Profile of Phosphatidylserine Modifications under Nitroxidative Stress Conditions Using a Liquid Chromatography-Mass Spectrometry Based Approach

Bruna Neves ${ }^{1}$, Pedro Domingues ${ }^{1}$, Maria Manuel Oliveira ${ }^{2}$, Maria do Rosário Domingues ${ }^{1,3}$ and Tânia Melo ${ }^{1, *}$

1 Mass Spectrometry Centre, UI QOPNA, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; brunafbneves@gmail.com (B.N.); p.domingues@ua.pt (P.D.); mrd@ua.pt (M.R.D.)
2 Chemistry Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; mmso@utad.pt
${ }^{3}$ Biology Department \& CESAM \& ECOMARE, University of Aveiro, 3810-193 Aveiro, Portugal

* Correspondence: taniamelo@ua.pt; Tel.: +351 23508

Figure S1. ESI-MS/MS spectra obtained in Linear Ion Trap of the $[\mathrm{M}-\mathrm{H}]^{-}$ions at $\mathrm{m} / \mathrm{z} 789.3$ corresponding to
$[P O P S+29 \mathrm{u}-\mathrm{H}]^{-}(\mathrm{A})$, and at $m / z 805.2$ corresponding to $[P O P S+45 \mathrm{u}-\mathrm{H}]^{-}(\mathrm{B}) . \mathrm{MS}^{3}$ of ions at $m / z 702.3$ (A1) and $m / z 718.3$ (B1) that correspond, respectively, to $[P O P S+29 \mathrm{u}-87 \mathrm{u}-\mathrm{H}]^{-}$and $[\mathrm{POPS}+45 \mathrm{u}-87 \mathrm{u}-\mathrm{H}]^{-}$ were also shown.

Figure S2. ESI-MS/MS spectra obtained in Linear Ion Trap of $[\mathrm{M}-\mathrm{H}]^{-}$ions at $\mathrm{m} / \mathrm{z} 834.6$ corresponding to $[\text { POPS }+74 \mathrm{u}-\mathrm{H}]^{-}(\mathrm{A})$, and at $m / z 850.3$ corresponding to $[\mathrm{POPS}+90 \mathrm{u}-\mathrm{H}]^{-}(\mathrm{B}) . \mathrm{MS}^{3}$ of ions at $m / z 747.3$ (A1) assigned as $[\text { POPS }+74 \mathbf{u}-87 \mathbf{u}-\mathrm{H}]^{-}$, at $m / z 763.3$ (B1) that correspond to [POPS $\left.+90 \mathbf{u}-87 \mathbf{u}-\mathrm{H}\right]^{-}$, and at m / z 803.1 attributed to $\left[\text { POPS }+90 \mathrm{u}-\mathrm{HNO}_{2}-\mathrm{H}\right]^{-}$were also shown.

Figure S3. ESI-MS/MS spectra obtained in Linear Ion Trap of $[\mathrm{M}-\mathrm{H}]^{-}$ions at $\mathrm{m} / \mathrm{z} 821.4$ corresponding to $[\text { POPS }+61 \mathbf{u}-\mathrm{H}]^{-}(\mathrm{A})$, and at $m / z 837.3$ corresponding to $[\mathrm{POPS}+77 \mathbf{u}-\mathrm{H}]^{-}(\mathrm{B}) . \mathrm{MS}^{3}$ of ions at $\mathrm{m} / \mathrm{z} 734.3$ (A1) assigned as [POPS $+61 \mathbf{u}-87 \mathbf{u}-\mathrm{H}]^{-}$, and at $m / z 750.3$ (B1) assigned as [POPS $\left.+77 \mathbf{u}-87 \mathbf{u}-\mathrm{H}\right]^{-}$were also shown.

Figure S4. Percentage of inhibition of DPPH^{\bullet} and $\mathrm{ABTS}^{\bullet+}$ radicals obtained in the presence of non-modified POPS (37.5, 75 and $150 \mu \mathrm{~g} / \mathrm{mL}$) after 120 min of reaction.

