.34	8.34	25.55		
16.67%	8.86	8.86	26.54	8.31	8.31	25.51		
33.33%	8.88	8.88	26.57	8.38	8.38	25.53		
50%	8.89	8.89	26.59	8.38	8.38	25.53		
66.67%	8.89	8.89	26.65	8.41	8.41	25.53		
83.33%	8.91	8.91	26.77	8.4	8.4	25.63		

Figure S1. Calculated band structures of PbI-based 2D HOIP by mixing Cs atom with different concentrations: (a) pure (0%), (b) Cs-1 (25%), (c) Cs-2 (50%), and (d) Cs-3 (75%), (e) Cs-4 (100%). Calculated partial densities of states (PDOSs) of PbI-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

PbBr-Cs

Figure S2. Calculated band structures of PbBr-based 2D HOIP by mixing Cs atom with different concentrations: (a) pure, (b) Cs-1, (c) Cs-2, (d) Cs-3, and (e) Cs-4. Calculated partial densities of states (PDOSs) of PbBr-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

Figure S3. Calculated band structures of SnI-based 2D HOIP by mixing Cs atom with different concentrations: (a) pure, (b) Cs-1, (c) Cs-2, (d) Cs-3, and (e) Cs-4. Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

Figure S4. Calculated band structures of SnBr-based 2D HOIP by mixing Cs atom with different concentrations: (a) pure, (b) Cs-1, (c) Cs-2, (d) Cs-3, and (e) Cs-4. Calculated partial densities of states (PDOSs) of SnBr-based 2D HOIP by mixing Cs atom with different concentrations: (f) pure, (g) Cs-1, (h) Cs-2, (i) Cs-3, and (j) Cs-4.

Figure S5. Calculated band structures of PbI-based 2D HOIP by mixing Rb atom with different concentrations: (a) Rb-1 (25%), (b) Rb-2 (50%), (c) Rb-3 (75%), and (d) Rb-4 (100%). Calculated partial densities of states (PDOSs) of PbI-based 2D HOIP by mixing Rb atom with different concentrations: (e) Rb-1, (f) Rb-2, (g) Rb-3, and (h) Rb-4.

Figure S6. Calculated band structures of PbBr-based 2D HOIP by mixing Rb atom with different concentrations: (a) Rb-1, (b) Rb-2, (c) Rb-3, and (d) Rb-4. Calculated partial densities of states (PDOSs) of PbBr-based 2D HOIP by mixing Rb atom with different concentrations: (e) Rb-1, (f) Rb-2, (g) Rb-3, and (h) Rb-4.

Figure S7. Calculated band structures of SnI-based 2D HOIP by mixing Rb atom with different concentrations: (a) pure, (b) Rb-1, (c) Rb-2, (d) Rb-3. Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Rb atom with different concentrations: (e) pure, (f) Rb-1, (g) Rb-2, and (h) Rb-3.

Figure S8. Calculated band structures of SnBr-based 2D HOIP by mixing Rb atom with different concentrations: (a) Rb-1, (b) Rb-2, (c) Rb-3, (d) Rb-4. Calculated partial densities of states (PDOSs) of SnBr-based 2D HOIP by mixing Rb atom with different concentrations: (e) Rb-1, (f) Rb-2, (g) Rb-3, and (h) Rb-4.

Snl-Ge

Figure S9. Calculated band structures of SnI-based 2D HOIP by mixing Ge atom with different concentrations: (a) Ge-1 (16.67%), (b) Ge-2 (33.33%), (c) Ge-3 (50%), (d) Ge-4 (66.67%), (e) Ge-5 (83.33%). Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Ge atom with different concentrations: (f) Ge-1, (g) Ge-2, (h) Ge-3, (i) Ge-4, and (j) Ge-5.

SnBr-Ge

Figure S10. Calculated band structures of SnBr-based 2D HOIP by mixing Ge atom with different concentrations: (a) Ge-1, (b) Ge-2, (c) Ge-3, (d) Ge-4, (e) Ge-5. Calculated partial densities of states (PDOSs) of SnBr-based 2D HOIP by mixing Ge atom with different concentrations: (f) Ge-1, (g) Ge-2, (h) Ge-3, (i) Ge-4, and (j) Ge-5.

Figure S11. Calculated band structures of SnI-based 2D HOIP by mixing Pb atom with different concentrations: (a) Pb-1 (16.67%), (b) Pb-2 (33.33%), (c) Pb-3 (50%), (d) Pb-4 (66.67%), and (e) Pb-5 (83.33%). Calculated partial densities of states (PDOSs) of SnI-based 2D HOIP by mixing Pb atom with different concentrations: (f) Pb-1, (g) Pb-2, (h) Pb-3, (i) Pb-4, and (j) Pb-5.

Figure S12. Calculated band structures of SnBr-based 2D HOIP by mixing Pb atom with different concentrations: (a) Pb-1, (b) Pb-2, (c) Pb-3, (d) Pb-4, (e) Pb-5. Calculated partial densities of states (PDOSs) of SnBr-based 2D HOIP by mixing Pb atom with different concentrations: (f) Pb-1, (g) Pb-2, (h) Pb-3, (i) Pb-4, and (j) Pb-5.

Figure S13. Calculated band structures of the various atoms (Cs, Rb, Ge, and Pb) mixed 2D SnI-based system: (a) BA2Cs2Ge1.5Sn1.5I10, (b) BA2Cs2Pb1.5Sn1.5I10, (c) BA2CsRbSn3I10, (d) BA2CsRbGe1.5Sn1.5I10, (e) BA2Cs0.5Rb0.5MASn3I10, (f) BA2CsRbPb1.5Sn1.5I10, (g) BA2Rb2Ge1.5Sn1.5I10, and (h) BA2Rb2Pb1.5Sn1.5I10.

Figure S14. Calculated partial densities of states (PDOSs) of the various atoms (Cs, Rb, Ge, and Pb) mixed 2D SnI-based system: (a) BA₂Cs₂Ge_{1.5}Sn_{1.5}I₁₀, (b) BA₂Cs₂Pb_{1.5}Sn_{1.5}I₁₀, (c) BA₂CsRbSn₃I₁₀, (d) BA₂CsRbGe_{1.5}Sn_{1.5}I₁₀, (e) BA₂Cs_{0.5}Rb_{0.5}MASn₃I₁₀, (f) BA₂CsRbPb_{1.5}Sn_{1.5}I₁₀, (g) BA₂Rb₂Ge_{1.5}Sn_{1.5}I₁₀, and (h) BA₂Rb₂Pb_{1.5}Sn_{1.5}I₁₀.

Pure

1.02 eV

3

2

0

0.96 eV

0

Figure S15. Calculated band structures with SOC effect for the various atoms (Cs, Rb, Ge, and Pb) mixed 2D SnI-based system: (a)Pure, (b) BA2Cs2Ge1.5Sn1.5I10, (c) BA2Cs2Pb1.5Sn1.5I10, (d) $BA_2CsRbSn_3I_{10}, \ (e) \quad BA_2CsRbGe_{1.5}Sn_{1.5}I_{10}, \ (f) \quad BA_2Cs_{0.5}Rb_{0.5}MASn_3I_{10}, \ (g) \quad BA_2CsRbPb_{1.5}Sn_{1.5}I_{10}, \ (h) \quad (h)$ BA2Rb2Ge1.5Sn1.5I10, and (i) BA2Rb2Pb1.5Sn1.5I10.