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Abstract: A prevailing way of extracting valuable information from biomedical literature is to apply
text mining methods on unstructured texts. However, the massive amount of literature that needs
to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper,
we address this challenge by introducing parallel processing on a supercomputer. We developed
paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer.
It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel
processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of
named entity recognition tasks as demonstration. Results show that, in most cases, the processing
efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy
is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical
text mining besides NER.
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1. Introduction

With the rapid development of biotechnology, the amount of biomedical literature is growing
exponentially. For instance, PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), the most recognized
biomedical literature database, indexes over 28 million entries for biomedical literature. Most of that
information is presented in the form of unstructured texts. It is almost impossible for any domain
expert to digest such a massive amount of information within a short period of time. Therefore,
automated tools are essential for a systematic understanding of literature. To deal with the literature
big data challenge, text mining methods are commonly applied to extract relevant knowledge from
vast amounts of literature, and this has become a prominent trend in recent years [1].

Typical tasks of biomedical text mining include named entity recognition and relation extraction.
One of the most fundamental tasks of biomedical text mining is named entity recognition (NER).
Its task is to recognize target entities that represents key concepts from unstructured biomedical texts,
such as proteins, genes, mutations, diseases, etc. There are some existing start-of-art biomedical
tools that use text mining methods to identify some specific types of entities, such as mutations [2,3],
genes [4,5], and diseases [6,7]. Most of these tools can achieve satisfactory recognition performance
(F score over 80%) on standard datasets.

Relation extraction (RE) is a process that typically follows NER and aims to discover semantic
connections between entities. Nowadays, there are a number of RE tools using different methods to
identify biomedical entity interactions [8,9], such as drug–gene relationships [10–12], gene–disease
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relationships [9,13,14] and protein–protein interaction [15]. Some of them can achieve high F scores
(over 80%) on several annotated datasets.

NER and RE are the preliminary steps in mining information from literature. With the uncovered
facts, it is possible to construct a complex knowledge graph, which can assist new knowledge discovery
and hypotheses generation. In order to achieve this goal, it is necessary to process as many articles as
possible. However, text mining procedures are time consuming. BioContext, for instance, an integrated
text mining system for large-scale extraction and contextualization of biomolecular events, took nearly
3 months to complete a full run of the system, which analyzed 20 million MEDLINE abstracts and
several hundred thousand PMC open access full-texts using 100 concurrent processes [16]. In addition,
some text mining tools, like GNormPlus [17] require a substantial amount of memory (≥5 GB), due to
the necessity of loading a large gene dictionary and complementary data structures. Consequently,
commodity servers cannot fulfil the computation and storage demands of large-scale text mining.
Cloud-based solutions in Map-Reduce mode can partially fulfil computational resource demands.
However, practically speaking, many text mining components were written in different languages,
and they are dependent on a complex collection of third-party libraries, which prevents them from
being readily transplanted into a high-level framework, like Hadoop and Spark. In addition, we dived
into the details of load balancing, which cannot be readily supported by Map-Reduce.

An alternative solution to address this computational challenge is to harness the power of high
performance computers. High performance computers (HPC) like Tianhe-2 [18] represent high-end
computing infrastructures that have traditionally been used to solve compute-intensive scientific and
engineering problems. The system configuration of Tianhe-2 is listed in Table 1.

Table 1. The system configuration of Tianhe-2.

Items Content

Manufacturer NUDT
Cores 3,120,000

Memory 1,024,000 GB
CPU Intel Xeon E5-2692v2 12 C 2.2 GHz

Interconnect TH Express-2
Linpack Performance(Rmax) 33,862.7 TFlop/s

Theoretical Peak(Rpeak) 54,902.4 TFlop/s
HPCG [TFlop/s] 580.109
Operating System Kylin Linux

MPI MPICH2 with a customized GLEX channel

Although the software stack on Tianhe-2 is designed and optimized for compute-intensive tasks,
its high-performance architecture does provide the capability and capacity of big data processing.
Nonetheless, to employ Tianhe-2 for big data processing is not a trivial task, which requires
expert knowledge of the system architecture and parallel programming. The programming model
is MPI-based (message passing interface) [18], which adds an extra dimension of complexity to
normal programming languages like C/C++, Python, Java, etc. Most existing text mining tools
are implemented without parallel processing. Therefore, it is necessary to develop an enabling
framework that can support parallel text mining without the need to rewrite the original code. In this
paper, we develop a parallel processing framework for text mining on the Tianhe-2 supercomputer.
The framework integrates text mining tools as plugins. It unifies the input–output stream, implements
the parallel processing across multiple compute nodes using the MPI model, and it applies a carefully
crafted load balancing strategy to improve the parallelization efficiency. Without a loss of generality,
we demonstrate the effectiveness of our framework using multiple NER tools as the demonstration
plugins, which can recognize genes, mutations and diseases appearing in biomedical literature.
More sophisticated tools of biomedical text mining can be readily integrated into the framework.
In the remaining of this paper, we will introduce how paraBTM works and evaluate its performance
on Tianhe-2.
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2. Results and Discussion

To verify the effectiveness of the parallel framework, we constructed a corpus named 60K,
which consists of 60,000 randomly selected articles from PubMed. For NER plugins, we chose three
state-of-the-art tools (GNormPlus [17], tmVar [2], DNorm [7]), developed by NCBI (National Centre for
Biotechnology Information). We measured the performance in terms of the total processing time and
the average processing time (across all processes), and the total time includes the time of initialization
and the actual processing time of different plugins.

The 60 K corpus is presented in the NXML format, which is a standard format provided by NCBI.
Titles, abstracts, and full-texts from NXML files are extracted and re-written in the PubTator format.
All input and output files processed by paraBTM should follow the PubTator format and the PubTator
format starts with:

<PMID>|t|<Title of the paper>
<PMID>|a|<The rest of the paper>

The output file will be appended with annotated information like named entities followed in a
tab-separated way.

A basic fact is that the time overhead of text mining is not proportional to the number of input
articles. We verified this via a single process run over several groups of randomly selected articles.
The result is depicted in Figure 1. Here, different colors represent different processing plugins.
Related numbers are also listed in Table 2.
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Table 2. Time distribution of processing different numbers of input articles in serial.

Number of Papers
Time(s)

Distribution GNormPlus tmVar Dnorm Total

10 2.11 1742.16 416.71 58.29 2219.27
20 4.2 2764.13 444.86 65.14 3278.33
40 7.76 4865.14 488.08 83.19 5444.17
80 17.17 7864.37 744.86 177.45 8803.85

As the number of input files increases, the time cost also increases but not linearly. For example,
when the number of input articles is equal to 10, it takes about 36 min for tagging entities, and when
the number of articles increases to 100, the spent time is about 3 h (180 min). This can be attributed
to another important observation, that is, the total processing time is approximately proportional to
the total input size (sum of file lengths as measured by number of characters), which is illustrated in
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Figure 2 (size unit is MB, mega-bytes) and Table 3. The workload of each plugin can be better estimated
by the total length of input files, which is the basis for our load balancing strategy in the following part.
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Table 3. Time cost distribution of processing different input sizes in serial.

Sizes of Papers (M)
Time (s)

Distribution GNormPlus tmVar Dnorm Total

1 1.93 1511.35 239.74 59.51 1812.53
2 4.80 2696.64 319.31 62.94 3083.69
4 16.24 4944.35 633.57 86.24 5680.40
8 21.77 8604.43 985.63 130.33 9742.16

Figure 3 shows the time spent on paraBTM processing with different numbers of parallel processes
on an input dataset of 16 MBs (including 175 articles) which is composed of articles randomly
selected from the 60 K corpus. Parallel processing greatly reduces the processing time and different
load-balancing strategies do affect the parallel efficiency. paraBTM costs about 500 s (under the
Short-Board balancing strategy) when 64 processes are employed, which is around 1/16 the processing
time of 2 processes. To note, each process needs to carry out initialization for every plugin, which
means you cannot reduce the total processing time any further if the initialization time cost becomes
the majority part.
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To profile different load balancing strategies, we summarize their effects under different parallel
scales, as listed in Table 4. In all 6 test cases, the Short-Board strategy is the best in 4 cases and 2nd best
in 2 remaining cases. We employ the load balancing efficiency (LBE) to quantify the effects of different
strategies. Here, LBE is defined as:

LBE = AET/MET (1)

Here, AET is the average execution time and MET is the maximum execution time. According
to the above definition, the maxima of LBE is 1 (achieved if AET is equal to MET) and a greater LBE
represents a better load balancing efficiency.

Table 4. Profiling of different load balancing strategies.

(a) Maximum times on different numbers of parallel processes with different strategies.

Number of Processes
Maximum Time among All Processes (s)

Random Round-Robin Short-Board

2 8676.60 8651.42 8466.89
4 4466.81 5211.96 4596.09
8 2792.29 2706.41 2386.45

16 1737.94 1457.01 1475.07
32 932.85 942.10 930.25
64 609.06 579.8 553.42

(b) Average times on different numbers of parallel processes with different strategies.

Number of Processes
Average Time of All Processes (s)

Random Round-Robin Short-Board

2 8513.10 8374.08 8392.46
4 4001.38 4535.42 4393.07
8 2287.19 2354.14 2242.42

16 1265.46 1174.12 1270.33
32 624.73 666.91 640.63
64 379.08 376.06 366.84

(c) Load balancing efficiencies on different numbers of parallel processes with different
strategies.

Number of Processes
Efficiency (Average/Maximum)

Random Round-Robin Short-Board

2 0.98 0.97 0.99
4 0.90 0.87 0.96
8 0.82 0.87 0.94

16 0.73 0.81 0.86
32 0.67 0.71 0.69
64 0.62 0.65 0.66

Figure 4 shows that the Short-Board strategy exhibits the best LBE in almost all test cases. However,
LBE values drop significantly when the number of parallel processes is greater than 16 in the 16M
test set. The reason is that this test set contains only 175 articles, which means each process will only
process two articles on average. If the input data set is big enough, the LBE will be maintained at a
satisfactory level.
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We also conducted an experiment on the whole 60 K corpus (61,078 articles). Table 5 shows that it
took over 12 h to process 61,078 papers through three NER plugins (128 nodes under the Short-Board
strategy, each node runs 5 processes). According to the results, we can see that parallelization greatly
enhances the processing efficiency. To note, the speed-ups of different plugins differ as each plugin has
its own characteristic computation and memory access patterns. To carry out a full-scale processing on
the whole PMC-OA full-text dataset (over 1 million), it will take about 200 h if we only use 128 nodes.
Fortunately, the computation capacity of Tianhe-2 is enormous, and we can reduce the total time down
to several hours by harnessing the power of a few thousand nodes (over 16,000 available on Tianhe-2).
We plan to carry out a full analysis on the whole PubMed dataset (the real large-scale biomedical texts)
in the future. However, the cost of such a full run is currently beyond our funding support. We are
currently in the application process of a bigger grant for this large-scale analysis. In our previous study,
we have demonstrated that using text mining on a larger dataset does provide more comprehensive
and insightful results compared with using a small dataset (say, can be handled by a few people) using
thyroid cancer as a case study [19].

Table 5. The processing time of 61,078 papers running on 128 processes.

Number of Processes
Time (s)

Distribution GNormPlus tmVar2.0 Dnorm Total

1 18,934.18 5,874,482.04 654,145.38 82,455.3 6,630,016.9
128 3643 23,733 16,214 233 43,823

Speed-up (x) 5.20 247.52 40.34 353.89 151.29

3. Materials and Methods

3.1. Data Sources and Storage

The biomedical literature has typical characteristics of large quantity, professional content, public
resources, easy-accessibility, etc. Because of these characteristics, biomedical literature data has become
one of the most noticeable data in biomedical field. For example, PubMed Central (PMC) is a free digital
repository that archives publicly accessible articles. Until now, PMC has contained over 4.1 million
references to full-text journal papers, covering a wide range of biomedical fields, and the literature
data is stored in NXML format, from which we can extract some parts according to our interest.

However, most of the state-of-art NER tools do not support parallel processing, and it would
take an enormous amount of time if we want to process the massive set of biomedical literature.
One feasible solution is to harness the computing power provided by HPC systems by implementing a
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parallel NER processing framework. With this framework, text mining tools can be easily integrated
into the framework and developers will not need to consider the details of parallel processing.

There are different levels of parallelism in text mining tasks. First, each input article is relatively
independent; secondly, multiple sentences in each of the articles can be approximately regarded as
independent. However, in practice, we usually use a single file as a processing unit, the reason is
that many text mining tools spend a substantial amount of time to initialize on each processing pass.
In addition, the memory size also limits the number of processes that can run in parallel on each
computing node. For instance, on Tianhe-2 each node is equipped with 24 cores and 64 GB of memory,
and the stable memory that users can control is about 50 GB (the operating system and other necessary
tools need to use about 10 GB). The memory costs of a typical TmVar and gnormplus run for NER can
be up to 5 GB and 10 GB. Therefore, at most 5 GNormPlus processes and 10 TmVar processes can run
on one node. Figure 5 shows the implementation and deployment of a text mining system (paraBTM)
in large-scale parallel environment.
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3.2. Parallel Processing

3.2.1. MPI-Based Multi-Node Computation

The message passing interface (MPI) is a standard model for parallel programming on HPCs. It is
well established over 20 years, and has been implemented in different sorts of programming languages
including C/C++ and Python. Our method can run on any supercomputer or cluster configured with
MPI support. To note, different supercomputers might have different node configurations. When
running on other platforms, the configuration (RAM, number of concurrent processes) might have to
change accordingly.

In this work, we use MPI4PY (http://mpi4py.scipy.org/docs/) to implement the parallel
processing. MPI4PY is a well-regarded, clean, and efficient implementation of MPI for Python.
Our framework can simultaneously submit many jobs to cores distributed across computing nodes
in Tianhe-2.

3.2.2. Load Balancing Strategy

A typical challenge in parallel computation is load unbalance, that is, workload is unevenly
distributed among nodes, making some nodes very busy for a long time and others idle [20]. In this
paper, we address this problem by designing an effective load balancing strategy.

Given a set F of files to be processed F0, F1, F2 . . . FN−1, Fn, we initialize processes
P0, P1, P2, . . . . . . , Pn−1, Pn, and the number of processes is N, the problem is to allocate each file Fx to
an appropriate process Prank.

http://mpi4py.scipy.org/docs/
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A naive solution is to randomly distribute target files into nodes. We can simply distribute files to
by modulo operation rank = mod(P, size), P and size represent the position of the target file in the
file list and number of processes respectively, and file Fp finally should be sent to Prank. According to
the formula, each file F to be processed is distributed to process rank = P % size in turn. As the files
are arranged in a random order, this process is actually a simulation of random distribution. This is
a naïve strategy and easy to implement. However, this strategy does not take into consideration the
length of each file, and will very likely cause an unbalanced load distribution, which would detriment
the overall parallel efficiency. For instance, if the total length of files assigned to one specific node is far
larger than others, then the overall running time will be prolonged until this slowest node finishes.
Figure 6 shows an example of the naïve random load balancing strategy.
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A slightly more complex load balancing method is the round-robin (RR) method. Round-robin
algorithm is a term that originally comes from the field of operating systems. Here, the general idea
inspires us to mix small files with large files together into one process. After sorting files by size
(see Figure 7), the system will assign files into processes in a snakelike way, making the size of files
loaded in every process remains relatively balanced. Figure 8 shows an example of RR algorithm.
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The round-robin method also allocates the same number of files, and its serpentine way of load
assignment ensures that the total size of the files in each process remains relatively balanced, since
files were sorted by size in advance. However, in some circumstances, the lengths of input articles can
be very biased, say, some files are extremely long while many others are short. In such cases, the RR
method fails.

Instead of assignments based on the number of files, we proposed our “Short-Board” method.
Firstly, the files that need to be processed are sorted in descending order according to the length of each
file, and then files that need to be processed in the file list are sequentially fetched out and dispatched
to the process whose current load is the smallest. Figure 9a–d shows an example of Short-Board
algorithm. The pseudo code of Short-Board is shown in Figure 10.
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4. Conclusions

In this paper, we present paraBTM, a parallel framework for biomedical text mining developed
on the Tianhe-2 supercomputer. It supports different types of components as plugins and its usage is
straightforward. The parallel efficiency is guaranteed by a carefully devised load balancing strategy.
We evaluated the performance of paraBTM on both small- and large-scale datasets. Experimental
results validate that paraBTM effectively improve the processing speed of biomedical named entity
recognition. On large scale of datasets, ParaBTM managed to process 60178 PubMed full-text articles
in about 12 h. paraBTM is open-source and available at https://github.com/biotm/paraBTM.
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