Appendix A. Supplementary data

Neo-5,22E-cholestadienol derivatives from Buthus martensi karsch

and targeted bactericide action mechanisms

Biyu Lv¹, Weiping Yin, ^{1*}, Jiayu Gao¹, Huaqing Liu¹, Kun Liu¹, Jie Bai¹ and Qiangqiang Yang²

¹School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P.R. China.

² Life Science and Environmental Science Research Centerof Harbin University of Commerce, Harbin, Heilongjiang, P.R.China

*Correspondence: <u>vinwp@haust.edu.cn(W.-P</u>. Yin); Tel.: +86-379-642-31914

To whom correspondence E-mail address: yinwp@haust.edu.cn (W.-P.Yin).

Table of Contents:			
Compound 1(QX75-5)	S1-S7		

Compound 2 (QX37-45-4)	S1-S15
Compound 3(QX3-2-7)	S16-S23

Contents

NMR spectra of reported compounds, HR-ESIMS and their Circular Dichromism spectra.

Figure S1.¹H NMR spectrum of Compound 1 in CDCl₃ (400 MHz).
Figure S2. ¹³C NMR spectrum of Compound 1 in CDCl₃ (400 MHz).
Figure S3. DEPT spectrum of Compound 1 in CDCl₃ (400 MHz).
Figure S4. HSQC spectrum of Compound 1 in CDCl₃ (400 MHz).
Figure S5. HMBC spectrum of Compound 1 in CDCl₃ (400 MHz).
Figure S6.HR-ESIMS spectrum of Compound 1
Figure S7. Circular Dichromism spectra spectrum of Compound1

Figure S8. ¹H NMR spectrum of Compound 2 in CDCl₃ (400 MHz).
Figure S9. ¹³C NMR spectrum of Compound 2 in CDCl₃ (400 MHz).
Figure S10. DEPT spectrum of Compound 2 in CDCl₃ (400 MHz).
Figure S11. ¹H- ¹H COSY spectrum of Compound 2 in CDCl₃ (400 MHz).
Figure S12. HSQC spectrum of Compound 2 in CDCl₃ (400 MHz).
Figure S13. HMBC spectrum of Compound 2 in CDCl₃ (400 MHz).
Figure S14.HR-ESIMS spectrum of Compound 2
Figure S15. Circular Dichromism spectra spectrum of Compound 2

Figure S16. ¹H NMR spectrum of Compound 3 in CDCl₃ (400 MHz).
Figure S17. ¹³C NMR spectrum of Compound 3 in CDCl₃ (400 MHz).
Figure S18. DEPT spectrum of Compound 3 in CDCl₃ (400 MHz).
Figure S19. ¹H- ¹H COSY spectrum of Compound 3 in CDCl₃ (400 MHz).
Figure S20. HSQC spectrum of Compound 3 in CDCl₃ (400 MHz).
Figure S21. HMBC spectrum of Compound 3 in CDCl₃ (400 MHz).
Figure S22 .HR-ESIMS spectrum of Compound 3
Figure S23 . Circular Dichromism spectra spectrum of Compound 3

Compound 1(QX75-5).

Figure S1.¹H NMR spectrum of Compound 1 in CDCl₃ (400 MHz).

Figure S2. ¹³C NMR spectrum of Compound 1 in CDCl₃ (400 MHz).

Figure S3. DEPT spectrum of Compound 1 in $CDCl_3$ (400 MHz).

Figure S4. HSQC spectrum of Compound 1 in CDCl₃ (400 MHz).

Figure S5. HMBC spectrum of Compound 1 in CDCl₃ (400 MHz)

Sample Nan Inj Vol Data Filenar	ne QX75-5 0.5 me QX75-5.d	Position InjPosition ACQ Method	P1-A2 test.m	Instrument Name SampleType Comment	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Agilent FSE Success 1/17/18 Wed 14:45:11
x10 2	+ESI Scan (0.366	-0.441 min, 33	Scans) Frag=180	.0∨ QX75-5.d Su	btract		
3.6-			399.3	263			
3.4-							
3.2-							
3-							
2.8-							
2.6-							
2.4-							
2.2-							
2-							
1.8-							
1.6-							
1.4-							
1.2-							
1-							
0.8-							
0.6-							
0.4-							
0.2-							
01	399.32	22 399.3	24 399.32	6 399.328	399.33	399.332	399.334

PDF created with pdfFactory trial version www.pdffactory.com

Figure S6.HR-ESIMS spectrum of Compound 1

Figure S7 . Circular Dichromism spectra spectrum of Compound 1

Compound 2 (QX37-45-4).

Figure S8. ¹H NMR spectrum of Compound 2 in CDCl₃ (400 MHz).

Figure S9. ¹³C NMR spectrum of Compound 2 in CDCl₃ (400 MHz).

Figure S10. DEPT spectrum of Compound 2 in CDCl₃ (400 MHz).

Figure S11. ¹H- ¹H COSY spectrum of Compound 2 in CDCl₃ (400 MHz).

Figure S12. HSQC spectrum of Compound 2 in CDCl₃ (400 MHz).

Figure S13. HMBC spectrum of Compound 2 in CDCl₃ (400 MHz).

Figure S14.HR-ESIMS spectrum of Compound 2

Figure S15 . Circular Dichromism spectra spectrum of Compound 2

Figure S16. ¹H NMR spectrum of Compound 3 in CDCl₃ (400 MHz).

Figure S17. ¹³C NMR spectrum of Compound 3 in CDCl₃ (400 MHz).

Figure S18. DEPT spectrum of Compound 3 in CDCl₃ (400 MHz).

Figure S19. $^1\text{H-}\,^1\text{H}$ COSY spectrum of Compound 3 in CDCl3 (400 MHz)

Figure S20. HSQC spectrum of Compound 3 in CDCl₃ (400 MHz).

Figure S21. HMBC spectrum of Compound 3in CDCl₃ (400 MHz).

Figure S22. HR-ESIMS spectrum of Compound 3

Figure S23 . Circular Dichromism spectra spectrum of Compound 3