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Abstract: IrO2/Ir(Ni) film electrodes of variable Ni content have been prepared via a galvanic
replacement method, whereby surface layers of pre-deposited Ni are replaced by Ir, followed by
electrochemical anodization. Electrodeposition of Ni on a glassy carbon electrode support has been
carried out at constant potential and the charge of electrodeposited Ni controlled so as to investigate the
effect of precursor Ni layer thickness on the electrocatalytic activity of the corresponding IrO2/Ir(Ni)/GC
electrodes for the oxygen evolution reaction (OER). After their preparation, these electrodes were
characterized by microscopic (SEM) and spectroscopic (EDS, XPS) techniques, revealing the formation
of Ir deposits on the Ni support and a thin IrO2 layer on their surfaces. To determine the electroactive
surface area of the IrO2 coatings, cyclic voltammograms were recorded in the potential range between
hydrogen and oxygen evolution and the charge under the anodic part of the curves, corresponding
to Ir surface oxide formation, served as an indicator of the quantity of active IrO2 in the film.
The electrocatalytic activity of the coatings for OER was investigated by current–potential curves
under steady state conditions, revealing that the catalysts prepared from thinner Ni films exhibited
enhanced electrocatalytic performance.
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1. Introduction

The oxygen evolution reaction (OER) is relevant to many practical applications such as the
electrolytic production of H2 and in processes that Dimensionally Stable Anodes (DSAs) are required.
Materials with high stability and electrocatalytic activity for OER are thus sought [1]. These are
composed of electrocatalytic active metal oxides on inert and stable substrates [2], replacing precious
metals in their bulk form, which are no longer used in industrial applications [2,3]. IrO2 is known to
be the state-of-the-art catalyst for OER, as it requires low overpotential for OER and provides good
corrosion resistance and stability in acidic solutions [4]. In order to prolong IrO2 lifetime titanium is
commonly used as a substrate, because it is a chemically inert and inexpensive support material [1].
Recently OER anodes based on Ir have been developed using Ni [5,6] as an additional component
since Ni has been reported to improve the electrocatalytic performance of IrO2 for OER [1,5,7,8]. Ni
and Co single or mixed oxide or sulfide compounds are also known to show increased OER activity in
alkaline media [9–11] and this is attributed to their high conductivity and electrochemical stability as
well as to synergistic interactions between catalyst components.

Molecules 2019, 24, 2095; doi:10.3390/molecules24112095 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-2137-0943
https://orcid.org/0000-0002-7785-3082
http://dx.doi.org/10.3390/molecules24112095
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/24/11/2095?type=check_update&version=2


Molecules 2019, 24, 2095 2 of 16

Sotiropoulos and co-workers have employed Ni widely as a galvanic replacement intermediate/

precursor to improve precious metal performance and utilization for methanol oxidation [12–14] and the
hydrogen [15] and oxygen [7] evolution reactions. Taking advantage of Ni negative standard potential
in comparison to that of precious metals (i.e., Pt, Ir, Ru), they employed spontaneous deposition of
precious metals on Ni via the galvanic replacement method. Galvanic replacement of Ni by a more
precious metal (e.g., Pt, Ir, Ru) is thermodynamically favorable due to the positive difference between
the standard potential of the two half-reactions (1) and (2) [16], resulting in the case of Ir to the overall
reaction of (3):

IrCl62− + 4e−
 Ir + 6Cl− 0 = +0.860 V (vs. SHE) (1)

Ni2+ + 2e−
 Ni E0 = −0.257 V (vs. SHE) (2)

xNi + IrCl62−
→ Ir(Nix−2) + 2Ni2+ + 6Cl− (3)

Due to the superior electrocatalytic performance of IrO2/Ir(Ni) film catalysts for OER [7,17] (an
improvement to IrO2 well-established properties and activity [18–21]), the aim of this work has been to
investigate the effect of the thickness of the precursor nickel layer on the morphology, composition and
electrochemical behavior of IrO2/Ir(Ni) electrodes prepared by the galvanic replacement of Ni by Ir,
followed by anodization. The significance of this report arises from the fact that catalyst electrochemical
performance depends on catalyst composition and morphology and both are expected to be affected by
Ni thickness. For this reason IrO2/Ir(Ni)/GC electrodes with different quantity/ thickness of precursor
Ni were investigated, as formed by electrodeposition of Ni on glassy carbon, GC, substrates at constant
potential. Based on SEM microscopy and XPS spectroscopy as well as on current-potential curves, a
structure/composition-property relationship between the bimetallic catalyst and its OER activity has
been sought.

2. Results and Discussion

2.1. Microscopic and Spectroscopic Characterization of IrO2/Ir(Ni)/GC Catalyst Film Electrodes

SEM micrographs depict the morphology of the catalyst surface and, combined with EDS analysis,
confirm the presence of Ir deposits on Ni. Figure 1(A.1,B.1) present the surface morphology of “27 mC”
and “75 mC” Ir(Ni)/GC samples, prepared by Ir galvanic deposition on 27 and 75 mC electrodeposited
Ni films (136 and 363 nm thick) on a GC substrate. Figure 1(A.2,B.2) present the corresponding
IrO2/Ir(Ni)/GC catalysts prepared by subsequent anodization of the samples shown in A.1 and B.1
(by 10 potential sweep cycles at 50 mV·s−1 between −0.30 and +1.15 V vs. SCE-see next sub-section).
Brighter areas are attributed to thick Ir or IrO2/Ir particles, grey areas to thinly-coated Ni areas or passive
Ni oxides whereas dark areas are linked to parts of the GC substrate that have been revealed during the
replacement and/or anodization process. Larger Ir particles seem to form on the “75 mC”-thicker Ni
precursor sample and a thinner and more porous film results from the “25 mC”-thinner Ni precursor
sample. Overall, there is good coverage of the surface without a dramatic change when passing
from as-prepared ((A.1), (B.1)) to anodized samples ((A.2), (B.2)); the latter observation indicates fast
Ir deposition and significant Ni protection-coverage by Ir and is more pronounced in the case of
the thin film (fewer changes in morphology upon anodization) when compared to the thicker film
(where some large Ir particles seem to collapse, because of neighboring Ni areas dissolving during the
electrochemical treatment).
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Figure 1. (A.1, B.1): SEM micrographs of Ir(Ni)/GC samples prepared by galvanic 
replacement of (A.1) 27 mC (382 mC cm−2) and (B.1) 75 mC (1062 mC cm−2) 
electrodeposited Ni. (A.2, B.2): SEM micrographs of the corresponding IrO2/Ir(Ni)/GC 
catalysts prepared by anodization of the samples shown in A.1, B.1 respectively. (Scale 
bars correspond to 10 μm). 

Table 1 below presents the elemental Ir and Ni EDS analysis of the samples shown in Figure 1. 

Table 1. EDS results (relative atomic concentration percentage of Ir and Ni) for 
as-prepared (Ir(Ni)) and anodized (IrO2/Ir(Ni)) “27 mC” and “75 mC” films. 

Electrodes Ir/% at Ni/% at 
“27 mC” as prepared 77.1 (±1.3) 22.9 (±1.3) 

“27 mC” anodized 87.8 (±1.0) 12.2 (±1.0) 
“75 mC” as prepared 5.3 (±1.8) 94.7 (±1.8) 

“75 mC” anodized 32.9 (±7.2) 67.1 (±7.2) 

It can be seen that for both thin (27 mC) and thick (75 mC) Ni precursor films, the 
non-anodized/ as-prepared Ir-coated catalysts have a higher Ni content, which decreased upon 
anodization since the remaining non-coated metallic Ni undergoes active dissolution and its surface 
oxides are also subject to partial trans-passive dissolution at the highest positive potentials used; 
only Ni areas protected-covered by Ir are guaranteed to survive and retain a significant part of their 
metallic character after the electrochemical treatment. Also, as expected for a non-surface sensitive 
technique such as EDS which probes the entire, thinner than 1 μm, film, it has been confirmed that 
the “75 mC” electrodes have a much higher Ni content than the “27 mC” ones. 

The anodized “27 mC” and “75 mC” samples were also examined by XPS analysis (Tables 2 and 
3), a more surface sensitive technique in comparison to EDS analysis that can also provide at the 
same time information about the oxidation state of elements. According to Table 1, based on wide 
area binding energy range scans (not shown), in the case of “27 mC”, XPS analysis gives 93.18% Ir 

Figure 1. (A.1, B.1): SEM micrographs of Ir(Ni)/GC samples prepared by galvanic replacement of
(A.1) 27 mC (382 mC cm−2) and (B.1) 75 mC (1062 mC cm−2) electrodeposited Ni. (A.2, B.2): SEM
micrographs of the corresponding IrO2/Ir(Ni)/GC catalysts prepared by anodization of the samples
shown in A.1, B.1 respectively. (Scale bars correspond to 10 µm).

Table 1 below presents the elemental Ir and Ni EDS analysis of the samples shown in Figure 1.

Table 1. EDS results (relative atomic concentration percentage of Ir and Ni) for as-prepared (Ir(Ni)) and
anodized (IrO2/Ir(Ni)) “27 mC” and “75 mC” films.

Electrodes Ir/% at Ni/% at

“27 mC” as prepared 77.1 (±1.3) 22.9 (±1.3)
“27 mC” anodized 87.8 (±1.0) 12.2 (±1.0)

“75 mC” as prepared 5.3 (±1.8) 94.7 (±1.8)
“75 mC” anodized 32.9 (±7.2) 67.1 (±7.2)

It can be seen that for both thin (27 mC) and thick (75 mC) Ni precursor films, the non-anodized/

as-prepared Ir-coated catalysts have a higher Ni content, which decreased upon anodization since
the remaining non-coated metallic Ni undergoes active dissolution and its surface oxides are also
subject to partial trans-passive dissolution at the highest positive potentials used; only Ni areas
protected-covered by Ir are guaranteed to survive and retain a significant part of their metallic character
after the electrochemical treatment. Also, as expected for a non-surface sensitive technique such as EDS
which probes the entire, thinner than 1 µm, film, it has been confirmed that the “75 mC” electrodes
have a much higher Ni content than the “27 mC” ones.
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The anodized “27 mC” and “75 mC” samples were also examined by XPS analysis (Tables 2 and 3),
a more surface sensitive technique in comparison to EDS analysis that can also provide at the same time
information about the oxidation state of elements. According to Table 1, based on wide area binding
energy range scans (not shown), in the case of “27 mC”, XPS analysis gives 93.18% Ir and 6.28% Ni
(total) atom concentration for as received/non-Ar-sputtered samples (0 nm of material sputtered-off,
denoted hereafter as “0 nm”). The measurable increase in Ir (total) concentration recorded by XPS in
comparison to that given by EDS (the former being ca. 93% the latter 77%) is in line with Ir segregation
on the surface and an Ir-rich shell structure (as expected for the galvanic replacement mechanism).
The Ir/Ni atom composition ratio remains almost unchanged within the first layers of the film as the
gradually Ar-sputtered samples have atomic compositions of 92.68% Ir-7.32% Ni (at 1 nm depth) and
93.35% Ir-6.65% Ni (at 3 nm depth), indicating a thicker than 3 nm Ir-rich shell. The “75 mC” sample
showed a notably higher Ni content in the surface layers (e.g., 51.66% at 0 nm) that fluctuated in depth;
this indicates a more incomplete Ni coverage by Ir and/or thinner remaining Ir films, pointing to a
more irregular replacement process in the case of thicker deposits (in line with the morphological
differences shown in Figure 1).

Table 2. Sputter-etch XPS analysis of the anodized “27 mC” sample based on wide area binding energy
range scans (first two composition columns) and narrow energy range scans (last two composition
ratio columns).

Sputter-Etch
Depth/nm Ir(total)/% at Ni(total)/% at Ir(0)/Ir(total) Ni(0)/Ni(total)

0 93.18 6.82 19.7 n/a (very poor Ni
signal)

1 92.68 7.32 61.9 43.36
3 93.35 6.65 68.6 58.14

Table 3. Sputter-etch XPS analysis of the anodized “75 mC” sample based on wide area binding energy
range scans (first two composition columns) and narrow energy range scans (last two composition
ratio columns).

Sputter-Etch
Depth/nm Ir(total)/% at Ni(total)/% at Ir(0)/Ir(total) Ni(0)/Ni(total)

0 48.34 51.66 13.6 0
1 70.67 29.33 54.4 75.7
3 62.4 37.6 65.3 60.3

Figure 2 depicts the narrow energy range slow XPS scans at a depth of 0 nm that provide
information for the oxidation state of Ir and Ni.



Molecules 2019, 24, 2095 5 of 16
Molecules 2019, 24, 2095 5 of 16 

 

 

 

 

Figure 2. XPS spectra of “27 mC” IrO2/Ir(Ni)/GC samples. (A) Ir 4f photoelectrons 
(non-sputtered sample, analysis at a 0 nm depth); (B) Ir 4f photoelectrons (non-sputtered 
and sputtered samples, analysis at 0, 1 and 3 nm depths); (C) Ni 2p photoelectrons 
(sputtered samples, analysis at 1 and 3 nm depths).  The vertical lines show the binding 
energy positions for various oxidation states of Ir or Ni. 

The peaks at ca. 61.0 (4f 7/2) and 64.0 eV (4f 5/2) can be attributed to metallic Ir(0) [22], while those 
at 61.9 (4f 7/2) and 64.9 eV (4f 5/2) to amorphous hydrous oxides of Ir(IV) [19,22–27]. Finally, although 

Figure 2. XPS spectra of “27 mC” IrO2/Ir(Ni)/GC samples. (A) Ir 4f photoelectrons (non-sputtered
sample, analysis at a 0 nm depth); (B) Ir 4f photoelectrons (non-sputtered and sputtered samples,
analysis at 0, 1 and 3 nm depths); (C) Ni 2p photoelectrons (sputtered samples, analysis at 1 and 3 nm
depths). The vertical lines show the binding energy positions for various oxidation states of Ir or Ni.

The peaks at ca. 61.0 (4f 7/2) and 64.0 eV (4f 5/2) can be attributed to metallic Ir(0) [22], while those
at 61.9 (4f 7/2) and 64.9 eV (4f 5/2) to amorphous hydrous oxides of Ir(IV) [19,22–27]. Finally, although
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the peaks at binding energies of 62.8 and 66.0 eV have not been unanimously distributed to a particular
state, they are usually assigned to hydrous Ir oxides in which Ir shows up with many oxidation states
Based on the relevant literature the latter couple of peaks can be attributed to Ir(III) [28–30], Ir(IV)
satellites [29–34], or even to higher oxidation states [34,35] such as Ir(V) [36] and Ir(VI) [18,31,37].
However Ir(III) and Ir(VI) are mostly observed when IrO2 is thermally deposited on a substrate from
IrCl3 salts, in which case it either remains as Ir(III) (whereby assignment of Ir(III) to binding energies
higher than Ir(IV) is due to the Ir-Cl bond) or it is converted to Ir(VI) due to high temperature [38].
This is not a plausible scenario for our catalysts as they are prepared via galvanic replacement at
moderate temperatures followed by electrochemical anodization. Furthermore, Ni 3p is also reported
at these binding energies [17,21,39–44], but in our case, since at 0 nm a Ni 2p signal could not be
detected (and it is therefore not shown in Figure 2C), Ni 3p should not either be observed because its
intensity is expected to be weaker than that of Ni 2p. Hence, for the catalysts of this work, we believe
that it is more possible that the peaks recorded at 62.8 and 66.0 eV are due to either surface Ir(V) [36] (as
this signal is only recorded at the surface (0 nm) and then disappears) or to Ir(IV) satellites. Figure 2B
presents the XPS spectra evolution as one moves from the surface (0 nm) to a 3 nm depth of the coating.
It can be seen that IrO2 resides mainly on a very thin outer shell less than 1 nm thick and it is mainly
in its metallic form as one moves into the core of the coating, in full agreement with the proposed
mechanism of Ir metal galvanic deposition and subsequent anodization to IrO2. Finally Figure 2C
presents XPS spectra for Ni 2p. (For the unsputtered samples, i.e., at 0 nm depth, a very weak and noisy
Ni 2p signal has been recorded (particularly for the “27 mC” sample), indicating significant (or full)
coverage of underlying Ni by IrO2, and is thus not shown). The couple of peaks at binding energies of
852.7 and 869.5 eV is attributed to metallic Ni [45–47] and that at 854.2 and 870.7 eV to Ni(II) in the form
of NiO [45,47–49]. Additionally, satellite peaks in the range of 850–880 eV characteristic of oxides [50]
show up. A very similar XPS picture was obtained for the thick nickel precursor sample of “75 mC”.

Quantitative analysis of the atomic concentration ratio of metallic-to-total Ir (Ir/(Ir + IrOx) as a
function of depth shown in Tables 2 and 3 (from data of Figures similar to 2A) shows that metallic Ir
increases across the deposit, indicating the existence of metallic Ir in the core. At the same time the
presence of IrO2 oxide drops sharply as one moves inside the film (from 19.7 and 13.6% at 0 nm to
61.9 and 54.4% at 1 nm), confirming the existence of very thin IrOx films. Another interesting point
that should be made based on the data of the last column of Tables 2 and 3 is that Ni oxide can be
found at considerable levels (ca. 25–60%) together with metallic Ni well inside the film. This may be
explained by the fact that IrO2 prepared by the anodization of the Ir shell is known to be nanoporous
thus permitting electrolyte access to Ni underlayers which are in turn oxidized. Note that it is indeed
the presence of Ni oxides (and their partial leaching) that has been proposed to increase the OER
activity of IrO2/Ni catalysts by disrupting the Ir-O-Ir bonds [17].

2.2. Surface Electrochemistry of the Electrodes

Prior to anodization, the “27 mC”, “50 mC” and “75 mC” samples, as received from the galvanic
replacement process, underwent cyclic voltammetry in a limited potential range to confirm the presence
of metallic Ir by its typical Ir surface electrochemistry and dissolve/passivate any unreacted surface Ni.
Hence, the Ir-Ni/GC electrodes were scanned in a deaerated solution of 0.1 M HClO4 at a voltage scan
rate of 50 mV·s−1 in the potential range of (a) underpotential adsorption/desorption of a hydrogen
monolayer/submonolayer on Ir starting at ca. −0.10 V (Figure 3A,B) and (b) reversible Ir surface
oxide/hydroxide formation and reduction at ca. +0.55 V/+0.30 V respectively (Figure 3C).
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+1.2 V, in a deaerated 0.1 M HClO4 solution. Current is normalized per electrode substrate 
geometric area. The solid line curves of (A) and (B) and all curves of (C) and (D) 
correspond to stabilized scans. 

In the case of the thick Ni precursor sample of “75 mC” (Figure 3A), large anodic currents are 
recorded (around +0.20 V) during the very first scan and can be attributed to the dissolution and/or 
passivation of uncovered surface Ni [51,52] (in accordance with the high Ni content of the surface as 
indicated by the XPS results of Tables 2 and 3). On the contrary, no anodic currents in the Ni 
oxidation range were recorded for the thin “27 mC” sample, indicating good surface coverage by Ir. 
A stabilized voltammetric picture was typically obtained after more than 10 scans. Extending the 
positive potential limit to +0.9 V (Figure 3C), one can notice the formation of a surface IrOx/Ir(OH)x 
oxide/hydroxide (at ca. 0.55 V) and its quasi-reversible stripping-reduction at ca. +0.25 V during the 
reverse scan. In the same Figure the peaks associated with H adsorption/desorption can now be 
clearly seen due to surface activation/cleaning through surface oxide formation and stripping. The 
typical (see for example [15,17–20]) metallic Ir surface electrochemistry shown in Figure 3C is 
macroscopic proof that Ir is deposited and stays as a metal on Ni, according to the galvanic 
deposition mechanism proposed. 

Scanning the potential up to +1.2 V vs. SCE (Figure 3D), Ir is gradually converted to stable, 
three-dimensional, porous Ir(IV) oxides (see for example [7,53]). In our samples, oxide growth stops 
and the voltamograms stabilize after typically at least 10 scans. These Ir(IV) oxides grow into the 
bulk of Ir deposits and form porous oxides which are known to be effective for OER [17–19], [54,55]. 
At E > +1.1V Ir(IV) is converted to Ir(V) and Ir(VI) and OER starts to occur. Anodization is achieved 
through potential cycling between hydrogen and oxygen evolution at a potential scan rate of 50 
mV·s−1 until voltamograms stabilization (approximately 10 scans). During anodization the peaks 
attributed to H adsorption/desorption are suppressed, which is evidence that metallic Ir has been 
converted to Ir oxides on the surface. These results are in line with [7,17–20,53–55]. 

Figure 3. Cyclic voltamograms of the IrO2/Ir(Ni)/GC electrodes prepared by galvanic replacement
followed by anodization, recorded at a potential sweep rate of 50 mV s−1 up to +1.2 V, in a deaerated
0.1 M HClO4 solution. Current is normalized per electrode substrate geometric area. The solid line
curves of (A) and (B) and all curves of (C) and (D) correspond to stabilized scans.

In the case of the thick Ni precursor sample of “75 mC” (Figure 3A), large anodic currents are
recorded (around +0.20 V) during the very first scan and can be attributed to the dissolution and/or
passivation of uncovered surface Ni [51,52] (in accordance with the high Ni content of the surface as
indicated by the XPS results of Tables 2 and 3). On the contrary, no anodic currents in the Ni oxidation
range were recorded for the thin “27 mC” sample, indicating good surface coverage by Ir. A stabilized
voltammetric picture was typically obtained after more than 10 scans. Extending the positive potential
limit to +0.9 V (Figure 3C), one can notice the formation of a surface IrOx/Ir(OH)x oxide/hydroxide
(at ca. 0.55 V) and its quasi-reversible stripping-reduction at ca. +0.25 V during the reverse scan.
In the same Figure the peaks associated with H adsorption/desorption can now be clearly seen due
to surface activation/cleaning through surface oxide formation and stripping. The typical (see for
example [15,17–20]) metallic Ir surface electrochemistry shown in Figure 3C is macroscopic proof that
Ir is deposited and stays as a metal on Ni, according to the galvanic deposition mechanism proposed.

Scanning the potential up to +1.2 V vs. SCE (Figure 3D), Ir is gradually converted to stable,
three-dimensional, porous Ir(IV) oxides (see for example [7,53]). In our samples, oxide growth stops
and the voltamograms stabilize after typically at least 10 scans. These Ir(IV) oxides grow into the
bulk of Ir deposits and form porous oxides which are known to be effective for OER [17–19,54,55].
At E > +1.1 V Ir(IV) is converted to Ir(V) and Ir(VI) and OER starts to occur. Anodization is achieved
through potential cycling between hydrogen and oxygen evolution at a potential scan rate of 50 mV·s−1

until voltamograms stabilization (approximately 10 scans). During anodization the peaks attributed to
H adsorption/desorption are suppressed, which is evidence that metallic Ir has been converted to Ir
oxides on the surface. These results are in line with [7,17–20,53–55].
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The charge under the anodic part of the voltamograms in the entire 0.0–+1.1 V range is often used
as an indicator of IrOx quantity or, more accurately, electroactive surface area [7,14,54,56]. Figure 3D
depicts the stabilized voltamograms when the electrodes had been exposed to a maximum anodic
potential of +1.20 V but not to higher potentials where OER is studied (see next section).

The variation of the charge below the curves of the voltammograms of Figure 3 (which is indicative
of IrO2 electroactive area and quantity) with precursor Ni thickness can be explained as follows.
The thinner the initial Ni deposit the more efficient Ni protection-coverage by Ir. On the contrary, in
the case of thick Ni deposits (see SEM micrographs in Figure 1 as well as the discussion in Section 2.1
and Scheme 1 below), the large Ir particles formed on the Ni surface collapse, due to the dissolution
of neighboring uncovered Ni areas during electrochemical treatment (these areas are more extended
for thicker films). Hence the total catalyst amount on the electrode (and its electroactive area/charge
for oxide formation/ stripping as estimated from the voltammograms of Figure 3) is the result of two
opposite trends as the thickness of Ni increases: a rise in reactant (Ni) availability for Ir deposition
and increased rates for Ir removal due to uncovered Ni dissolution upon the subsequent anodization
treatment. This interplay leads to the appearance of a maximum in the surface area-charge vs. initial
Ni quantity relationship, corresponding to the “50 mC” sample (with the voltammetry curve of the
thicker sample of “70 mC” lying slightly below that of the “50 mC” but higher than that of the “27 mC”
sample).

Figure 4A,B show that there is change/activation of the electroactive surface area during the
occurrence of OER and this should be taken into account if currents are to be normalized per IrO2

charge (see next section). The estimated IrO2 charge for the three electrodes studied, before and after
OER, is given in Table 4 below. The surface roughening/activation of the electrode after exposure
to relatively high potentials may be attributed to electro-dissolution of Ni sites that did not react
during the galvanic replacement process and/or were passivated in the subsequent potential cycling
experiments. Furthermore, the dissolution of the partially protective Ir hydrous layer (formed on the
surface of the electrode during the initial potentiodynamic scans [18]) after exposure within the OER
potential range, may facilitate the oxidation of deeper Ir layers, resulting in an expansion of the oxide
network and thus an increase of electroactive surface area.
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Figure 4. Cyclic voltamograms of the IrO2/Ir(Ni)/GC electrodes ((A): “27 mC” electrode; (B): “75 mC”
electrode) prepared by galvanic replacement followed by anodization, recorded at a potential sweep
rate of 50 mV s−1 up to +1.20 V, in a deaerated 0.1 M HClO4 solution. Dashed line curves correspond
to stabilized scans prior to OER experiments while solid line curves to stabilized scans after OER
experiments at potentials higher than +1.20 V.
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Table 4. Charge density corresponding to IrO2 anodic growth, as estimated from the integration of the
anodic part of cyclic voltamograms in deaerated 0.1 M HClO4 solutions between 0.0 and +1.2 V.

Electrode qIrO2/mC cm−2 (before OER) qIrO2/mC cm−2 (after OER)

“27 mC” 2.82 5.17
“50 mC” 4.77 5.40
“75 mC” 4.18 6.76

2.3. Oxygen Evolution Reaction (OER)

The detailed protocol for the OER study is described in the Materials and Methods section below.
Briefly, a rotating disc IrO2/Ir(Ni)-modified GC electrode, RDE, (rotated at 1500 rpm) has been used to
remove O2 bubbles evolving during OER and to keep any film of O2 formed (that may act as a diffusion
barrier) thin and reproducible (in case the process enters a mixed kinetic/mass transfer regime). OER
has been studied at constant potential and the steady-state current (typically having settled after 200 s)
has been recorded. Also, cyclic voltamograms in the −0.25–+1.20 V range have been recorded between
OER experiments to account for electroactive active area changes.

Figure 5A,B below present the steady-state current density vs applied potential, corrected for the
uncompensated resistance, for three IrO2/Ir(Ni)/GC electrodes of different Ni-precursor film thicknesses
(“27 mC”, “50 mC”, “75 mC”). The current density is normalized both per electrode geometric area (A)
and the charge of the anodically grown IrO2 (B), the latter being representative of the electroactive area
of porous IrO2.
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Figure 5A shows that the “27 mC” (thinner Ni precursor film) gives similar currents with the
“50 mC” one but higher currents than the “75 mC” electrode (thicker Ni precursor film). More important,
according to Figure 5B, the IrO2/Ir(Ni) catalyst prepared from the thinner Ni-precursor film shows
superior intrinsic electrocatalytic activity for OER. The origin of this effect should be linked to the
different overall Ni content of the thin and thick Ni precursor samples since EDS data of Table 1 give a
22.9% Ni content for the “27 mC” coating compared to the much higher 67.1% of the “75 mC” sample
(note that the best mixed Ir-Ni oxide catalysts of [17] seem to stabilize during OER to a low, 12% at Ni
content). More important, the higher activity of the “27 mC” catalyst may also be associated to its rich
in IrO2 surface (XPS data of Table 2 give 93.18% at Ir for the “27 mC” sample as opposed to 48.34% for
the “75 mC” sample).

Figure 6 presents the Tafel analysis of the data presented in Figure 5A above.
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The corresponding Tafel plots have slopes of 40, 45 and 55 mV·dec−1 for ”27 mC”, “50 mC” and
“75 mC” IrO2/Ir(Ni)/GC electrodes respectively. These values of Tafel slopes are common for IrO2

catalysts (40–60 mV·dec−1) [7,54,57,58].
Finally, Table 5 below shows that the IrO2/Ir(Ni)/GC electrodes of this work present comparable

and even enhanced electrocatalytic activity with respect to other IrO2-Ni and IrO2/Ir electrodes prepared
both by similar or different methods [7,14,53,55], whether the current is normalized per substrate
geometric area (indicative of overall activity) or the IrOx formation charge (indicative of intrinsic
electrocatalytic activity).

Table 5. OER performance of IrO2/Ni catalysts reported in this work and in indicative literature as
quantified by the overpotential, η, required to achieve a given area and mass specific current density or,
conversely, the values of the latter at a given overpotential.

Catalyst j = 10 mA·cm−2 j = 0.5 mA mC−1 η = 300 mV

η/mV η/mV j/mA cm−2 j/mA mC−1

Electrochemically anodized IrO2-Ni
film via galvanic deposition (707 mC

cm−2 electrodeposited Ni) [7]
360 354 1 0.05

Thermally prepared mixed Ir-Ni
oxides (varied Ni content) [17] 200–370 290–315 1–7 0.33–0.85

Electrochemically anodized bulk Ir
(300 cycles) [56] 390 301 9.7 0.47

This work (varied Ni content) 299–307 253–270 9–11 1.8–3

3. Materials and Methods

3.1. Preparation of IrO2/Ir(Ni)/GC Electrodes

The preparation of IrO2/Ir(Ni)/GC electrodes involves three basic steps: Ni electrodeposition
on GC (at 382, 707, 1062 mC cm−2 charge densities; 27, 50 and 75 mC passed from the 0.071 cm2 of
the disc electrode substrate), galvanic replacement of Ni by Ir and electrochemical anodization to
form IrO2 oxides on its surface. These electrodes have been referred to as “27 mC”, “50 mC” and
“75 mC” respectively based on the quantity of the deposited Ni. Ni was electrodeposited on a freshly
grinded (600-grit emery paper) GC electrode (3 mm disc RDE GC, Metrohm) in a deaerated aqueous
solution of 0.01 M nickel sulfamate ((H2NSO3)2Ni·4H2O, 99%, Fluka, Honeywell, Charlotte, NC, USA),
0.227 mM nickel chloride (NiCl2, puriss > 97%, Merck, Burlington, MA, USA) and 0.025 M boric acid
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(H3BO3, puriss 98%, Merck). During the potentiostatic (E = −1.1V vs. SCE) deposition, the cathodic
charge was recorded by chronoamperometry–chronocoulometry to control Ni deposition. Ni thickness
was calculated based on Faraday’s law, assuming (a) a 100% Ni deposition current efficiency (as
evidenced by separate gravimetric experiments that gave current efficiency values higher than 98%),
(b) minimal porosity of Ni (as evidenced by SEM pictures of similar Ni deposits [59] and (c) taking
into account the density of Ni (dNi = 8.9 g cm−3). A thickness of 136, 242 and 363 nm was estimated.
Then the Ni/GC electrode was rinsed with HCl (to remove any native Ni surface oxides) and directly
immersed into a deaerated solution of 10−3 M K2IrCl6 + 10−3 M HCl at 65 ◦C for 45 min (potassium
hexachloroiridate, 99.99% trace metals basis, Aldrich, St. Louis, MO, USA; hydrochloric acid 37%
for laboratory use, Chem-Lab, Zedelgem, Belgium) for galvanic replacement to take place [7] and
form Ir(Ni)/GC. During the galvanic replacement process a stream of N2 was maintained over the
cell ensuring an oxygen-free blanket atmosphere. All solutions used were freshly prepared. Finally,
the Ir(Ni)/GC electrode underwent electrochemical anodization to form Ir oxides. Anodization was
achieved by scanning the Ir(Ni)/GC electrode multiple times via the cyclic voltammetry technique
in the potential range between hydrogen and oxygen evolution (−0.30 and +1.20 V vs. SCE in 0.1 M
HClO4) to form porous, open-structure Ir oxides, which are known to exhibit excellent electrocatalytic
activity for OER [7,18–21].

3.2. Electrochemical Setup and Procedures

All the electrochemical measurements were performed at room temperature in a deaerated 0.1 M
HClO4 (perchloric acid 70% Merck) solution using a GC rotating disc electrode (RDE, Eco Chemie,
Utrecht, The Netherlands). The Ir(Ni)/GC electrode (working electrode) was placed in the central
chamber of a three-compartment glass cell at a very small distance from the luggin capillary of
the chamber containing a KCl-saturated calomel reference electrode (SCE). A Pt-foil, placed in the
third chamber, separated from the central one with a glass frit, was used as the counter electrode.
All potentials mentioned in this article are referred to SCE (saturated in KCl). Electrochemical
measurements including cyclic voltammetry (CV) and chronoamperometry (CA) were carried out with
the help of an Autolab PGSTAT302N (Eco Chemie, Utrecht, The Netherlands) workstation, which was
controlled via NOVA 1.11.2 software (Eco Chemie, Utrecht, The Netherlands).

Stabilized cyclic voltamograms of the Ir(Ni)/GC electrode were recorded at a potential scan rate of
50 mV·s−1 in 0.1 M HClO4 deaerated solution: (a) within the hydrogen adsorption/desorption potential
range (between −0.3 and +0.3 V) to ensure the presence of metallic Ir on Ni during the first, galvanic
replacement, step and to dissolve/passivate uncovered Ni, (b) within the reversible Ir surface oxide
formation potential range (between −0.3 V and +0.9 V) to observe the typical Ir surface electrochemistry
and (c) up to the onset of the oxygen evolution reaction process (up to 1.2 V) to form hydrous bulk
porous Ir oxides (electrochemical anodization).

To study OER, constant potential chronoamperometric measurements were carried out according
to the above protocol: (a) apply the current interrupt method to estimate the uncompensated resistance
(aiming at correcting the potential values), (b) pulse the potential to the value of interest (onset and
beyond of OER) and record the current for 200 s (until current stabilizes to achieve steady-state
conditions) with the simultaneous electrode rotation at 1500 rpm (in order to remove O2 bubbles and
to keep any diffusion barrier formed due to oxygen evolution constant, in order to reach steady state
conditions) and (c) scan the electrode at 50 mV·s−1 for 4 cycles up to 1.2 V (to condition the electrode
surface and record any changes in the electroactive area via the charge associated with the recorded
surface electrochemistry-IrOx oxide formation). This protocol was repeated for each potential value
from 1.20 V to 1.34 V in 10 mV intervals.

3.3. Microscopic and Spectroscopic Characterization

A JEOL 6300 microscope (JEOL Ltd, Akishima, Japan) equipped with an Oxford ISIS 2000 X-ray
EDS (EDAX) system (Oxford Instruments Ltd, Oxford, UK) was used to obtain SEM micrographs and
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EDS elemental composition analysis. XPS measurements of (IrO2/Ir-TiO2)/Ti samples were performed
at an AXIS Ultra DLD X-ray Photoelectron Spectrometer by Kratos Analytical, Wharfside, Manchester,
UK, with a monochromated Al-Ka1 X-ray beam (λKa = 1.4866 Å). A 4 keV Ar+ ion beam helped to
(a) remove adventitious carbon and other surface contaminants from the samples and (b) etch the
samples at a specific depth (20 s of sputtering results in a ca. 1 nm material etching).

4. Conclusions

4.1. IrO2/Ir(Ni) Catalyst Morphological, Compositional and Electrochemical Characterization; Mechanism of
Catalyst Preparation

SEM microscopy revealed that Ir is deposited by galvanic replacement of Ni as larger particles on
the thicker Ni precursor film, indicating that metallic Ir deposition becomes uneven as the time of the
galvanic replacement process is prolonged due to the presence of large Ni quantities available to be
exchanged/chemically etched into the solution.

XPS analysis showed the presence of a very thin (thickness < 1 nm) IrO2 film on the surface of the
catalyst. The catalyst prepared on a thin Ni precursor film has a surface composition that is more than
90% at Ir whereas that of a thicker (almost by three times) film is less than 70% at Ir.

The surface electrochemistry of the catalysts, as obtained by cyclic voltammetry, revealed that
Ir is initially in its metallic form and it is converted to IrO2 oxides by anodization at potentials more
positive than +1.20 V. Also, the as prepared Ir(Ni) films from thick Ni precursor deposits exhibited
high anodic currents during their first exposure to anodic potentials pointing to the presence of large
uncovered Ni areas that have been subsequently electrochemically dissolved or passivated.

All of the above findings may be explained by the mechanism presented in Scheme 1 below.
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4.2. Catalyst Performance as an OER Anode

The amount of precursor Ni deposit affects Ni content at the surface of the deposits and as a
result its effect on IrO2 OER catalytic properties. It has been found that the thinner the precursor
deposit the lower the Ni/NiOx presence at the surface and the higher the intrinsic catalytic activity for
OER. From the catalysts tested, the best performance was observed for a catalyst originating from a
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ca. 136 nm thick Ni film and having a final bulk composition of ca. 88% at Ir-12% at Ni and a surface
composition of ca. 93% Ir-7% at Ni.

It has thus been proved that the structure and performance of OER catalysts prepared by galvanic
replacement of Ni by Ir can be tuned by controlling the quantity of the former.
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