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Abstract: To explore the mechanism of mitochondrial uncoupling protein 2 (UCP2) mediating the
protective of melatonin when septic cardiomyopathy. UCP2 knocked out mice and cardiomyocytes
were used to study the effect of melatonin in response to LPS. Indicators of myocardial and
mitochondria injury including mitochondrial membrane potential, mitochondrial permeability
transition pore, calcium loading, ROS, and ATP detection were assessed. In addition cell viability
and apoptosis as well as autophagy-associated proteins were evaluated. Melatonin was able to
protect heart function from LPS, which weakened in the UCP2-knockout mice. Consistently, genipin,
a pharmacologic inhibitor of UCP2, augmented LPS-induced damage of AC16 cells. In contrast,
melatonin upregulated UCP2 expression and protected the cells from the changes in morphology,
mitochondrial membrane potential loss, mitochondrial Ca2+ overload, the opening of mitochondrial
permeability transition pore, and subsequent increased ROS generation as well as ATP reduction.
Mitophagy proteins (Beclin-1 and LC-3β) were increased while apoptosis-associated proteins
(cytochrome C and caspase-3) were decreased when UCP2 was up-regulated. In conclusion, UCP2
may play a protecting role against LPS by regulating the balance between autophagy and apoptosis
of cardiomyocytes, and by which mechanisms, it may contribute to homeostasis of cardiac function
and cardiomyocytes activity. Melatonin may protect cardiomyocytes through modulating UCP2.
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1. Introduction

Sepsis, a syndrome of physiologic, pathologic, and biochemical abnormalities induced by infection,
is a major public health concern around the world [1]. Sepsis-induced multiple organ dysfunction
whose incidence still rising is the major cause of mortality in critically ill patients. The heart and
cardiovascular systems are easily and seriously attacked during sepsis [2]. Even many studies have
been designed to explore the mechanism and treatment to sepsis-induced cardiomyopathy, its etiology
is still unclear and prognosis is poor [3,4]. At present, researchers pay more attention to molecular
theory and more and more researchers believe that it is the mitochondria damage causing a series of
diseases [5]. Since the heart is the organ that is highly dependent on abundant ATP to maintain its
contraction and diastole function, more experiments have proved that mitochondria plays an important
role in organ damage during sepsis. Multiple aspects of mitochondria dysfunction, such as disruption
of mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), reduction of
ATP etc., are thought to influence heart function [6].

Mitochondrial uncoupling proteins located in the mitochondrial inner membrane can promote
the proton leak across the mitochondrial inner membrane. It is the essential regulator of mitochondrial
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membrane potential, that disperse the mitochondria proton gradient by translocating H+ across the
inner membrane, following with respiratory activity, ROS and ATP generation [7]. Mitochondrial
uncoupling protein 2 (UCP2) is the most popular protein in its family, as it can be discovered in various
tissues, such as central nerve system, kidney, heart, liver, pancreas, spleen, thymus and macrophages [8].
The wide distribution of UCP2 leads it to have regulation of metabolism, like ROS production,
glucose control and immunity and pathologies, like heart failure, diabetes, and cancer [9]. Many studies
demonstrated that UCP2 has protective effect on myocardial damage, and down-regulated UCP2 is
associated with failing heart [10–13]. Melatonin, as the best antioxidant and mitochondrial protector,
currently, both in vitro and in vivo studies have spoken in favor of high sensitivity of mitochondria
to the regulatory effects of melatonin [14,15]. Previous literature in diabetes obesity model indicated
that melatonin may regulate UCPs [16]. Nevertheless few studies have been conducted to investigate
whether melatonin could influence the uncoupling biological process.

In addition, the further mechanism of uncoupling in heart protecting is unclear. In physiological
conditions, autophagy and apoptosis as the programmed cell process play essential roles in cell
renewing [17,18]. As the cardiomyocytes have the limited ability to regenerate, continuous cell
repairing is critical for maintaining cardiac health, integrity and heart function [19,20]. It includes
autophagy and apoptosis to remove and replace the damaged cells and organelles [21]. Even if
the mechanisms of autophagy and apoptosis are different, some proteins may be involved in both
autophagy and apoptosis progress. In this regard, despite the observation of UCP2 expression in
cardiomyocytes, whether it can regulate autophagy and apoptosis still unknown.

Based on previous studies, we hypothesized that melatonin can influence the UCP2 expression,
and thus can protect the cardiac function. To test this hypothesis, both UCP2 knockout animals and
in vitro culture of cardiomyoctyes (AC16 cells) were used to study the role of UCP2 in mediating the
effect of melatonin in response to LPS insult.

2. Material and Methods

2.1. Animal Model and Treatment

Wild C57BL/6J mice were purchased from Beijing Vital River Laboratory Animal Technology
Company. All the wild type mice were six-week-old adult male mice, 18–22 g. The UCP2 gene
knockout (UCP2-KO) mice were purchased from Nanjing Biomedical Research Institute of Nanjing
University. Genotype of knockout mice were detected genomic DNA from the tail by PCR amplification.
The gender, week age and body weight of UCP2-KO had no statistical difference compared with
their littermates. All the experimental animals had health certificates. All UCP2-KO and their
littermates were housed in a constant temperature (20–24 ◦C) and specific pathogen-free facility.
Animals were treated humanely with free access to food and water and maintained under a 12-h
light/dark cycle according to guidelines of the Care and Use of Laboratory Animals published by the
US National Institutes of Health. All procedures were approved by the Institutional Animal Care and
Use Committee (IACUC) of Peking Union Medical College Hospital.

Mice were divided into the following groups containing 8 mice in each group: (a) wild type
(WT) control group, (b) WT + LPS group, (c) WT + melatonin + LPS group, (d) WT + melatonin
group, (e) UCP2-KOgroup, (f) UCP2-KO + LPS group, (g) UCP2-KO + melatonin+ LPS group,
(h) UCP2-KO + melatonin group. To establish the LPS model, mice were intraperitoneally injected
with LPS (Escherichia coli 055:B5; Sigma, St. Louis, MO, USA) at a dose of 20 mg/kg body weight
dissolved in 0.2 mL saline. Melatonin was purchased from Medchemexpress (Cat. No. HY-B0075),
30 mg/kg b.w. dissolved in 0.3 mL 0.25% saline. The animals were intraperitoneally injected with
melatonin at 3 h, 6 h after LPS administration. Equal amounts of saline were as negative control
treatment. According to the results of preliminary experiment, animals were sacrificed twelve hours
after LPS injection. Hearts were collected, washed and frozen into the −80 ◦C refrigerator as quick
as possible.
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2.2. Cardiac Echo Examination

To obtain stable images, mice were anesthetized with 10%chloral hydrate (0.004 mL/g) by
intraperitoneal injection and put them on warm pad. They were examined by breathing and toe pinch
reflex after anesthesia. Images were acquired by Ultrasonixsonix Tablet (Canada). Echocardiography
was performed after LPS and melatonin injection to assess cardiac function. A 20 MHZ transducer
was carrying on noninvasive transthoracic echocardiography. Left ventricular ejection fraction and
fractional shortening were measured in the short-axis plane, as an index of LV systolic function.
End systole and end diastole M-mode in two dimensional were measured in papillary muscle plane.
All mice were examined by echocardiography at baseline and 12 h after treatment.

2.3. Cell Culture and Treatment

AC16 cardiomyocytes were purchased from the American Type Cell Culture (ATCC, Manassas,
VA, USA). The cells were maintained in DMEM supplemented with 10% fetal bovine serum (FCS),
penicillin/streptomycin. Cells were split every 2–3 days. For the experiment, the AC16 cells were
treated with 1 µg/mL lipopolysaccharides (LPS) after the pretreatment of melatonin and/or genipin as
indicated below. Melatonin and genipin were purchased from Medchemexpress (Cat. No. HY-B0075
and HY-17389). For melatonin treatments, the cells were grown to 80% confluence, and washed by
serum-free medium, and then treated with melatonin (100 nM) for 24 h prior to treatment with LPS [22].
For experiments with UCP2 inhibitor, the cells were pretreated with the genipin (50 µm) for 48 h prior
to treatment with LPS. The inverted microscope (Olympus IX-61, Tokyo, Japan) was used to observe
the morphology of the AC16 cells during the culture process and photographed. Ultra-structural
changes were observed by transmission electron microscope (FEI Tecnai Spirit).

2.4. Detection mRNA and Protein Expression

Total RNA was extracted from the samples using Trizol reagent (Invitrogen, Carlsbad, CA, USA).
Reverse transcription was performed using SuperScript III (Invitrogen). PCR was performed using
Eppendorf 5333 MasterCycler Thermocycler (eppendorf, lot: 5333 53658) and Eppendorf Mastercycler
ep realplex (eppendorf, lot No.: X226488N). The primers were as followings. UCP2 forward primer,
TGCTGAGCTGGTGACCTATG, reverse primer, CCAGGGCAGAGTTCATGTAT; βactin forward
primer, GATGAGATTGGCATGGCTTT, reverse primer, GTCACCTTCACCGTTCCAGT. In addition,
total protein was extracted from the samples using RIPA Lysis Buffer (Applygen Gene Technology
Corp., Beijing, China), and the amount of protein was measured using the Bicinchoninic acid method.
Immunoblotting was performed using antibodies against UCP2 (1:1000; sc390189, Santa, U.S.),
Beclin1 (1:500; 612113, BD), LC3B (1:500; MBL, PM036), Caspase3 (1:1000; 14220, CST), cytochrome C
(1:1000; 4272, CST). The membranes were then washed with TBST three times and incubated
with horseradish peroxidase-conjugated secondary antibody (Applygen Gene Technology Corp.).
Protein detection was performed using the ECL kit (Applygen Gene Technology Corp.) and images
were acquired by exposure to Kodak ×500 film (Midwest Scientific, Valley Park, MO, USA).

2.5. Myocardial and Mitochondrial Injury Detection

Myocardial mitochondrial injury detection included mitochondrial membrane potential,
mitochondrial permeability transition pore, calcium loading, ROS, and ATP detection.
JC-1 mitochondrial membrane potential assay kit (Catlog 10009172, Cayman, Ann Arbor, MI, USA)
and Mitochondrial Permeability Transition Pore Assay Kit (Catalog # K239-100, Biovision, Milpitas,
CA, USA) were used to detect myocardial mitochondrial injury. Calcium mobilization was detected
by FLUOFORTE® Calcium assay kit (ENZ-51017, ENZO, Telluride, CO, USA). ROS was detected
by OxiSelect™ Intracellular ROS Assay Kit (STA-342, Cell Biolabs, San Diego, CA, USA). The ATP
concentration was quantified by fluorometric detection of ATP using a colorimetric/fluorometric
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assay kit (Cat. No. MAK190, Sigma-Aldrich, Scotland, UK). All experiments described above were
conducted following the manufacturer’s instructions.

2.6. ELISA Assay

Nitric oxide (NO) and nitric oxide synthase (NOS) was detected by a double antibody sandwich
ELISA purchased from Beyotime (S0024, S0025). Inducible NOS (iNOS), superoxide dismutase
(SOD), and troponin (cTnI) was examined by a double antibody sandwich ELISA purchased from
USCN (SEA837Mu, SES134Mu, SEA478Mu).ELISA was performed in duplicated wells following the
manufacturers’ instructions.

2.7. Cell Proliferation and Apoptosis

AC16 cell proliferation and viability at 12h after LPS intervention were determined by MTT
Cell Proliferation Assay Kit (10009365, Cayman). Apoptosis of AC16 was measured using the
Annexin V-FITC Apoptosis Detection Kit (4830-01-K, RD). AC16 cells were washed twice in PBS
and re-suspended in binding buffer (2 × 105 cells/mL). Total 195 µl of the cell suspension was
incubated with 5 µl Annexin V-FITC for 10 min at room temperature. After washing with PBS,
they were co-stained with propidiumpresidium iodide (PI) and analyzed by flow cytometrycytometer.

2.8. Statistical Analysis

All data were expressed as the mean ± SD. Statistical comparisons among the groups were
carried out using a one-way analysis of variance (ANOVA) followed by a LSD or SNK-q protected
least significant difference test between any two groups. SPSS 16.0 software was used for all analyses.
Values of p < 0.05 were considered to be statistically significant.

3. Results

3.1. Changes in Cardiac Function and Myocardial Damage after LPS Exposure

Cardiac functions including ejection fraction (EF) and fractional shortening (FS) were measured
in all animals. Compared with WT group, cardiac functions of WT + LPS group was significantly
affected as demonstrated by significant reduction in EF and FS (Figure 1A,B, p < 0.05). In the UCP2-KO
animals, LPS (UCP2-KO + LPS group) exposure resulted in further decrease of EF and FS (Figure 1A,B,
p < 0.05). The mice of WT + LPS + melatonin group had higher EF and FS than that in WT + LPS
group (Figure 1A,B, p < 0.05). In UCP2-KO mice, however, melatonin could not prevent LPS-induced
reduction of EF and FS. Additionally, cTnI was quantified to assess the myocardial damage after LPS
exposure. UCP2-KO + LPS and UCP2-KO + LPS + melatonin group had the highest cTnI level than
that of other groups (Figure 1C, p < 0.05). Furthermore, the cTnI in WT + Melatonin + LPS group was
lower than that of UCP2-KO + LPS group, UCP2-KO + LPS + melatonin group and WT + LPS group
although there was no statistically significant difference between the groups (Figure 1C, p > 0.05).

3.2. Alterations in Morphological Characteristics of the Heart Tissue and AC-16 Cell

Figure 2A–J showed the morphological characteristics of the heart tissue collected from the WT
and UCP2-KO mouse. The histopathological observation of the heart showed that, compared with the
WT group, the heart papillary muscle in the WT+LPS group displayed hemorrhage and edema
(Figure 2B vs. Figure 2A). H&E staining of microscopic structures revealed even more severe
edema, arrhythmia, and rupture in the myocardial fibers of the UCP2-KO + LPS animals (Figure 2D).
Transmission electron microscopic examination of the heart tissue indicated that myocardial fibers
in the WT group animals were well ordered and in close proximity, and mitochondria were normal
(Figure 2F). In the WT + LPS group (Figure 2G), however, some myocardial fibers were disorganized
and loosened, and some even exhibited a scattered distribution. The endoplasmic reticula were dilated
and the mitochondria were swelled. Myocardial cells of the WT + melatonin + LPS group (Figure 2H)
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were improved and autophagosomes were observed in the cells, while it was not observed in the
UCP2-KO + LPS group and UCP2-KO + melatonin + LPS group animals (Figure 2I,J).
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Figure 1. Effect on ejection fraction (EF) and fractional shortening (FS) and tissue injury (troponin, cTnl).
EF (Panel (A)), FS (Panel (B)), and cTnl (Panel (C)) were assessed in the animals following injection of
LPS and/or melatonin as described in the methods. Vertical axes: Percentage of EF (Panel (A)) or FS
(Panel (B)), or level of cTnl (pg/mL, Panel (C)). Horizontal axes: Groups of animals.

Figure 2K–O showed morphological alteration of AC16 cells in response to LPS exposure following
pre-treatment with melatonin or genipin. After LSP exposure, AC16 cells became sparse, swollen and
lost the original spindle shape compared with control (non-treated) cells (Figure 2L vs. Figure 2K).
Melatonin pretreatment seemed protect AC16 cells from LPS-induced morphological alteration
(Figure 2M), which was abrogated by genipin (Figure 2N,O).Transmission electron microscopic
examination of AC16 cells revealed that most mitochondrial membrane was intact, with clear inner
ridge and arranged more neatly under the control condition (Figure 2P). After LPS exposure, however,
mitochondrial number decreased, the inner crest was in irregular arrangement, morphological change
with vacuolar vacuoles, membrane incomplete, and crest rupture or even disappeared (Figure 2Q).
Pretreatment of the cells with genipin resulted in further alteration of the aforementioned mitochondrial
morphological and structural changes (Figure 2S). In addition, pretreatment of the cells with melatonin
could not protect mitochondria from the subcellular structural alterations in the genipin + LPS group
(Figure 2T) although melatonin seemed to protect mitochondria subcellular structure changes from
LPS insult (Figure 2R vs. Figure 2Q).
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Figure 2. Observation on morphological alteration in heart tissues of animal models or in vitro
culture of AC16 cells. Panels (A–E): H&E staining and histological observation of the heart tissues.
Magnification: ×40. Panels (F–J): Transmission electronic microscopic observation of the heart tissues.
Magnification: ×200 Panels (K–O): Morphological observation of AC16 cells under phase-contrast
microscope. Magnification: ×40 Panels (P–T): Transmission electronic microscopic observation of the
AC16 cells. Magnification: ×200.

3.3. UCP2 Expression In Vitro and In Vivo

Figure 3A,B showed the changes of UCP2 mRNA and protein expression from different groups
of the animals. After LPS injection, UCP2 mRNA and protein were increased. Melatonin further
augmented expression of UCP2 mRNA and protein in response to LPS (WT + Melatonin + LPS group,
p < 0.05). As expected, UCP2 were not expressed in the UCP2-KO mice regardless of treatment.
As shown in the Figure 3C,D, both UCP2 mRNA and protein were increased in the AC cells after
LPS exposure. Melatonin further significantly augmented LPS-induced UCP2 mRNA and protein
expression (p < 0.05). In contrast, pretreatment with genipin resulted in slight but not significant
blockade of LPS-induced up-regulation of UCP2 mRNA and protein expression (p > 0.05).
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Figure 3. Effect on UCP2 expression in the animal heart tissues and in vitro cell culture. Panel (A): Effect
on UCP2 mRNA expression in the heart tissues. Vertical axis: Expression of mRNA; horizontal axis:
Different treatment groups of the animals. Panel (B): Representative image of immunobloting of
UCP2 in the heart tissues. Panel (C): Effect on UCP2 mRNA expression in the AC16 cells following
various treatments. Vertical axis: expression of mRNA; horizontal axis: different treatment. Panel (D):
Representative image of immunobloting of UCP2 in the cultured AC16 cells under various treatments.

3.4. Mitochondrial Injury of the Myocardial Cells

The mitochondrial membrane potential of the heart tissue was shown in Figure 4A. Mitochondrial
membrane potential was significantly decreased in the wild type animals injected with LPS compared to
that in control animals (p < 0.05), while it was increased in the animals treated with LPS plus melatonin
(WT + Melatonin + LPS group) although it was not affected by melatonin alone (WT + melatonin
group). Moreover, mitochondrial membrane potential was further decreased in the UCP2-KO animals
injected with LPS (UCP2-KO + LPS group, p < 0.05) and melatonin could not prevent the alteration
(UCP2-KO + melatonin + LPS group).

Mitochondrial membrane potential and mitochondrial permeability transition pore were also
assessed in the AC-16 cell. As shown in Figure 4B–D, mitochondrial membrane potential fluorescence
intensity was significantly decreased in the cells treated with LPS compared with that in control cells
(p < 0.05), melatonin could block mitochondrial permeability transition pore (MFI, p < 0.05, Figure 4B)
but not mitochondrial membrane potential (Figure 4C). Pretreatment with genipin resulted in further
reduction in both mitochondrial membrane potential and mitochondrial permeability transition pore,
and melatonin pretreatment could not prevent it (Figure 4B,C). Figure 4D showed the fluorescence
changes in mitochondrial membrane potential. The control group showed red fluorescence due to the
high mitochondrial membrane potential. Conversely, mitochondrial membrane potential decreased to
show green fluorescence after addition of LPS or genipin. After melatonin intervention, the membrane
potential can be obviously increased.
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3.5. Oxidative Injury in the Heart Tissue

NO, NOS, iNOS, and SOD were measured in order to assess oxidative injury of the heart tissues.
As shown in Figure 5, the levels of NO, NOS, iNOS, and SOD were significantly increased in the
animals of WT + LPS group compared with the WT control group (p < 0.05). In response to LPS
injection, NO, NOS, iNOS, and SOD slightly increased more in the UCP2-KO animals compared to the
wild type animals, but none of them was statistically significant.
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3.6. Effect on the Calcium Loading and Reactive Oxygen Species Production in AC-16 Cell

Calcium loading and reactive oxygen species (ROS) were examined the AC16 cells following the
treatment. As shown in Figure 6, LPS significantly stimulated calcium loading and ROS production,
which was significantly blocked by the pretreatment with melatonin (Figure 6A,B, p < 0.05). Genipin
further augmented LPS-induced calcium loading and ROS production, and melatonin could not block
it (Figure 6A,B). Additionally, ATP level was significantly reduced in response to LPS, and melatonin
could significantly block the LPS-induced ATP reduction (Figure 6C, p < 0.05). In the presence of
genipin, however, melatonin could not block the LPS-induced ATP reduction (Figure 6C).
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3.7. Effect on Cardiomyocyte Viability and Apoptosis

Cell viability was examined by MTT assay while apoptosis was assessed by annexin-V staining.
As shown in Fig7, LPS significantly reduced cell viability (Figure 7A, p < 0.05) but significantly
increased apoptosis (Figure 7B,C, p < 0.05), and melatonin could partially but significantly block it
(p < 0.05). Pretreatment with genipin followed by LPS exposure resulted in further reduction in cell
viability (Figure 7A, p < 0.05) and increase in apoptosis (Figure 7B,C, p < 0.05), and melatonin could
not block it.
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3.8. Effect on the Proteins Associated with Apoptosis and Autophagy

Cytochrome C and caspase-3, the proteins associated with apoptosis, as well as Beclin-1 and
LC-3β, the proteins associated with autophagy, were examined by immunoblotting. As shown in
Figure 8, cytochrome C and caspase-3 were increased in the wild type and UPC2-KO animals injected
with LPS, which was slightly blocked by melatonin (Figure 8A). Similarly, LC-3β and beclin-1 were
also increased in both wild type and UCP2-KO mice in response to LPS, which was not affected by
melatonin (Figure 8A).
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In the culture of AC-16 cells, LPS exposure resulted in significant up-regulation of cytochrome C
and caspase-3 as well as beclin-1 and LC-3β (Figure 8B). Melatonin pretreatment resulted in partial
blockade on LPS-stimulation of cytochrome C and caspase-3, but further stimulation on beclin-1
and LC-3β (Figure 8B). Furthermore, genipin could potentiate LPS-stimulation on cytochrome C
and caspase-3 expression, but significantly inhibited beclin-1 and LC-3β expression (Figure 8B).
Melatonin had no significant effect on those proteins when the cells were pretreated with genipin
(Figure 8B).
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4. Discussion

The principle findings in our study were as follows. First, LPS up-regulated the UCP2 expression
and melatonin further augmented UCP2 expression. UCP2-KO mice had worse heart function after
LPS injection. Melatonin could ameliorate heart dysfunction induced by LPS. Second, LPS exposure
damaged the AC16 cells (human cardiomyocytes) and melatonin could protect the AC16 cells from
LPS-induced cell damage. Cells dealing with a specific inhibitor genipin had been severely attacked in
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the LPS model, indicating UCP2 can be the protector during sepsis. Then, mitochondrial membrane
potential (4Ψm) loss, mitochondrial Ca2+ overload, the opening of mitochondrial permeability
transition pore (mPTP), and subsequent increased iNOS, NO ad SOD generation as well as decreased
ATP production were prevented by UCP2 overexpression. Last but not the least, both the animal and
cell models demonstrated that mitophagy protein like Beclin-1 and LC-3β were obviously increased
as the UCP2 overexpression, while apoptosis protein cytochrome C and caspase-3 were decreased.
Our findings suggested that UCP2 is crucial for protecting against sepsis-induced cardiomyopathy
by promoting cardiomyocytes survival through autophagy induction. In addition, melatonin maybe
a potential therapeutic drug targeting UCP2 to balance the autophagy and apoptosis.

Sepsis is not only a critical illness in the medical field around the world, but also an unsolved
disaster to human. It has been constantly that researchers had created numbers of clinical and
experimental studies to seek the treatment protocols [23,24]. LPS is one of the most useful ways to
induce septic models in vivo and in vitro. In our study, the structural disorder of the heart tissue
after LPS and AC16 cells with LPS were cracking and swelling through light microscope observing,
demonstrating that our septic models had been created successfully. These results are also in line
with other experimental results [25,26]. Increasing evidences have proved increasing of oxidative
damage markers like iNOS, NO and SOD after LPS administration [27], as our study also confirmed
this phenomenon. Melatonin acting as an antioxidant can alleviate oxidative stress injury and improve
the mitochondria function [28–30]. In our study, melatonin groups showed decreased ROS and
improved cardiac and mitochondria function apparently compared with LPS groups. Mitochondrial
uncoupling proteins located in the mitochondrial inner membrane can promote the proton leak across
the mitochondrial inner membrane [31]. UCP2 as the most popular isoform in UCP family, can be
discovered in various tissues [32]. Its wide distributions results in the varieties of functions and
maybe organ protection in pathological condition. Precious studies had illustrated that UCP2 can
be up-regulated in sepsis [33,34]. Our experiment also suggested the levels of UCP2 mRNA and
protein were raised in septic status. However, Michael, et al. found UCP2 mRNA increased but
no UCP2 protein detection in their study [35], they had no definite explanation of the discordance,
but they also proved UCP2 had no negative influence on cardiac mechanical efficiency. To further
explore and confirm whether UCP2 had effect on sepsis-induced cardiomyopathy, we use UCP2
knocked out animal model in vivo and genipin to be the UCP2 specific inhibitor in vitro like other
research [36,37]. Our results demonstrated that UCP2 blocking can bring catastrophic injuries to
myocardial cells in sepsis, which was similar to precious study [25]. Both animals’ cardiac cells and
AC16 cells were obviously swelling and crushing. At the molecular level, the decreased MMP and
dissipation of membrane potential made ROS increased abnormally and ATP reduced. From the
functional level of the heart, ultrasound results displayed the failure of cardiac pump under septic
conditions. As it was clear that UCP2 played a protective role in cardiovascular disease in our research,
upregulating the UCP2 expression could be a potential therapeutic target. Melatonin acting as one
of the most effective antioxidants is mitochondria-targeted, it can protect the cells from oxidative
or nitrosative damage [38,39]. In diabetic obese animals’ model, researchers found melatonin can
reduce hepatic mitochondrial dysfunction and augment ATP production [40]. However in their results,
melatonin reduced the UCP2 expression. There is no relevant research involving the function of
melatonin in LPS-induced cardiomyopathy, it is unclear whether the specificity expression of UCP2 in
the different organs and the different models. This study is the first one to show the possible mechanism
that melatonin may influence UCP2 expression in LPS-induced cardiomyopathy. It has been proven
that melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the
mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins [38,41]. Also in
our study, melatonin raised the level of UCP2 and prevented cardiomyocytes from LPS damage.

The intrinsic of UCP2 is H+ channel locating on the inner mitochondrial membrane promoting
the proton leak, which can influence 4Ψm [42]. The meaning of uncoupling is the collapse of the
4Ψm caused by proton leakage from the intermembrane space to the matrix [43]. It has been currently
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known that UCP2 overexpression can inhibit the depolarization of 4Ψm which can decrease Ca2+

uptaking into the mitochondrial matrix [25,44,45]. Otherwise, the Ca2+ overload can result in ROS
production and mitochondrial injury. Redundant ROS can stimulate the proton leak, so that leading
the activity of UCP2 decreased and reducing the generation of ROS. UCP2 plays a protective role in the
heart via this negative feedback loop [46]. Large experiments had represented that knockout of UCP2
results in a concomitant increase in mitochondrial ROS emission [47,48]. Our animal study found
that mitochondrial membrane potential of the heart tissue of the WT + Melatonin + LPS group had
higher than WT control group, WT + melatonin group and WT + LPS group. While, the fluorescence
intensity of WT + LPS group and WT + Melatonin + LPS had significantly decreased when UCP2
knocked out. Furthermore, the level of oxidative stress increased significantly in UCP2 knockout
group, while the level of oxidative stress decreased after melatonin intervention. Our findings from
in vitro also explored4Ψm was totally collapsed, Ca2+ overload and excess ROS in genipin group,
but had been recovered in melatonin group. Opening the mPTP is the result of the loss of4Ψm and
Ca2+ overload, which will cause apoptosis protein releasing outside the mitochondrial membrane and
induce the cell death [49,50]. Hence, UCP2 can inhibit the mPTP opening mediated by prevention of
Ca2+ overload and ROS production, attenuating the cell apoptosis. Except for the ROS, ATP is the other
indicator evaluating the mitochondrial function. Mitochondria is an ATP factory that can maintain
cardiomyocytes metabolism and function. It is well known that ATP synthesis is depending on the
coupling of oxidative phosphorylation. While, the coupling procedure relies on the proton leakage and
is regulated by UCP2 [51]. Up to now, the relationship between UCP2 and ATP is still controversial.
Some studies suggested that UCP2 can decrease the ATP generation [52–54], while others supported
more UCP2 expression can lead elevated levels of ATP [55–57]. In this study, what can be identified
was that LPS damaged the cells and reduced the production of ATP, melatonin can increase the UCP2
expression and recover ATP generation.

Mild mitochondrial uncoupling has been proposed as a mechanism to protect cardiomyocytes
from inflammatory injury via decreased ROS generation. Nevertheless, the concrete mechanism behind
this effect is based on “uncoupling-to-survive” hypothesis [58,59]. The classical view is that the opening
of mPTP and excess ROS generation can trigger programmed cell death/apoptosis. The difficulty of
current research lies in reducing cell apoptosis or weakening the effect of necrotic cells on other healthy
cells. Autophagy, like apoptosis, is another well-recognized cellular processes relying on lysosome.
It is a process of degrading the contents of the encapsulated cells, thereby circulating the metabolic
pathways and renewing some organelles [60]. Though protective effect of autophagy is still a debate,
large amounts of research have proved its influence on cells and organs recovery [61,62]. One of the
functions is as critical for mitochondrial homeostasis. Moreover, there are a variety of mechanisms
by which the autophagy and apoptotic pathways can become intertwined to affect cell fate [60,63,64].
Up to now, several researches involving UCP2 regulation related to crosstalk with autophagy and
apoptosis in nerve cell [65], cumulus cell [66], tubular epithelial cell [67], and hepatocyte [68]. However,
to date, no study has been performed to confirm whether UCP2 overexpression can evoke autophagy
and inhibit apoptosis in human cardiomyocytes. The results obtained in our study showed that
apoptosis protein cytochrome C and caspase-3 increased in the UCP2 knocked out animal model and
AC16 genipin group, but decreased under melatonin intervention. Apoptosis cells were significantly
higher in UCP2 blocking group, suggesting that UCP2 plays a protective role against apoptosis. As for
the further mechanism, we found the key protein Beclin-1 and LC-3β in autophagy “Beclin pathway”
were obviously rise in UCP2 overexpression groups. According to the discovery in recent years,
autophagy protein Beclin-1 is essential to regulate the switch between autophagy and apoptosis [69,70].
LC-3β acting as the downstream protein controls the autophagic flux and prevents the cells from
“autophagic burst” [71]. Researchers have identified caspase-3 a predominant effector caspase in
apoptosis can cleave Beclin-1 and inhibit autophagy activity [72,73]. For clarity, Beclin-1 and caspase-3
show the signaling connections between autophagy and apoptosis [74]. Until now, we speculate that
UCP2 is crucial for protecting against sepsis-induced cardiomyopathy by promoting cardiomyocytes
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survival through autophagy induction and apoptosis reduction. And this is the first study presenting
the position of UCP2 in crosstalk between autophagy and apoptosis.

5. Conclusions

In summary, our study demonstrates that UCP2 may play a protecting role in cardiomyocytes
against LPS. The reason for this is that UCP2 could regulate the balance between autophagy and
apoptosis, which contribute to maintain cardiomyocytes activity. Additionally, melatonin maybe
a potential regulator for UCP2 balance the autophagy and apoptosis.
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