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Abstract: The human KRAS (Kirsten rat sarcoma) is an oncogene, involved in the regulation of cell
growth and division. The mutations in the KRAS gene have the potential to cause normal cells
to become cancerous in human lungs. In the present study, we focus on non-synonymous single
nucleotide polymorphisms (nsSNPs), which are point mutations in the DNA sequence leading to
the amino acid variants in the encoded protein. To begin with, we developed a pipeline to utilize a
set of computational tools in order to obtain the most deleterious nsSNPs (Q22K, Q61P, and Q61R)
associated with lung cancer in the human KRAS gene. Furthermore, molecular dynamics simulation
and structural analyses of the 3D structures of native and mutant proteins confirmed the impact
of these nsSNPs on the stability of the protein. Finally, the experimental results demonstrated that
the structural stability of the mutant proteins was worse than that of the native protein. This study
provides significant guidance for narrowing down the number of KRAS mutations to be screened as
potential diagnostic biomarkers and to better understand the structural and functional mechanisms
of the KRAS protein.

Keywords: mutation; single nucleotide polymorphism; functional effect; molecular dynamics
simulation; structural analysis

1. Introduction

Lung cancer remains the most frequent cause of cancer-related death worldwide in the past few
decades [1]. Kirsten rat sarcoma (KRAS) viral oncogene homolog mutant tumors constitute the most
prevalent targetable molecular subtype of non-small cell lung cancer, which accounts for most of
all lung cancer cases [2–4]. The KRAS gene encodes a small GTPase membrane-bound protein as
the signaling molecule, whose mutations are vital to cellular proliferation and survival. Thus, the
precise identification of mutations in the KRAS gene and the encoded protein is extremely important
for a clearer understanding of their effects on cancer cell proliferation and survival. However, the
experimental methods to detect the functional mutations in a genome or even in a single gene are
both time- and resource-consuming. Therefore, it is crucial to develop in silico approaches to identify
the functional significant mutations that might aid in the development of cancer cells regarding the
KRAS gene.

Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variations that
occur in the coding or non-coding regions of a DNA sequence. There is one variation in every
200–300 bp in the whole human genome. These types of variations account for approximately 90%
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of the polymorphisms throughout the human genome. Among various types of mutations, the
non-synonymous single nucleotide polymorphisms (nsSNPs) which are mutated in the exonic regions
will change the protein sequences, affecting the normal gene regulation or natural function of proteins
by causing alterations in the transcriptional or translation mechanisms. To date, 12,071 SNPs, including
261 missense mutations, have already been reported in the human KRAS gene deposited in the public
database dbSNP [5]. It is vital to efficiently and accurately evaluate the functional effects of SNPs
and explore how SNPs affect protein function. In the last decade, a large number of computational
tools have been developed to predict the effect of coding non-synonymous variants on a protein’s
structure and, ultimately, its function [6–12]. Since functional sites on proteins are usually shown to be
evolutionarily conserved, a web-based tool, ConSurf, has been developed to predict the evolutionary
conservation of each amino acid on the protein [13]. The alterations in a protein’s stability upon the
incorporation of a mutation also directly affects its function [14–16]. Moreover, it is desirable to identify
the somatic mutations in the KRAS gene that can result in the development of cancer. On the basis of
aims and applications of these computational approaches, the consensus of their prediction outcomes
can narrow down the candidate mutations for further validation.

However, protein functions are not only related to the strictly static structures that are determined
by their amino acid sequences, but also highly related to protein dynamics, e.g., the KRAS protein
that acts as an on/off switch accompanied by conformational changes in cell signaling. Therefore,
we analyzed protein stability via molecular dynamics simulation in order to deeply analyze the
structural diversity in mutant KRAS proteins. Inspired by previous studies [17,18], we developed a
workflow of computational screening and analysis of lung cancer-related nsSNPs and mutated residues
on human KRAS genes and proteins, respectively, which is shown in Figure 1. We believe that our
study will help researchers further understand the roles of the KRAS gene and its encoded protein in
lung cancer, which will provide guidance for future experimental study.
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2. Materials and Methods

2.1. Data Collection

All information about the human KRAS gene was retrieved from public web-based resources.
The reported SNP mutations in the KRAS gene was collected from the dbSNP database (http:
//www.ncbi.nlm.nih.gov/snp/) [5]. The amino acid sequence (UniProt ID: P01116) that encodes a KRAS
protein was retrieved from the UniProt database (https://www.uniprot.org/), while the protein 3D
crystal structure (shown in Figure 2) was obtained from PDB (Protein Data Bank, http://www.rcsb.org/)
with PDB ID 5VQ2 [19,20].Molecules 2019, 24, x 4 of 21 
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Figure 2. The figure of the Kirsten rat sarcoma (KRAS) protein structure. (The GTP bounding site is
shown in orange).

2.2. Prediction of Disease Related SNPs

2.2.1. Prediction of Functional Consequences of nsSNPs

The functional effects of nsSNPs were predicted by SIFT (Sorting Intolerant from Tolerant) [7],
SNAP2 (screening of non-acceptable polymorphism 2) [10], and PROVEAN (Protein Variation Effect
Analyzer) [11]. nsSNPs were assigned as deleterious mutations by the consistent predictions of all
three tools.

SIFT (http://sift.bii.a-star.edu.sg) is a program that predicts whether or not an amino acid
substitution is responsible for changes in the protein function. Its prediction is based on the
physicochemical properties of amino acids in the protein sequence and its sequence homologies [7].
The prediction results of the SIFT program can be categorized into two classes: deleterious and
tolerated. The amino acid substitution is predicted to be deleterious if a SIFT score is between 0 and
0.05, while a score between 0.05 and 1 is regarded as tolerable.

SNAP2 (https://rostlab.org/services/snap) is a neural network-based prediction server which
identifies the functional effects of amino acid sequence variants [10]. The prediction score ranges from
-100 (strongly neutral prediction) to 100 (strong effect prediction), which reflects the likelihood of the
single amino acid mutation that may alter the native protein function.

PROVEAN (http://provean.jcvi.org) is a web-based server, which utilizes an alignment-based score
approach, for prediction of the functional effect of amino acid variants [11]. We submitted the query
protein sequence and amino acid variations to the PROVEAN server, which performed a BLAST search
to collect homologous sequences, and the scores for each mutation were calculated. The threshold for
PROVEAN scores was set to −2.5 to discriminate deleterious substitutions from neutral ones.

http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
https://www.uniprot.org/
http://www.rcsb.org/
http://sift.bii.a-star.edu.sg
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2.2.2. Estimation of Evolutionary Conservation of nsSNPs

The level of evolutionary conservation of each sequence position corresponds to the evolutionary
rate, which is not constant among all amino acids in a protein. The amino acid positions which
evolve slowly are commonly considered as conserved sites that are important for protein structure and
function. The ConSurf server (http://consurf.tau.ac.il/) was used to estimate the level of evolutionary
conservation of amino acid positions in a protein, based on the phylogenetic relationships between
homologous sequences [13,21,22]. We submitted both the protein sequence and structure to the
ConSurf server, which calculates the conservation scores partitioned into a discrete scale of nine bins.
The positions with bin 9 indicate the most conserved sites, while the positions with bin 1 indicate the
most variable sites.

2.2.3. Prediction of Protein Change Stability of nsSNPs

Accurate prediction of protein stability changes upon single point mutations is important for
understanding protein structure and function. In the present study, we used MuPro [14] and I-Mutant
2.0 [15] to predict protein stability changes for the SNPs. MuPro (http://mupro.proteomics.ics.uci.edu/)
is a support vector machine-based tool to predict protein stability changes for single amino acid
mutations based on protein sequence or/and structural features [14]. I-Mutant 2.0 (http://folding.
biofold.org/i-mutant/i-mutant2.0.html) is another support vector machine-based web tool to make
automatic predictions of protein stability changes upon single point mutations [15]. We uploaded
the protein sequence, position of mutation, and the mutant residue, and the protein stability was
predicted at default temperatures and pH. The reliability index value of the prediction that ranges
from 0 (unreliable) to 10 (reliable) was also calculated.

2.2.4. Identification of Somatic Mutations that can Cause Cancer

Furthermore, we identify the somatic mutations that can cause cancer in the KRAS gene.
The COSMIC (Catalogue of Somatic Mutations in Cancer, https://cancer.sanger.ac.uk/cosmic/) website
was developed for curating the somatic mutations information related to human cancer [23].

2.3. Modeling of Native and Mutant KRAS Proteins

The crystal structure of the KRAS protein was obtained from PDB (Entry ID: 5VQ2; Chain: A;
Resolution: 1.96 Å) [20]. All water molecules and ligands were removed from the crystal structure,
and the Modeler 9.19 package was used to map the missing parts of structure on the wild-type (WT)
protein [24]. Moreover, the WT structure was mutated by each one of the three most deleterious mutants
predicted in the previous sections. The three structures of mutant (MT) proteins, such as Q22K, Q61R,
and Q61P, were modeled by making a point mutation in the wild-type (WT) protein structure using
PyMOL software. Then, we used the DynaMut [25] web server (http://biosig.unimelb.edu.au/dynamut)
for an initial assessment of the impact of point mutations on protein dynamics and stability. The WT
and three MT structures are shown in Figure 3.

http://consurf.tau.ac.il/
http://mupro.proteomics.ics.uci.edu/
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://folding.biofold.org/i-mutant/i-mutant2.0.html
https://cancer.sanger.ac.uk/cosmic/
http://biosig.unimelb.edu.au/dynamut
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Figure 3. Graphical representations of selected single nucleotide polymorphisms (SNPs) and the GTP
binding site in the protein structure.

2.4. Molecular Dynamics Simulation and Trajectories Analysis

We used molecular dynamics simulation (MD) techniques to investigate the mechanism of
structural impacts of the mutations on KRAS. MDs were performed using GROMACS 5.1.2 [26,27]
software on an Ubuntu 16.04.5 operating system running on a machine equipped with a 12 terabyte
hard-disk, 63 gigabytes RAM, Intel(R) Xeon(R) CPU E5-2640 processor. The Modeler 9.19 package
was used to refine the structure of the WT protein, and the PyMOL software was used to map the
mutations on the structures of mutant proteins. Then, the protein systems were solvated in a cubic box
with SPC (simple point charge) water molecules and the walls were located ≥12 Å from all protein
atoms. The box size was set to 4.256 nm × 4.061 nm × 4.142 nm, with box vectors of 6.7 × 6.7 × 6.7 nm,
and box angles were kept at 90◦ for each side. The total number of atoms in WT, Q22K, Q61P, and
Q61R were 29,063, 30,817, 29,638, and 30,554, respectively. The simulation was performed using the
CHARMM 36 force field [28] at a neutral pH, which was neutralized by adding a number of Na+

counter ions (7, 6, 7, and 6 for WT, Q22K, Q61P, and Q61R, respectively). The energy of each solvated
system was minimized with 50,000 iterations, and the steepest descent minimization was terminated
when the maximum force was below 1000 KJ/mol−1/nm−1. After the process of energy minimization,
the system was equilibrated with pressure (1 bar) and constant temperature (310 K) at a time step of
2 fs. The LINCS (LINear Constraint SolVer) [29] constraints and non-bonded pair list were updated
every 10 steps under the position restraint conditions for the heavy atoms. Electrostatic interactions
were calculated using the particle mesh Ewald method. The v-rescale (modified Berendsen thermostat)
temperature coupling method [30] was used to maintain the constant temperature inside the box.
Finally, all the systems were simulated for a duration of 100 ns MD simulations and the coordinates
were saved after an interval of every 2 ps.

After the completion of MD, trajectories were analyzed to compare and observe the structural
deviation among the KRAS wild-type and mutant structures (MT). The root mean square deviation
(RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area
(SASA), and secondary structure calculation, were calculated by using the g_rms, g_rmsf, g_gyrate,
g_sasa, and do dssp utilities of Gromacs.
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2.5. Principal Component Analysis

Principal components analysis (PCA) or essential dynamics (ED) were used to reduce the
dimensionality of the molecular dynamics simulations data in order to identify the configuration space
of anharmonic motion with only a few degrees of freedom. PCA is a method that analyzes the MD
trajectory and extracts dominant modes in the overall molecular motion. The motion of structures in a
multidimensional space was identified by the most vital eigenvectors projection in Cartesian trajectory
coordinates. In the ED analysis, we constructed a covariance matrix of WT and MTs backbone Cα

atoms simulation trajectories which removed the rotation and translational movements. Furthermore,
we calculated the eigenvectors and eigenvalues of the covariance matrices, and the projection of the
first two principal components. We achieved the principal component analysis of trajectories using the
Gromacs built-in utilities, such as gmx covar and gmx anaeig.

3. Results and Discussion

3.1. SNP Data Set from dbSNP

The dbSNP database contains a total of 12,071 SNPs for the KRAS gene. Among the 12,071 SNPs,
261 (2.2%) are missense mutations, which is a type of nonsynonymous substitution in DNA sequences,
131 (1.1%) are coding synonymous SNPs, 2005 (16.6%) SNPs are in the mRNA 3′UTR region, 257 (2.1%)
are in the 5′UTR region, and 9754 (80.8%) are in the intronic region. The remaining 42 (0.3%) are
nonsense, frame shift, 3′ splice site, 5′ splice site and stop gained SNPs. The distribution of SNPs is
illustrated in Figure 4. We selected the 261 missense mutations for further investigation on the basis of
our proposed workflow. Out of 261 mutations in the KRAS gene, 106 of them were mapped to the
amino acid positions on the protein sequence (UniProt ID: P01116). Next to this, we identified the
most likely pathogenic mutations that confer susceptibility to human diseases regarding the KRAS
gene, with six in silico tools—SIFT, SNAP2, PROVEAN, ConSurf, MuPro, and I-Mutant2.0. In order
to improve the prediction accuracy, we combined those computational methods that are based on
the protein structural and/or functional parameters with necessary evolutionary information. Finally,
we used the COSMIC database to identify the three nsSNPs associated with lung cancer.
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3.1.1. Screening of Missense SNPs Based on Functional Analysis

A total of 106 missense mutations were used for the prediction of their functional effects via SIFT,
SNAP2, and PROVEAN tools. Out of 106 nsSNPs, SIFT predicted 70 nsSNPs as ‘intolerant’, with
scores ≤ 0.05 and the remaining 36 nsSNPs were predicted as ‘tolerated’, with a score greater than 0.05.
SNAP2 predicted 90 nsSNPs as ‘effect’, with scores > 0, out of which 54 were predicted as ‘effect’ with
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scores ranging from 50 to 100, and 36 nsSNPs were predicted as ‘effect’ with scores ranging from 0 to
50. The remaining 16 nsSNPs were predicted as ‘neutral’, with scores < 0. Moreover, all the missense
SNPs were also analyzed by PROVEAN. The mutations with scores less than or equal to −2.5, in case
of PROVEAN, were considered ‘deleterious’, while the mutations with scores greater than −2.5 were
predicted to be ‘neutral’. According to the default threshold, out of 106 nsSNPs, 78 were predicted to
be ‘deleterious’ and 28 nsSNPs were predicted to be ‘neutral’. The predicted results of all three tools
are shown in Table 1. The 64 nsSNPs (shown in bold) were predicted to be deleterious and were chosen
for further investigation.

Table 1. The functional consequences of missense SNPs predicted by Sorting Intolerant from Tolerant
(SIFT), screening of non-acceptable polymorphism 2 (SNAP2), and Protein Variation Effect Analyzer
(PROVEAN). SNPs indicated in bold are predicted to be highly deleterious and are selected for
further evaluation.

rs ID Variant
SIFT SNAP2 PROVEAN

Prediction Score Prediction Score Prediction Score

rs17851045 Q61H intolerant 0 effect 94 Deleterious −4.556
rs104886028 M72I tolerated 0.25 effect 7 Deleterious −3.376
rs104886029 A59V intolerant 0 effect 38 Deleterious −3.839
rs104894359 G60S intolerant 0 effect 73 Deleterious −5.817
rs104894359 G60R intolerant 0 effect 99 Deleterious −7.758
rs104894361 K5N intolerant 0 effect 90 Deleterious −3.836
rs104894362 F156L intolerant 0 effect 65 Deleterious −5.310
rs104894364 T58I intolerant 0 effect 97 Deleterious −5.823
rs104894365 V14I intolerant 0 effect 96 Neutral −0.819
rs104894366 P34R intolerant 0 effect 96 Deleterious −7.598
rs104894367 V152G intolerant 0 effect 75 Deleterious −5.873
rs112445441 G13D intolerant 0 effect 98 Deleterious −5.403
rs121913236 Q22K intolerant 0 effect 55 Deleterious −3.313
rs121913238 Q61K intolerant 0.01 effect 69 Deleterious −3.588
rs121913239 Q61E intolerant 0.01 effect 58 Deleterious −2.772
rs121913240 Q61P intolerant 0.01 effect 63 Deleterious −5.602
rs121913241 Q61R intolerant 0.01 effect 63 Deleterious −3.455
rs121913242 Q61L intolerant 0.01 effect 93 Deleterious −6.507
rs121913527 A146P intolerant 0 effect 82 Deleterious −4.513
rs121913528 A59T intolerant 0.01 effect 40 Deleterious −3.727
rs121913528 A59S intolerant 0 effect 35 Deleterious −2.701
rs121913529 G12D intolerant 0 effect 99 Deleterious −5.373
rs121913531 G12A intolerant 0 effect 96 Deleterious −4.621
rs121913534 G12V intolerant 0 effect 98 Deleterious −7.113
rs121913530 G12S intolerant 0 effect 97 Deleterious −4.443
rs121913532 G12R intolerant 0.04 effect 99 Deleterious −6.183
rs121913533 G12C intolerant 0 effect 94 Deleterious −7.161
rs121913535 G13C intolerant 0 effect 92 Deleterious −7.619
rs121913538 L19F intolerant 0 effect 54 Deleterious −3.373
rs193929331 K5E intolerant 0 effect 83 Deleterious −3.154
rs200970347 G179S tolerated 0.06 neutral -36 Neutral −1.374
rs201170656 M189L tolerated 1 neutral -67 Neutral −0.162
rs202247812 N116S intolerant 0 effect 81 Deleterious −4.564
rs372793780 R164Q intolerant 0.02 effect 53 Deleterious −2.610
rs387907205 Y71H intolerant 0 effect 75 Deleterious −4.454
rs387907205 Y71D intolerant 0 effect 86 Deleterious −9.374
rs387907206 K147E intolerant 0 effect 83 Deleterious −3.624
rs397517041 V152F intolerant 0 effect 65 Deleterious −4.424
rs397517042 F156I intolerant 0 effect 62 Deleterious −5.312
rs397517042 F156V intolerant 0 effect 64 Deleterious −6.196
rs397517476 Y166N tolerated 0.28 effect 18 Deleterious −3.387
rs397517476 Y166H tolerated 0.49 effect 4 Neutral −1.392
rs727503106 R97K tolerated 0.29 effect 53 Neutral −2.130
rs727503108 G60V intolerant 0 effect 77 Deleterious −8.727
rs727503110 Q22R intolerant 0 effect 20 Deleterious −3.324
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Table 1. Cont.

rs ID Variant
SIFT SNAP2 PROVEAN

Prediction Score Prediction Score Prediction Score

rs727503110 Q22L intolerant 0 effect 49 Deleterious −5.834
rs727504662 M72L intolerant 0.01 effect 46 Deleterious −2.549
rs730880470 T50S tolerated 0.51 neutral -44 Deleterious −3.144
rs730880471 D119N intolerant 0 effect 83 Deleterious −4.566
rs730880472 L23R intolerant 0 effect 77 Deleterious −4.925
rs730880473 A130V intolerant 0.03 effect 17 Neutral −2.446
rs770248150 K117N intolerant 0 effect 86 Deleterious −4.558
rs794727277 N26Y intolerant 0.01 effect 51 Deleterious −5.455
rs794727720 Y157C intolerant 0.02 effect 3 Deleterious −6.787
rs1057517885 I171T tolerated 0.59 neutral -20 Neutral 0.121
rs1057519725 A146V intolerant 0 effect 53 Deleterious −3.625
rs1135401776 K147R intolerant 0.01 effect 18 Deleterious −2.718
rs138669124 F141L intolerant 0.01 effect 65 Deleterious −4.534
rs368557003 Q165R tolerated 0.85 neutral -56 Neutral −0.013
rs373500216 A134G intolerant 0.04 effect 53 Deleterious −3.378
rs374681135 P178S tolerated 0.77 neutral -29 Neutral −0.199
rs529925358 I183V tolerated 0.47 effect 5 Neutral 0.071
rs539423712 V160A tolerated 0.05 effect 28 Deleterious −3.533
rs542902732 M1I intolerant 0.01 neutral -13 Neutral −2.480
rs575569675 T124S tolerated 0.65 neutral -41 Neutral −0.801
rs746609817 K128R tolerated 0.27 effect 11 Neutral −0.496
rs749177256 T158I tolerated 0.14 effect 5 Deleterious −4.132
rs754870563 G138E intolerant 0.02 effect 41 Deleterious −5.915
rs755177746 A155G tolerated 0.08 effect 53 Deleterious −3.310
rs755877953 V160M intolerant 0 effect 20 Deleterious −2.648
rs755967833 I188V intolerant 0.5 effect 26 Neutral −0.257
rs756890312 G77A intolerant 0.01 effect 58 Deleterious −5.942
rs757674707 V160I intolerant 0.04 effect 19 Neutral −0.885
rs757816355 S136N tolerated 0.3 neutral -26 Neutral −1.842
rs766231905 I171M tolerated 0.12 neutral -26 Neutral 0.484
rs770020203 T74A tolerated 0.13 effect 21 Deleterious −4.434
rs771629239 E174K tolerated 0.58 neutral -47 Neutral −0.392
rs772985440 S172C intolerant 0.02 effect 16 Deleterious −2.706
rs775836436 V112I tolerated 0.47 neutral -14 Neutral −0.580
rs778702415 G138R tolerated 0.07 effect 20 Deleterious −5.963
rs779951033 I187V tolerated 1 neutral -69 Neutral 0.083
rs780974222 G75A intolerant 0.02 effect 34 Deleterious −5.938
rs781634879 T127R tolerated 0.63 effect 3 Deleterious −2.928
rs868857258 L79P intolerant 0 effect 76 Deleterious −6.881
rs904755552 I46M intolerant 0 effect 20 Deleterious −2.794
rs953088090 K88E tolerated 0.24 effect 47 Deleterious −2.537
rs989151052 D154G intolerant 0 effect 57 Deleterious −4.537
rs1024789250 K182E tolerated 0.23 effect 35 Neutral −1.118
rs1191739287 K170E tolerated 0.83 effect 2 Neutral −0.754
rs1199162369 R68C intolerant 0 effect 68 Deleterious −7.900
rs1265970615 T158P tolerated 0.23 effect 53 Deleterious −3.632
rs1296330213 L6I tolerated 0.09 neutral -53 Neutral −1.566
rs1296330213 L6V tolerated 0.06 effect 3 Neutral −2.337
rs1307793966 R164G intolerant 0.01 effect 72 Deleterious −4.743
rs1308177469 M189I tolerated 0.24 effect 11 Neutral −0.817
rs1309399018 H95N tolerated 0.5 effect 2 Neutral 0.028
rs1340281106 N86H intolerant 0.04 effect 64 Deleterious −3.195
rs1344202459 I142T tolerated 0.1 effect 26 Deleterious −3.283
rs1363431968 D126H intolerant 0.03 effect 59 Deleterious −3.361
rs1407509439 T50I tolerated 0.15 neutral -20 Deleterious −3.410
rs1434157586 R123W tolerated 0.08 effect 52 Deleterious −6.229
rs1437657227 D92H intolerant 0 effect 37 Deleterious −4.092
rs1463850736 A130T intolerant 0 effect 32 Deleterious −2.556
rs1463850736 A130P intolerant 0.01 effect 51 Deleterious −3.248
rs1463850736 A130S intolerant 0.01 effect 24 Neutral −1.591
rs1470495974 I163V tolerated 0.24 neutral -22 Neutral −0.817
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3.1.2. Analysis of Deleterious nsSNPs Based on the Residue Evolutionary Conservation

The conservational level of an amino acid highly affects the protein’s overall structure and
function. Evolutionary information of proteins is vital for understanding those variations which
are disease-causing mutations. Therefore, another round of confirmation was carried out to test the
validity of our selected mutations, by analyzing the degree of conservation for a particular amino
acid via the ConSurf server. ConSurf is an evolutionary conservation analysis tool that constructs
a protein structural representation map with the colorimetric conservation score. The conservation
scale in the range of 7 to 9 is considered to be conserved, while those in the range of 4 to 6 and 1 to 3
are considered to be average and variable, respectively. As we all know, disease-causing mutations
often exist in the functional domains and reside on highly conserved positions. Based on the protein
structural representation map (shown in Figure 5) and the results mentioned in Table 2, 32 mutations
(shown in Table 2 with bold) out of 64 nsSNPs were observed to be highly conserved and were found
to be located on the highly exposed accessible surfaces. All of the 32 mutations were further subjected
to stability inspection.
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conserved and exposed; f), structural (i.e., highly conserved and buried; s), or have insufficient data (x).
Numbers indicate the residue number of KRAS protein.
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Table 2. Results of the evolutionary conservation analyses using the ConSurf server. SNPs indicated in
bold are predicted to be highly conserved and are selected for further evaluation.

rs ID Variant
Conservation Score

SWISS-PROT UniProt UniRef90

rs17851045 Q61H 9 8 9
rs104886029 A59V 9 9 9
rs104894359 G60S 9 9 9
rs104894359 G60R 9 9 9
rs104894361 K5N 8 8 8
rs104894362 F156L 9 9 9
rs104894364 T58I 9 9 9
rs104894366 P34R 6 6 5
rs104894367 V152G 8 9 8
rs112445441 G13D 6 6 6
rs121913236 Q22K 8 7 7
rs121913238 Q61K 9 8 9
rs121913239 Q61E 9 8 9
rs121913240 Q61P 9 8 9
rs121913241 Q61R 9 8 9
rs121913242 Q61L 9 8 9
rs121913527 A146P 9 9 9
rs121913528 A59T 9 9 9
rs121913528 A59S 9 9 9
rs121913529 G12D 7 8 8
rs121913531 G12A 7 8 8
rs121913534 G12V 7 8 8
rs121913530 G12S 7 8 8
rs121913532 G12R 7 8 8
rs121913533 G12C 7 8 8
rs121913535 G13C 6 6 6
rs121913538 L19F 6 7 7
rs193929331 K5E 8 8 8
rs202247812 N116S 9 9 9
rs387907205 Y71H 8 7 7
rs387907205 Y71D 8 7 7
rs387907206 K147E 8 7 7
rs397517041 V152F 8 9 8
rs397517042 F156I 9 9 9
rs397517042 F156V 9 9 9
rs727503108 G60V 9 8 9
rs727503110 Q22R 8 7 7
rs727503110 Q22L 8 7 7
rs727504662 M72L 8 7 7
rs730880471 D119N 9 9 9
rs730880472 L23R 7 7 7
rs770248150 K117N 9 9 9
rs794727277 N26Y 7 4 5
rs794727720 Y157C 1 1 1

rs1057519725 A146V 9 9 9
rs1135401776 K147R 8 7 7
rs138669124 F141L 7 6 7
rs373500216 A134G 8 8 8
rs754870563 G138E 1 1 1
rs755877953 V160M 6 7 7
rs756890312 G77A 7 7 7
rs372793780 R164Q 4 6 5
rs772985440 S172C 1 1 1
rs780974222 G75A 7 7 7
rs868857258 L79P 6 5 5
rs904755552 I46M 5 5 5
rs989151052 D154G 2 1 3

rs1199162369 R68C 8 8 7
rs1307793966 R164G 4 6 5
rs1340281106 N86H 5 5 5
rs1363431968 D126H 3 3 4
rs1437657227 D92H 6 5 5
rs1463850736 A130T 5 6 6
rs1463850736 A130P 5 6 6



Molecules 2019, 24, 1951 11 of 20

3.1.3. Screening of Deleterious nsSNPs Based on the Stability Analysis

In this step, the stability analysis of our 32 nsSNPs was conducted with I-Mutant 2.0 [15] and
MuPro [14]. The MuPro server predicted 31 nsSNPs to be ‘decrease’ and the remaining 1 to bes
‘increase’. A negative score obtained from MuPro means the mutation decreases the protein’s structure
stability. On the contrary, if the score is >0, it means the mutation increases the protein’s structure
stability. At a pH of 7.0 and a temperature of 25 ◦C, the I-Mutant 2.0 was used to evaluate the stability
of the mutants, whether they will cause a change in the protein structure stability. For this purpose,
the free energy value (DDG value) and reliability index (RI) were computed. According to I-Mutant’s
threshold, a DDG score less than 0 (<0) or greater than 0 (>0) will be claimed as decreased or increased
stability, respectively. I-Mutant 2.0 showed that 28 nsSNPs (shown in Table 3 with bold) have decreased
the stability of the protein structure and 4 nsSNPs have increased the stability of the protein structure.

Table 3. Results of the analyses using the I-Mutant2.0 and Mupro. SNPs indicated in bold are predicted
to decrease the stability of the protein structure and are selected for further evaluation.

rs ID Variant
I-Mutant2.0 Mupro

DDG Stability DDG Stability

rs17851045 Q61H −0.96 Decrease −0.48 Decrease
rs104886029 A59V −0.06 Decrease −0.35 Decrease
rs104894359 G60S −1.39 Decrease −0.78 Decrease
rs104894359 G60R −1.36 Decrease −0.63 Decrease
rs104894361 K5N −0.25 Decrease −0.70 Decrease
rs104894364 T58I 0.28 Increase −0.003 Decrease
rs121913236 Q22K −0.55 Decrease −1.27 Decrease
rs121913238 Q61K −0.16 Decrease −0.56 Decrease
rs121913239 Q61E 0.22 Increase −0.13 Decrease
rs121913240 Q61P −1.35 Decrease −0.69 Decrease
rs121913241 Q61R −0.55 Decrease −0.18 Decrease
rs121913242 Q61L 0.47 Increase 0.54 Increase
rs121913527 A146P −1.58 Decrease −1.32 Decrease
rs121913528 A59T −1.36 Decrease −1.34 Decrease
rs121913528 A59S −0.82 Decrease −1.03 Decrease
rs121913529 G12D −0.83 Decrease −0.75 Decrease
rs121913531 G12A −0.53 Decrease −1.19 Decrease
rs121913534 G12V −0.36 Decrease −0.66 Decrease
rs121913530 G12S −1.49 Decrease −1.08 Decrease
rs121913532 G12R −1.47 Decrease −0.93 Decrease
rs121913533 G12C −1.34 Decrease −0.58 Decrease
rs193929331 K5E −0.23 Decrease −0.43 Decrease
rs202247812 N116S −0.81 Decrease −1.84 Decrease
rs387907206 K147E −0.73 Decrease −0.38 Decrease
rs727503108 G60V −1.22 Decrease −0.38 Decrease
rs727503110 Q22R −1.31 Decrease −0.84 Decrease
rs727503110 Q22L −0.08 Decrease −0.10 Decrease
rs730880471 D119N −1.43 Decrease −0.78 Decrease
rs770248150 K117N −0.68 Decrease −0.17 Decrease
rs1057519725 A146V −0.34 Decrease −0.97 Decrease
rs1135401776 K147R −0.63 Decrease −0.41 Decrease
rs1199162369 R68C 0.33 Increase −1.33 Decrease

3.1.4. Lung Cancer Related Mutations by COSMIC Database

By combining the predictions of the SIFT, SNAP2, PROVEAN, Consurf, I-Mutant, and MuPro
tools, of 106 nsSNPs, only 28 nsSNPs were found to be more deleterious. Furthermore, we used the
COSMIC database to confirm the nsSNPs which confer a lung cancer phenotype. From the COSMIC
database, we identified that rs121913236 (Q22K) and rs121913240 (Q61P and Q61R) cause lung tumors.
Hence, those three nsSNPs structures were selected for further MD analysis.



Molecules 2019, 24, 1951 12 of 20

3.2. Molecular Dynamics Simulation

Mutations may cause conformational changes in protein structures, which might lead to zero
or poor protein function or production. In order to better understand the functional and structural
behaviors of the prioritized deleterious mutations, we used molecular dynamics simulation to analyze
the native and mutant (Q22K, Q61P, and Q61R) proteins. Four systems were built and 100 ns MDs were
run by Gromacs. The trajectory files were generated after the molecular dynamics simulation, and
various analyses, such as root mean square deviation (RMSD), root mean square fluctuation (RMSF),
radius of gyration (Rg), solvent-accessible surface area (SASA) variations, and PCA analysis for the
native and the three mutant structures were carried out.

3.2.1. Structural Stability Analysis

The RMSD value of backbone and Cα atoms in WT and three MTs were calculated to assess the
conformational stability of the protein during the simulations. As seen in Figure 6A (backbone-RMSD),
the mutations caused a notable difference in RMSD pattern between WT and MTs. The RMSD values
of the three mutants were constantly higher fluctuated and increased to 80 ns, but after that the three
mutants’ RMSD values were stable, with a comparatively lower fluctuation rate of around 0.35 nm.
For the native protein, there was just one sharp increase in the first 9 ns and two lower fluctuations at
28–40 ns and 75–80 ns. The average backbone-RMSD values for WT and the three MTs are 0.1853, 0.2108,
0.2504, and 0.2240 nm, respectively (shown in Table 4). We compared the average backbone-RMSD
values, which showed the order Q61P > Q61R > Q22K > WT. Meanwhile, the Figure 6B (Cα-RMSD)
graph is similar to Figure 6A (backbone-RMSD), and shows the rank of collected RMSD values: Q61P
(0.2562) > Q61R (0.2294) > Q22K (0.2173) > WT (0.1933) (Table 4). There is an interesting result;
it showed a higher average value for mutants and a lower average value for the native protein. From
the results, we reached the conclusion that MTs could change the protein structure and mutations are
not stable like native proteins. Since the protein needs a proper and stable structure to perform its
function, we can speculate that the mutations alter the stability and activity of the protein.
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Figure 6. Backbone RMSD (A) and Cα-RMSD (B) for the wild (black) and Q22K (red), Q61P (blue), and
Q61R (green).

Table 4. Time averaged structural properties calculated for wild-type (WT), Q22K, Q61P, and Q61R.

WT Q22K Q61P Q61R

Backbone rmsd (nm) 0.1853(0.0187) 0.2108(0.0771) 0.2504(0.0652) 0.2240(0.0741)
Cα-rmsd (nm) 0.1933(0.0195) 0.2173(0.0766) 0.2562(0.0654) 0.2294(0.0743)
Cα-rmsf (nm) 0.0939(0.0666) 0.1251(0.1068) 0.1183(0.0985) 0.1289(0.0845)
Rg-Cα (nm) 1.4960(0.0086) 1.5072(0.0169) 1.5130(0.0181) 1.5128(0.0148)

Rg-protein (nm) 1.5495(0.0087) 1.5629(0.0193) 1.5686(0.0209) 1.5658(0.0145)
SASA (nm2) 93.008(1.9027) 94.806(3.0942) 96.109(3.2164) 96.159(2.7846)

RMSD: root mean square deviation; RMSF: root mean square fluctuation; Rg: radius of gyration; SASA: solvent
accessible surface area.
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3.2.2. Structural Flexibility Analysis

The RMSF values of WT and the three MTs Cα amino acids were calculated to determine whether
the mutants affected the dynamic behavior of the residue. As seen in Figure 7, different fluctuating
behaviors were observed in mutants and WT. All cases of mutant simulations had higher average
Cα-RMSF values than the WT simulation, with the average RMSF values for mutants being 0.1251,
0.1183, 0.1289 nm for Q22K, Q61P, and Q61R, respectively, while the RMSF value for WT is 0.0939 nm
(Table 4). According to the fluctuation score, we ranked the collected values as follows: Q61R >

Q22K > Q61P > Wild. These results show that a higher degree of flexibility was observed in mutants
(Q22K, Q61P, and Q61R) than that of the native protein structure. For a small protein, a fluctuation
value below 2 Å is acceptable. Figure 7 shows that, for all cases of WT and MTs, most of the higher
fluctuation occurred in the N-terminal domain and residues from Ala11 to Thr74 showed significant
fluctuation. In the C-terminus domain, they also showed higher fluctuations in all cases of WT and
the three mutations. At the same time, Figure 7 shows that the RMSF value of each mutant residue
was greater than that of WT. Therefore, the results indicate that mutation affected the flexibility of the
whole protein, not just of the residual level. Overall, the mutations alter the flexibility and activity of
proteins in our cases. The RMSF results are in agreement with that of the RMSD.
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3.2.3. Structural Compactness Analysis

The radius of gyration (Rg) is defined as the mass-weight root mean square distance of a collection
of atoms from their common center of mass. Rg provides an insight into the overall dimension of
the protein. Hence, Rg is also a vital parameter to describe the dynamic stability and compactness
of the total protein systems. The Rg was plotted for both Cα atoms and proteins against time over
the whole 100 ns simulations at 310 K. From Figure 8A (Cα–Rg), the mutant (Q22K, Q61P, and Q61R)
structures show a notable fluctuation and a clearly higher average Rg value than that of the native
structure. The three mutant curves are similar to the native in the 0–60 ns time period, but after that
native protein showed a stable Rg value, while the three mutant curves showed a sharp increase and
higher fluctuation during the last simulation time. From Figure 8B (protein–Rg), it can be seen that the
trend is similar to Figure 8A (Cα–Rg). Based on the Rg graph, it was found that the conformations
of these three mutants are getting more dispersed and becoming significantly different to the native
conformation in the simulation time period, whereas the native structure was stable compared to the
mutant. The average Cα–Rg values were 1.4960, 1.5072, 1.5130, and 1.5128 nm in native and mutant
(Q22K, Q61P, and Q61R) structures, respectively (shown in Table 4). According to the fluctuation
scores, we ranked the collected values as follows: Q61P > Q61R > Q22K > Wild. The Rg results suggest
that the mutation changed the protein structure with increasing flexibility in its conformation. In all,
the Rg results are in good agreement with that of RMSD and RMSF.
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Figure 8. Radius of gyration of (A) Ca atoms and (B) Proteins of the Wild (black), Q22K (red), Q61P
(blue), and Q61R (green).

3.2.4. SASA Analysis

The solvent-accessible surface area (SASA) is the surface area of a biomolecule that is accessible
to a solvent. It is used to measure the degree to which an amino acid is exposed to its environments.
A lower SASA value indicates a compact protein structure, while a higher SASA value indicates a
diffused structure. An increase or decrease in SASA value indicates a change in the protein’s structural
conformation. The SASA values of the WT and three MT proteins were analyzed for predicting how the
mutations affect the structure of the native protein. The SASA values calculated for the WT and three
MTs with time are shown in Figure 9, and average SASA values are depicted in Table 4. The figure
clearly shows that the three mutant proteins have a higher SASA value than that the native protein.
Results from Table 4 clearly indicate that the average SASA value of the WT protein is smaller than
that of the MT proteins. The rank of collected average SASA values are listed as: Q61R (96.159 nm2)
> Q61P (96.109 nm2) > Q22K (94.806 nm2) > WT (93.008 nm2) (Table 4). These values represent that
mutants may change the protein’s tertiary structure. The three mutant structures increased the values
of SASA so that the structure expands in comparison to the native structure. Therefore, the SASA
results are also in agreement with the RMSD, RMSF, and Rg results.
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Figure 9. Solvent-accessible surface area (SASA) of proteins of the Wild (black), Q22K (red), Q61P
(blue), and Q61R (green).

3.2.5. Principal Component Analysis

Principal component analysis (PCA) or essential dynamics (ED) analysis are widely used for
predicting the dynamic behaviors of a protein. We performed PCA to identify large-scale collective
motions of the WT and three MTs on the trajectories generated by our simulations. The eigenvalues
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of the WT and MT proteins were plotted against the corresponding eigenvector index for the first
fifty modes of motion (Figure 10A). The eigenvalues indicated fluctuations of the eigenvector in the
hyperspace, and the figure shows that only a few eigenvectors have larger eigenvalues which played
a major role in the overall motion of the WT and MTs. It was found that the first five eigenvectors
had significantly dominant motions with a higher eigenvalue, and the remaining eigenvectors were
observed to have extremely low eigenvalues in the overall system (Figure 10A). Thus, we calculated
the percentage of first five principal components occupying up to the total observed fifty modes of
motion. Throughout the four systems, the first five eigenvectors accounted for 67.32%, 79.94%, 73.87%,
and 72.02% of the WT and three MTs (Q22K, Q61P, and Q61R) respectively. These analyses suggest
that the mutation changed the structural dynamics of the mutant proteins.
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Furthermore, we selected the first two principal components (PC1, PC2) to analyze their projection
of trajectories during the WT and MT simulations in the phase space (shown in Figure 10B–D). During
the four system simulations, the results clearly show that the WT protein covered a smaller region of
phase space, while all three MTs occupied a larger region of phase space. Therefore, the PCA results
suggest that the WT protein is more stable than the three MT proteins, and these mutations highly
altered the structural stability and flexibility. In short, the PCA results are also in agreement with the
RMSD, RMSF, Rg, and SASA results, which enhances the validity of the performed analysis.

3.2.6. Secondary Structure Analysis

The secondary structure of the protein was investigated for general alterations in the domain
layout. In order to investigate the secondary structure changes over time, the built-in do_dssp function
of GROMACS was used. The secondary structure of the four protein systems (WT, Q22K, Q61P, and
Q61R) during the 100 ns MD simulation was retrieved with a follow up step every 100 ps. Figure 11
represents the four secondary structures’ layout, illustrating that non-significant changes can be
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observed in the case of mutant layouts as compared to the wild-type. Hence, the number of residues
involved in the formation of each type of secondary structure for all the examined protein systems
was particularly monitored to address the protein structure and outcomes more clearly, which are
presented in the Figure 12. From Figure 12, the changes in the given protein secondary structure
pattern illustration are not very clear. Therefore, it was necessary to obtain more secondary structure
information to validate our obtained outcomes. The total secondary structure content averaged over
the trajectories for four protein systems is given in Table 5. The listed values in the given table indicate
the percentages of secondary structures, which reveals a minor difference between the WT and MT
systems. This confirmed the results shown in the secondary structure diagram.
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Table 5. Trajectory-averaged percentages of secondary structures of the simulated WT and MTs system.

Sample
%

α-Helices β-Sheets Coils Bend Turn

Wild 35.61 23.53 20.04 10.07 9.14

Q22K 34.94 24.63 19.60 9.26 9.89

Q61P 34.65 23.19 19.12 11.24 10.00

Q61R 35.27 23.23 20.41 10.12 9.37

In the previous analysis, we learned that mutation changed the stability and flexibility of the
protein. The mutant will cause the protein stability to weaken and the flexibility to increase. However,
in the secondary structure analysis, we found that the mutation did not cause the protein to produce
an obvious conformational drift. To examine how the structure changed and affected the functions
upon the incorporation of these mutations, we analyzed the wild and mutants (Q22K, Q61P, and Q61R)
superimposed structures at various time steps, depending on backbone RMSD (shown in Figure 13).
The results show that mutants can cause severe turbulences in several loop regions of the protein.
For example, position 22 is inside the protein active pocket and the Q22K will lead to significant
changes in the loop region (HIS27-GLU37, HIS-PHE-VAL-ASP-GLU-TYR-ASP- PRO-THR-ILE-GLU)
which constitutes the protein’s active pocket, and position 61 lies in switch II (amino acids 60-67)
which regulates ligand binding to the KRAS protein. The mutants Q61P and Q61R also cause
significant changes in the loop regions (THR58-SER65, THR-ALA-GLY-GLN-GLU-GLU- TYR-SER)
and (HIS27-GLU37, HIS-PHE-VAL-ASP-GLU-TYR-ASP-PRO-THR-ILE-GLU). In addition, we also
extracted the average structure (Wild, Q22K, Q61P, and Q61R) from the trajectory to analyze the
interaction structure plot (Figure S1) with LIGPLOT, and analyzed the hydrogen bonds (Figure S2)
between the mutation and the direct neighborhood during the simulation. Both results showed that
these three mutants led to a considerable decrease in the number of H-bonds for the mutants and their
direct neighborhood. These results indicate that point mutation can directly affect the stability of its
interaction with the surrounding residues, which in turn results in the change in protein structure.

The results further indicated that mutant (Q22K, Q61P, Q61R) structures has more f instability and
flexibility than the wild structure. It is well known that the KRAS protein is a signal switch molecule
that regulates cell fates by coupling receptor activation to downstream effector pathways that control
diverse cellular responses, including proliferation, differentiation, and survival. The three mutations
we chose can change the stability of the natural KRAS protein; these changes induce protein structural
alterations, which in turn affect its function, as reported by Chikan et al. [31]. Therefore, these three
mutations may cause the KRAS protein to be unable to perform its native function. That is to say,
its binding mode with GTP and GDP cannot be normally converted, which makes the regulation of
the KRAS protein on the downstream invalid, leading to various diseases. Much research on KRAS
mutations mainly focuses on targeted therapy drugs [32–34], testing for KRAS mutations [35], and
clinical research [36,37]. We used molecular dynamics to study the conformation of mutated proteins,
which is of great significance to the follow-up study of molecular mechanism after mutation and
drug design.
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4. Conclusions

In this study, we combined computational screening approaches and a public pathogenic database
to identify three disease-associated nsSNPs (Q22k, Q61P, and Q61R), which are confirmed to be highly
deleterious and can play a crucial role in the progression of lung cancer. Furthermore, the molecular
dynamics simulation approach was used to validate the effect of these deleterious point mutations on
the KRAS protein structure. The stability, flexibility, and compactness alterations in the mutants were
observed in the RMSD, RMSF, and Rg graphs. The experimental results were further supported by
an increase in the SASA values and a larger region of phase space in the PCA analysis. Finally, the
secondary structure analysis results also suggest that WTs have a more stable cluster in comparison to
MTs, and mutation induces structural change in WT proteins. All the results proved that these three
mutations can alter the stability and function of the native KRAS protein. Overall, our study provides
a comprehensive pipeline to detect the lung cancer-associated nsSNPs which are highly responsible for
affecting the native protein dynamics that make the carrier, i.e., humans, more susceptible to developing
oncogenic conditions. This study also provides insight and guidance for the design of therapeutic
strategies against human lung cancer in the future. It should be noted that PyMol manipulation
possibly produces destabilization in the presented study. The manipulation of the structure can
introduce strain that cannot really be removed later by energy minimization and relaxation. We will
devote ourselves to the resolution of this potential problem in further studies.

Supplementary Materials: The following are available online. Figure S1: Interaction plot of wild-type and the
mutated residues with the neighborhood; Figure S2: The Number of hydrogen bonds for WT and MTs with respect
to simulation time.
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