Supporting Information

Phenanthrenes from *Juncus compressus* Jacq. with promising antiproliferative and anti-HSV-2 activities

Csaba Bús¹, Norbert Kúsz¹, Gusztáv Jakab², Seyyed Ashkan Senobar Tahaei³, István Zupkó^{3,4}, Valéria Endrész⁵, Anita Bogdanov⁵, Katalin Burián⁵, Boglárka Csupor-Löffler¹, Judit Hohmann^{1,4}, Andrea Vasas¹*

¹ Department of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary

² Institute of Environmental Sciences, Faculty of Water and Environmental Management, Szent István University Szarvas, H-5540 Szarvas, Hungary

³ Department of Pharmacodynamics and Biopharmacy, University of Szeged, 6720 Szeged, Hungary

⁴ Interdisciplinary Centre of Natural Products, University of Szeged, 6720 Szeged, Hungary

⁵ Department of Medical Microbiology and Immunobiology, University of Szeged, 6720 Szeged, Hungary

*Author to whom correspondence should be addressed.

Table of Contents

Figure S1. ¹ H-NMR spectrum of compound 1 (500 MHz, CDCl₃)	Page S3
Figure S2. JMOD spectrum of compound 1 (125 MHz, CDCl₃)	Page S3
Figure S3. HSQC spectrum of compound 1	Page S4
Figure S4 . ¹ H- ¹ H-COSY spectrum of compound 1	Page S4
Figure S5. HMBC spectrum of compound 1	Page S5
Figure S6. NOESY spectrum of compound 1	Page S5
Figure S7. ¹H-spectrum of compound 2 (500 MHz, CDCl₃)	Page S6
Figure S8. JMOD spectrum of compound 2 (125 MHz, CDCl₃)	Page S6
Figure S9. HSQC spectrum of compound 2	Page S7
Figure S10. ¹ H- ¹ H-COSY spectrum of compound 2	Page S7
Figure S11. HMBC spectrum of compound 2	Page S8
Figure S12. HMBC spectrum of compound 2	Page S8
Figure S13. Antiviral effect of compounds 1–9.	Page S9

Figure S1. ¹H-NMR spectrum of compound **1** (500 MHz, CDCl₃)

Figure S2. JMOD spectrum of compound 1 (125 MHz, CDCl₃)

Figure S3. HSQC spectrum of compound 1

Figure S7. ¹H-spectrum of compound **2** (500 MHz, CDCl₃)

Figure S8. JMOD spectrum of compound 2 (125 MHz, CDCl₃)

Figure S11. HMBC spectrum of compound 2

Figure S12. HMBC spectrum of compound 2

Figure S13. Antiviral effect of compounds 1–9.

Vero cells were infected with HSV-2 (MOI 0.01) in the presence of various concentrations of different compounds for 24 h (n=4). At 24 h post infection, the cells were lysed and the virus yield reducing effect of the compounds was evaluated by comparing the yield to that seen on untreated Vero cells. The HSV-2 DNA concentration in the lysates was measured by direct qPCR (Data represent the average –Ct values +/– standard deviations).