Characterization of Small Molecules Inhibiting Pro-angiogenic Activity of the Zinc Finger Transcription Factor Vezf1

He Ming¹, Qianyi Yang⁴, Allison Norvil¹, David Sherris³ and Humaira Gowher^{1, 2*}

¹Department of Biochemistry, ²Purdue University Center for Cancer Research,

Purdue University, West Lafayette, Indiana 47907

⁴Present address: Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110

³Present address: GenAdam Therapeutics, Inc., 37 Neillian Crescent, Jamaica Plain, MA 02130

*Corresponding author: https://www.hgowher@purdue.edu; 3018202794

Running title: Small molecule inhibition of Vezf1 activity in endothelial cells.

Keywords: Vezf1; angiogenesis; vascular biology; endothelial cells; MSS31, tube formation, small molecule inhibitors computational modeling.

Figure S1: A. Red atoms are held fixed during docking of compounds; purple atoms are allowed restrained movement during the energy minimization step. In B., Model (white) is superimposed onto the crystal structure AAY (purple). Only the alpha carbon trace is shown.