Supporting Information

Novel hexadeca-substituted metal free and zinc(II) phthalocyanines; Design, synthesis and photophysicochemical properties

Ayoub Ibrahim Awaji^a, Baybars Köksoy^b, Mahmut Durmuş^b*, Ateyatallah Al-Juhani^a, Shaya Y. Al-Raqa^a*

^aTaibah University, Departmen of Chemistry, P.O Box 344, Al-Madinah Al Munawrah, Saudi Arabia ^bGebze Technical University, Department of Chemistry, Gebze 41400, Kocaeli, Turkey

Figure S1. ¹H-NMR spectrum of compound **3** in CDCl₃.

Figure S2. ¹³C-NMR spectrum of compound **3** in CDCl₃.

Figure S3. 19 F-NMR spectrum of compound **3** in CDCl₃.

Figure S4. MALDI-TOF spectrum of compound $\mathbf{3}$ in CDCl₃.

Figure S5. ¹H-NMR spectrum of compound **3a** in CDCl₃.

Figure S6. ¹H-NMR spectrum of compound **3b** in CDCl₃.

Figure S7. ¹³C-NMR spectrum of compound **3a** in CDCl₃.

Figure S8. ¹³C-NMR spectrum of compound **3b** in CDCl₃.

Figure S9. ¹⁹F-NMR spectrum of compound **3a** in CDCl₃.

Figure S10. ¹⁹F-NMR spectrum of compound 3b in CDCl₃.

Figure S11. MALDI-TOF spectrum of compound 3a in CDCl₃.

Figure S12. MALDI-TOF spectrum of compound **3b** in CDCl₃

Figure S13. UV–vis spectra of a) **3a** and b) **3b** in DMF at different concentration (C= $2-12\mu$ M).

Figure S14. Fluorescence emission spectra of a) phthalocyanine **3a** and b) phthalocyanine **3b** in DMF at 5×10^{-6} M. (Excitation wavelength= 686 nm for **3a** and 700 nm for **3b**).

Figure S15. Time correlated single photon counting (TCSPC) trace for a) **3a** (Excitation wavelength=686 nm) and b) **3b** (Excitation wavelength=700 nm) in DMF with residuals.

Figure S16. The electronic absorption spectral changes during the determination of singlet oxygen quantum yields. This determination was for **3a** in DMF at a concentration of 1×10^{-5} M. (Inset: Plot of DPBF absorbances versus time).

Figure S17. The electronic absorption spectral changes of **3a** in DMF under light irradiation showing the disappearance of the Q-band (Inset: plot of phthalocyanine absorbances versus time).

Figure S18. Fluorescence emission spectral changes of **3a** $(1 \times 10^{-5} \text{M})$ by the addition of different concentrations of BQ in DMF