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Abstract: Lignans comprise a family of secondary metabolites existing widely in plants and also
in human food sources. As important components, these compounds play remarkable roles in
plants’ ecological functions as protection against herbivores and microorganisms. Meanwhile,
foods rich in lignans have revealed potential to decrease of risk of cancers. To date, a number of
promising bioactivities have been found for lignan natural products and their unnatural
analogues, including antibacterial, antiviral, antitumor, antiplatelet, phosphodiesterase inhibition,
5-lipoxygenase inhibition, HIV reverse transcription inhibition, cytotoxic activities, antioxidant
activities, immunosuppressive activities and antiasthmatic activities. Therefore, the synthesis of
this family and also their analogues have attracted widespread interest from the synthetic organic
chemistry community. Herein, we outline advances in the synthesis of lignan natural products in the
last decade.
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1. Introduction

Lignans are a family of secondary metabolites widely distributed in plants and human food
sources. The story of lignans can traced back to 1942, when Harworth introduced the term for the first time
to describe this family [1]. It is known that lignans have remarkable ecological functions in plants, providing
protection against herbivores and microorganisms [2–7]. The consumption of foods rich in lignans has
potential to decrease of risk of cancers [8–11]. During its long research history, this family has exhibited
attractive pharmacological activities [12–19], such as antibacterial [20], antiviral [21–24], antitumor [25–27],
antiplatelet [28,29], phosphodiesterase inhibition [30,31], 5-lipoxygenase inhibition [32–34], HIV
reverse transcription inhibition [35–37], cytotoxic [38], antioxidant [39], immunosuppressive [40]
and antiasthmatic properties [31].

Lignan compounds have dimeric structures formed through a β,β′-linkage between two
phenylpropane units with different degrees of oxidation on the side-chain and variable substitution
patterns on the phenyl ring. Traditionally, lignans are divided into two classes: classical lignans and
neolignans. It should be noted that the term lignan in the literature refers to classical lignans in most
cases. Regarding the classification of classical lignans, four different types are reported. The first one
arranged classical lignans into three subgroups: acyclic lignan derivatives, arylnaphthalene derivatives
and dibenzocyclooctadiene derivatives [41]. The second type includes six subgroups: dibenzylbutanes,
dibenzylbutyrolactones, arylnaphthalenes, dibenzocyclooctadienes, substituted tetrahydrofurans
and 2,6-diarylfurofurans [9,14]. The third one is comprised of eight subgroups: furofurans, furans,
dibenzylbutanes, dibenzylbutyrolactones, aryltetralins, arylnaphthalenes, dibenzocyclooctadienes
and dibenzylbutyrolactols [8,42–45]. The fourth one includes seven subgroups of lignan scaffolds:
cyclobutanes, tetrahydrofurans, furofurans, dibenzylbutanes, aryltetralins, cycloheptenes and
dibenzocyclooctadienes [46].
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The synthesis of lignans and their analogues is an active field in the synthetic organic
chemistry community. Tremendous synthetic efforts on this family have been well documented by
reviews [9–14,41,47–51]. In recent years, several nice reviews have outlined progress of particular
topics related to the synthesis of furofuran lignans [48], arylnaphthalene lactone analogues [47] and
aryltetralin glycosides [49]. The present review will focus on the papers on the synthesis of lignans
published from 2008–2018. In order to avoid unnecessary duplication, we will not discuss works
already presented in previous reviews.

For the convenience of introduction of advances in the synthesis of lignans, we discuss three
subgroups in present review, namely, acyclic lignan derivatives, dibenzocyclooctadiene derivatives
and arylnaphthalene derivatives.

2. Advances in the Synthesis of Acyclic Lignan Derivatives

In the last decade, synthetic progress in acyclic lignan derivatives is related to lignans featuring
dibenzyl tetrahydrofuran, dibenzylbutyrolactone, and diphenyltetrahydrofuranfurofuran skeletons.

The synthesis of the acyclic lignan derivative (±)-paulownin (Scheme 1) was accomplished by
Angle and coworkers in 2008 [52]. The key step is a formal [3 + 2]-cycloaddition between silyl ether 1
and aldehyde 2 in the presence of BF3OEt2 and 2,6-di-tert-butyl-4-methylphenol (DBMP), generating
aryl tetrahydrofuran 3. After oxidation and removal of the protecting group, the resulting product
4 was connected with imidate 5, generating lactone 6. The synthesis of (±)-paulownin was finished
through photocyclization under a medium-pressure Hanovia lamp [53].
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Scheme 2. Synthesis of (+)-galbelgin. Adapted from Barker et al. [54]. 

In 2011, Barker and coworkers reported the total synthesis of (+)-galbelgin (Scheme 2) [54]. A 
stereoselective aza-Claisen rearrangement developed in their lab [55] afforded a reliable access to the 
original two stereocenters in chiral amide 8. The subsequent nucleophilic addition from 11, 
reduction, hydroxyl protection and double bond oxidative cleavage led to the formation of aldehyde 
10. The second nucleophilic addition from 11 afforded 12 with four adjacent stereocenters 
established. Methoxymethyl (MOM) group deprotection and cyclization completed the synthesis of 
(+)-galbelgin. 

Scheme 1. Synthesis of (±)-paulownin. Adapted from Angle et al. [52].

In 2011, Barker and coworkers reported the total synthesis of (+)-galbelgin (Scheme 2) [54].
A stereoselective aza-Claisen rearrangement developed in their lab [55] afforded a reliable access
to the original two stereocenters in chiral amide 8. The subsequent nucleophilic addition from 11,
reduction, hydroxyl protection and double bond oxidative cleavage led to the formation of aldehyde
10. The second nucleophilic addition from 11 afforded 12 with four adjacent stereocenters established.
Methoxymethyl (MOM) group deprotection and cyclization completed the synthesis of (+)-galbelgin.
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She and coworkers reported the total synthesis of beilschmin A and gymnothelignan N in
2014 (Scheme 3) [56]. Alcohol 14 was prepared by hydroxyl protection of chiral amide 13 and
subsequent reduction. Aldehyde 16 was obtained after homologation and reduction. The nucleophilic
addition of 17 and oxidation afforded ketone 18. Dibenzyl tetrahydrofurans 20 was obtained after a
highly stereoselective introduction of a methyl group, deprotection and reduction. The synthesis of
beilschmin A was finished after the methylation. Inspired by a biosynthetic proposal from She’s group,
the challenging seven-membered ring skeleton in gymnothelignan N was constructed by an oxidative
Friedel-Crafts reaction of compound 20 using phenyliodonium diacetate (PIDA) as the oxidant, finally
affording gymnothelignan N.
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In 2015, Lump and coworkers reported a bioinspired total synthesis of (±)-tanegool and
(±)-pinoresinol (Scheme 4) using [2 + 2] photodimerization and oxidative ring-opening as key
steps [46]. The synthesis started with the esterification of ferulic acid. The resulting product 22
went through [2 + 2] photodimerization and reduction, generating diol 23 smoothly. The synthesis of
(±)-tanegool through the expected oxidative ring-opening of 23 was achieved under different oxidative
conditions. Moreover, synthesis of (±)-pinoresinol was also accomplished. Using the same strategy,
trans-diester 26 was prepared from cis-diester 25. Reduced product 27 was submitted to an oxidative
ring-opening treatment using FeCl3·6H2O as the oxidant, finishing the synthesis of (±)-pinoresinol
through an oxidative ring opening and two 5-exo-trig cyclization pathway.

As powerful synthetic tools, photoredox-catalyzed tranformations have received considerable
attention in recent decades [57–59]. In 2015, MacMillian and coworkers developed an enantioselective
α-alkylation of aldehydes using a combination of photoredox catalysis and enamine catalysis
and achieved the asymmetric synthesis of (−)-bursehernin through this strategy (Scheme 5) [60].
Using Ru(bpy)3Cl2, chiral amine 33 and a compact fluorescent lamp (CFL) light source, the α-alkylation
of aldehyde 28 with bromonitrile 29 generated chiral aldehyde 30 in excellent yields and excellent
enantioselectivity. Subsequent reduction and cyclization afforded lactone 31. The synthesis of
(−)-bursehernin was achieved by a highly stereoselective alkylation between 31 and bromide 32.

In 2017, Soorukram and coworkers reported the asymmetric synthesis of ent-fragransin C1

(Scheme 6) [61]. Ketone 36 was produced by the nucleophilic addition of the aryllithium species generated
from 35 to chiral Weinreb amide 34. The following stereoselective reduction led to the formation of
alcohol 37. After hydroxyl protection, double bond oxidative cleavage and nucleophilic addition from
aryllithium 39, compound 40 was furnished in good diastereoselectivity. Followed by the deprotection
and cyclization treatments, the tetrahydrofuran ring in 41 was established. Finally, the synthesis of
ent-fragransin C1 was accomplished through debenzylation under hydrogenation conditions.
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Based on a tandem nucleophilic addition/Ru-catalyzed isomerization/SET oxidation/radical
dimerization strategy [62], Jahn and coworkers reported a bioinspired total synthesis of multiple
lignans in 2018 (Scheme 7) [63]. Using bromide 42 as the substrate, a smooth unprecedented tandem
1,2-nucleophilic addition/Ru-catalyzed isomerization/SET oxidation/radical dimerization afforded
1,4-diketone 43 with acceptable diastereoselectivity. After the reduction, three different treatments of
43 led to the formation of 44 and 45 in varied ratios. With the removal of double t-butyldimethylsilyl
(TBS) protecting groups, the synthesis of (±)-fragransin A2 and (±)-odoratisol was achieved. Through
the same strategy, Jahn and coworkers completed the synthesis of (±)-galbelgin, (±)-grandisin,
(±)-galbacin, (±)-veraguensin, and (±)-beilschmin B.
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A Ni-catalyzed cyclization/cross-coupling strategy was developed and applied for the synthesis
of (±)-kusunokinin, (±)-dimethylmetairesinol, (±)-bursehernin and (±)-yatein by Giri and coworkers
in 2018 (Scheme 8) [64]. Ligand 48 was used for the Ni-catalyzed cyclization/cross-coupling between
iodide 46 and aryl zinc reagent 47 followed by Jones oxidation, generating lactone 49 readily.
Compound 49 was then connected with bromide 50 in a good diastereoselective manner, completing
the synthesis of (±)-kusunokinin. The syntheses of (±)-dimethylmetairesinol, (±)-bursehernin and
(±)-yatein were accomplished using the same protocol.

Molecules 2018, 23, x 5 of 22 

 

was achieved. Through the same strategy, Jahn and coworkers completed the synthesis of 
(±)-galbelgin, (±)-grandisin, (±)-galbacin, (±)-veraguensin, and (±)-beilschmin B. 

 
Scheme 7. Bioinspired synthesis of seven acyclic lignans. Adapted from Jahn et al., [63]. 

 
Scheme 8. Synthesis of four acyclic lignans. Adapted from Giri et al., [64]. 

A Ni-catalyzed cyclization/cross-coupling strategy was developed and applied for the synthesis 
of (±)-kusunokinin, (±)-dimethylmetairesinol, (±)-bursehernin and (±)-yatein by Giri and coworkers 
in 2018 (Scheme 8) [64]. Ligand 48 was used for the Ni-catalyzed cyclization/cross-coupling between 
iodide 46 and aryl zinc reagent 47 followed by Jones oxidation, generating lactone 49 readily. 
Compound 49 was then connected with bromide 50 in a good diastereoselective manner, completing 
the synthesis of (±)-kusunokinin. The syntheses of (±)-dimethylmetairesinol, (±)-bursehernin and 
(±)-yatein were accomplished using the same protocol. 

3. Advances in Synthesis of Dibenzocyclooctadiene Serivatives 

Dibenzocyclooctadiene derivative lignans feature a particular eight-membered ring containing 
a chiral biaryl axis. Members of this subgroup possess various substitution patterns with two aryl 
rings and different stereocenters on the aliphatic bridge. 

Scheme 8. Synthesis of four acyclic lignans. Adapted from Giri et al. [64].

3. Advances in Synthesis of Dibenzocyclooctadiene Serivatives

Dibenzocyclooctadiene derivative lignans feature a particular eight-membered ring containing a
chiral biaryl axis. Members of this subgroup possess various substitution patterns with two aryl rings
and different stereocenters on the aliphatic bridge.
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In 2010, an interesting Ni-catalyzed enantioselective Ullmann coupling of bis-ortho-substituted
arylhalides was developed and applied to the asymmetric synthesis of (+)-isoschizandrin by Lin and
coworkers (Scheme 9) [65]. With the application of chiral ligand 56, the Ni-catalyzed enantioselective
Ullmann coupling of bromide 51 gave the axial chiral biaryl dial 52 with acceptable enantioselectivity.
Aldehyde 55 was prepared after monoprotection, Wittig reaction and deprotection operations.
The synthesis of (+)-isoschizandrin was accomplished according to Molander’s cyclization protocol [66].
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Based on a double organocuprate oxidation strategy, Spring and coworkers reported the total
synthesis of (±)-deoxyschizandrin in 2012 (Scheme 10) [67]. Symmetrical 1,3-diene 58 was prepared by
the homo-coupling of alkenyl iodide 57 through a mild metalation, magnesio-cuprate transmetalation
and subsequent oxidation using 61 as the oxidant [68]. Subsequent hydrogenation afforded 59 as a
mixture of two diastereoisomers. After iodination, the expected iodide 60 was obtained. The synthesis
of (±)-deoxyschizandrin was completed by an intramolecular organocuprate oxidation process,
including metalation, magnesio-cuprate transmetalation and oxidation with 61.
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In 2013, the RajanBabu group reported a general synthetic approach to multiple
dibenzocyclooctadienes lignans via an interesting borostannylative cyclization (Scheme 11) [69].
In the presence of PdCl2(PPh3)2 and [B-Sn] reagent 70, chiral diynyl precursor 62 was converted
into dibenzocyclooctadiene 64 through a borostannylative cyclization and a subsequent acidification
process [70].
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Scheme 11. Synthesis of five dibenzocyclooctadienes lignans. Adapted from RajanBabu et al. [69].

The Subsequent hydrogenation afforded 65 as the major product. After the deprotection and
oxidation, the general intermediate 66 was prepared. The synthesis of (−)-ananolignan C was
achieved through two successive diastereoselective reductions of 66. Meanwhile, the synthesis of
(−)-ananolignan B was accomplished from the treatment of 66 with LiAl(OtBu)3H and subsequent
acetylation. The stereoselective hydrogenation of (−)-ananolignan B led to the formation of
(−)-ananolignan D. The following configuration inversion of the hydroxyl group and actylation
led to the synthesis of (−)-ananolignan F. In addition, (−)-interiotherin C can also be formed through
the esterification of 69 and angeloyl chloride 71.

Synthesis of other three lignans was reported by RajanBabu and coworkers in the same paper
(Scheme 12) [69]. Oxidative cleavage of the right-bottom double bond of 64 was applied for the
formation of ketone 72. Diol 74 was obtained from the debenzylation and methyllithium 1,2-addition
of 72. After hydroxyl oxidation, diastereoselective reduction and benzoyl protection steps, compound
76 was obtained. Starting from 76, synthesis of schizanrin F was achieved by TBS deprotection,
oxidation, diastereoselective reduction and acetylation process. Starting from diol 74 again, compound
78 can be prepared by TBS deprotection, oxidation and double diastereoselective reduction. Finally,
the synthesis of kadasuralignan B and tiegusanlin D was accomplished through acetylation and
benzoylation of 78, respectively.
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In 2018, a mild and asymmetric synthetic route to (−)-gymnothelignan L was developed by She
and coworkers through a Suzuki-Miyaura coupling and a bioinspired desymmetric transannular
Friedel-Crafts cyclization strategy (Scheme 13) [71]. Iodide 80 was obtained from iodination of
compound 79. The Suzuki-Miyaura coupling of 80 and arylboronic acid 84 formed biphenyl compound
81, which was transformed into 82 using DIBAL-H as the reducing agent. Under acidic conditions,
a bioinspired desymmetric transannular Friedel-Crafts cyclization of 82 occurred readily, generating 83.
After removal of the benzyl protecting group, the synthesis of (−)-gymnothelignan L was completed.
At almost the same time, a similar strategy was applied in total synthesis (−)-gymnothelignan V by
Soorukram and coworkers [72].
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4. Advances in the Synthesis of Arylnaphthalene Derivatives

In the literature, the arylnaphthalene derivative lignan subgroup includes arylnaphthalenes and
aryltetralins. Structurally, these lignans have a substituted naphthalene core. It should be mentioned
that, due to their excellent biological characters, several clinically used antitumor drugs are derived
from the well-known member, podophyllotoxin, and its glycosides [49].
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In 2009, Deng and coworkers reported an asymmetric total synthesis of (−)-plicatic acid
(Scheme 14) [73]. The enantioselective epoxidation of trisubstitued olefin 85 was applied for the
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introduction of the original chiral stereocenters. Excellent enantioselectivity was obtained from the
application of chiral (S,S)-TADOOH 86. Intramolecular Friedel-Crafts reaction of 87 formed the
six-membered ring of 88 effectively. Subsequent silylation and intramolecular Barbier reaction under
SmI2/NiI2 conditions afforded a diastereoselective access to diol 90. After Fleming-Tamao- Kumada
oxidation [74,75], 91 was furnished. The synthesis of (−)-plicatic acid was completed following
hydration and global debenzylation.

The stereoselective aza-Claisen rearrangement strategy developed by Barker and coworkers
was not only effective for asymmetric synthesis of (+)-galbelgin (Scheme 2), but also for asymmetric
synthesis of (−)-cyclogalgravin, and (−)-pycnanthulignenes A and B (Scheme 15) [54]. Through the
aza-Claisen rearrangement strategy, alcohol 9 (Scheme 2) was prepared and submitted to hydroxyl
protection and double bond oxidation, generating aldehyde 92. The addition from aryllithium 11 gave
compound 93. The synthesis of (−)-cyclogalgravin was achieved through cyclization. Employing same
protocol, Barker’s group also finished an asymmetric synthesis of (−)-pycnanthulignenes A and B.
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In 2012, Hong and coworkers reported the enantioselective total synthesis of (+)-galbulin using
an organocatalytic asymmetric Michael-Michael-aldol cascade (Scheme 16) [76]. Under the promotion
of Jørgensen-Hayashi catalyst 96, ketoaldehyde 97 was readily prepared from the asymmetric
Michael-Michael-aldol cascade of 94 and 95. Compound 99 was produced by reduction, oxidation and
epoxidation treatments of 97. Following epoxide ring-opening and aromatization, compound 101 was
obtained. The synthesis of (+)-galbulin was finally accomplished through selective methylation and
dehydroxylation processes.
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Peng and coworkers reported in 2013 the synthesis of sacidumlignan A employing Ueno-Stork
radical cyclization and skeletal rearrangement strategy (Scheme 17) [77]. Alcohol 103 was connected
with ethyl propenyl ether in the presence of bromine, readily generating 104. The Ueno-Stork radical
cyclization of 104 was enabled by Bu3SnH and AIBN.
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Scheme 17. Synthesis of sacidumlignan A. Adapted from Peng et al. [77].

The resulting 105 was submitted to a skeletal rearrangement, affording arylnaphthalene 106.
The synthesis of sacidumlignan A was achieved after benzyl deprotection.

The same year, Peng and coworkers also reported the total synthesis of (±)-cyclogalgravin and
(±)-galbulin (Scheme 18) [78]. Cyclic acetal 108 was obtained from Ueno-Stork radical cyclization
of 107. Diol 110 was prepared by an oxidation, methylation and reduction process. Subsequent
selective hydroxyl protection, dehydroxylation, deprotection and oxidation led to the generation
of aldehyde 111. Next an intramolecular Friedel-Crafts reaction was applied for the synthesis
of (±)-cyclogalgravin. The synthesis of (±)-galbulin was readily achieved by the stereoselective
hydrogenation of (±)-cyclogalgravin.
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In 2013, Argade and coworkers reported a novel strategy to construct arylnaphthalene frameworks
via Pd-promoted [2 + 2 + 2] cyclization (Scheme 19), which enabled the synthesis of justicidin B and
retrojusticiding B [79]. Through a Pd-promoted [2 + 2 + 2] cyclization process, aryne precursor 112
was connected with diene 113, generating arylnaphthalene 114. After the regioselective hydrolysis of
the ester group, the synthesis of justicidin B was achieved through a chemoselective reduction of the
acid group using BH3·SMe2 and subsequent lactonization. Meanwhile, the synthesis of retrojusticidin
B was achieved through the reduction of 115 and subsequent lactonization.
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Shia and coworkers reported in 2015 the synthesis of three arylnaphthalene derivative lignans
using a Mn(III)-mediated free radical cyclization cascade (Scheme 20) [80]. Knoevenagel condensation
of α-cyano ester 116 with aldehyde 117 and subsequent reduction was applied for the generation
of α-cyano ester 118. The following oxidative free radical cyclization cascade enabled by Mn(OAc)3

afforded access to compound 119. The synthesis of retrojusticidin B was accomplished after decyanation
and aromatization operations. Using the same strategy, the synthesis of justicidin E and helioxanthin
was completed.
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In 2015, Narender and coworkers reported an interesting Ag-promoted radical addition/
cyclization process for the construction of highly substituted α-naphthol skeletons (Scheme 21) and the
synthesis of three arylnaphthalene lignans [81]. Through the Ag-promoted radical addition/cyclization
between ketoester 120 and aryl propiolate 121, polysubstituted arynaphthol 122 was readily prepared.
The synthesis of diphyllin was finished under known reductive-lactonization conditions [82].
The synthesis of justicidin A was then achieved through methylation of diphyllin. The synthesis
of taiwanin E was also accomplished.
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In 2017 Ham and coworkers reported the synthesis of seven arylnaphthalene derivative
lignans based on a strategy involving Hauser-Kraus annulation and Suzuki-Miyaura cross-coupling
(Scheme 22) [83]. In the presence of LiHMDS, the Hauser-Kraus annulation between cyanophthalide
123 and γ-crotonolactone 124 and subsequent protection treatment gave arylnaphthalene 125.
The synthesis of diphllin was finished by the subsequent Suzuki-Miyaura cross-coupling of 126
and potassium aryltrifluoroborate 127. Justicidin A was produced by the methylation of diphllin.
The syntheses of taiwannin E, chinensinaphthol justicidin C, justicidin D and cilinaphthalide B were
also finished.
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Hajra and coworkers reported the enantioselective total synthesis of (−)-podophyllotoxin and
natural analogues in 2017 (Scheme 23) [84]. The L-proline-catalyzed asymmetric cross aldol reaction
between 6-bromopiperonal 128 and aldehyde 129 introduced original stereocenters with excellent
diastereoselectivity and excellent stereoselectivity at gram scale. Lactone 130 was obtained after reduction,
lactonization and TBS protection operations. Z-Benzylidene lactone 132 was prepared through an
aldol reaction between 130 and aldehyde 131, and subsequent elimination. The intramolecular Heck
reaction between trisubstituted Z-alkene motif and the bulky bromoarene motif in 132 happened
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smoothly, generating compound 133 in good yields. Notably, under different hydrogenation conditions,
three stereoselective pathways of 133 led to the synthesis of (−)-podophyllotoxin, (−)-picropodophyllin,
(+)-isopicropodophyllin, respectively. Meanwhile, the synthesis of (+)-isopicropodophyllone was
achieved through the oxidation of (+)-isopicropodophyllin. The synthesis of (−)-isopodophyllotoxin
can be accomplished through a TBS deprotection and reductive Heck reaction process from 132.Molecules 2018, 23, x 13 of 22 
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Czarnocki and coworkers reported in 2018 the total synthesis of (+)-epigalcatin using a 
photocyclization process under continuous flow UV irradiation conditions (Scheme 24) [85]. Diester 
134 was condensed with aldehyde 120 at basic conditions, affording E,E-bisbenzylidenesuccinic 
acid 135. Through an amidation process, L-prolinol was introduced in amide 136 as a chiral 
auxiliary. Eight-membered ring compound 137 was prepared via following hydrolysis and 
macrolactonization. Under continuous flow irradiation with UV light, the photocyclization of 137 
furnished 138 smoothly [86]. Remove of the chiral auxiliary, hydrogenation of the double bond and 
simultaneous reduction of formyl group led to the formation of ester 139. The synthesis of 
(+)-epigalcatin was achieved through subsequent reductive transformations of the methyl ester of 
139 into a methyl group via three steps. 
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Czarnocki and coworkers reported in 2018 the total synthesis of (+)-epigalcatin using a
photocyclization process under continuous flow UV irradiation conditions (Scheme 24) [85]. Diester
134 was condensed with aldehyde 120 at basic conditions, affording E,E-bisbenzylidenesuccinic acid
135. Through an amidation process, L-prolinol was introduced in amide 136 as a chiral auxiliary.
Eight-membered ring compound 137 was prepared via following hydrolysis and macrolactonization.
Under continuous flow irradiation with UV light, the photocyclization of 137 furnished 138
smoothly [86]. Remove of the chiral auxiliary, hydrogenation of the double bond and simultaneous
reduction of formyl group led to the formation of ester 139. The synthesis of (+)-epigalcatin was
achieved through subsequent reductive transformations of the methyl ester of 139 into a methyl group
via three steps.
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Peng and coworkers reported the total synthesis of (−)-podophyllotoxin and four natural
analogues using a Ni-catalyzed reductive cascade in 2018 (Scheme 25) [87]. The asymmetric
conjugated addition of 141 to chiral α,β-unsaturated amide 140 introduced the first stereocenter.
Enol ether 144 was obtained after subsequent reduction, oxidation, acetal formation and elimination.
β-Bromoacetal 145 was produced using 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCD). With the
application of the Ni-catalyzed reductive cascade [88], both 146 and 147 were produced in moderate
yields. After the hydration and oxidation of 146, the synthesis of (+)-deoxypicropodophyllin
was accomplished. (+)-Isodeocypodophyllotoxin can be synthesized from the epimerization at
C9a of (+)-deoxypicropodophyllin under basic conditions. With the radical bromination under
visible-light irradiation [89], and further oxidation treatments, the synthesis of (−)-epipodophyllotoxin
and (−)-podophyllotoxone was achieved in a stepwise fashion. The stereoselective reduction of
(−)-podophyllotoxone using L-Selectride gave (−)-podophyllotoxin. Additionally, compound 147
can be transformed into Meyer’s 150 intermediate for synthesis of (−)-picropodophyllin and
(−)-picropodophyllone through three regular operations [90].Molecules 2018, 23, x 14 of 22 
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Scheme 25. Synthesis of (−)-podophyllotoxin and four natural analogues. Adapted from Peng et al. [87].

The Ni-catalyzed cyclization/cross-coupling has been verified as a suitable strategy for not
only the synthesis of multiple acyclic lignan derivatives (Scheme 8) but also the synthesis of
(±)-dimethylretrodendrin and (±)-collinusin (Scheme 26) by Giri and coworker [64]. Lactone 49
was obtanied from the Ni-catalyzed cyclization/cross-coupling process (Scheme 8). The stereoselective
aldol reaction between 49 and aldehyde 117 and following intramolecular Friedel-Crafts reaction led
to the formation of (±)-dimethylretrodendrin.
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three ester groups. 

Aria and coworkers reported total synthesis of (±)-isolariciresinol using a tandem 
Michael-aldol reaction in 2018 (Scheme 28) [92]. Alcohol 160 was obtained as a diastereomeric 
mixture from the tandem Michael-aldol reaction of dithiane 158, lactone 124 and aldehyde 159 
under basic conditions. After the cleavage of the dithiane substituent and TBS, the following 
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Scheme 26. Synthesis of (±)-dimethylretrodendrin and (±)-collinusin. Adapted from Giri et al. [64].

In the presence of 153, the Ni-catalyzed cyclization/cross-coupling of 46 and 151 and
following oxidation gave lactone 152. The synthesis of (±)-collinusin was completed by subsequent
intramolecular nucleophilic addition and dehydration.

In 2018, Belozerova and coworkers reported the synthesis of sevanol via an oxidative dimerization
strategy (Scheme 27) [91]. Chiral ester 156 was prepared by esterification of acid 154 and chiral alcohol
155. After the removal of two MOM protecting groups of 156, compound 157 was submitted to
FeCl3-promoted oxidative dimerization, affording sevanol after the hydrolysis of all three ester groups.
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Aria and coworkers reported total synthesis of (±)-isolariciresinol using a tandem Michael-aldol
reaction in 2018 (Scheme 28) [92]. Alcohol 160 was obtained as a diastereomeric mixture from the
tandem Michael-aldol reaction of dithiane 158, lactone 124 and aldehyde 159 under basic conditions.
After the cleavage of the dithiane substituent and TBS, the following cyclization furnished 162 as the
major product.

Ester 163 was prepared from methanolysis of the lactone ring and TBS protection operations.
The synthesis of (±)-isolariciresinol was achieved through the subsequent reduction and
deprotection treatments.
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Scheme 29. Synthesis of (±)-ovafolinins A and B. Adapted from Barker et al. [93]. 

Barker and coworkers reported in 2017 the first total synthesis of (±)-ovafolinins A and B 
through the acyl-Claisen rearrangement developed in their lab and a cascade cyclization enabled by 
bulky protecting groups (Scheme 29) [93]. Notably, (±)-ovafolinins A and B have polycyclic 
skeletons rarely found in lignans. The acyl-Claisen rearrangement between acid chloride 165 and 
allylic morpholine 166 afforded amide 167 as a single diastereoisomer and in excellent yields. 
Alcohol 168 was prepared by hydration and reduction. Phenol 169 was introduced through a 
Mitsunobu reaction. Alcohol 170 was obtained after the oxidative cleavage of the double bond and 
following reduction. The subsequent t-butyldiphenylsilyl (TBDPS) protection, debenzylation and 
oxidation led to the formation of compounds 171 and 172 through a cascade cyclization enabled by 
the TBDPS group. The synthesis of (±)-ovafolinins A and B was achieved after subsequent 
hydrogenation and deprotection.  

Scheme 28. Synthesis of (±)-isolariciresinol. Adapted from Aria et al. [92].

Barker and coworkers reported in 2017 the first total synthesis of (±)-ovafolinins A and B through
the acyl-Claisen rearrangement developed in their lab and a cascade cyclization enabled by bulky
protecting groups (Scheme 29) [93]. Notably, (±)-ovafolinins A and B have polycyclic skeletons rarely
found in lignans. The acyl-Claisen rearrangement between acid chloride 165 and allylic morpholine
166 afforded amide 167 as a single diastereoisomer and in excellent yields. Alcohol 168 was prepared
by hydration and reduction. Phenol 169 was introduced through a Mitsunobu reaction. Alcohol 170
was obtained after the oxidative cleavage of the double bond and following reduction. The subsequent
t-butyldiphenylsilyl (TBDPS) protection, debenzylation and oxidation led to the formation of compounds
171 and 172 through a cascade cyclization enabled by the TBDPS group. The synthesis of (±)-ovafolinins
A and B was achieved after subsequent hydrogenation and deprotection.
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Scheme 29. Synthesis of (±)-ovafolinins A and B. Adapted from Barker et al. [93].

Taking advantage of the above achievement, Barker and coworkers reported the first asymmetric
total synthesis of (+)-ovafolinins A and B (Scheme 30). Starting from acid chloride 165 again, chiral
amide 174 was first prepared. Stereoselective allylation and dihydroxylation of the double bond
led to the generation of lactone 176. After the reduction and oxidative cleavage of the 1,2-diol motif,
lactone 177 was formed by Fétizon oxidation. The introduction of the benzyloxymethyl group and the
following reduction led to the formation of 179. After TBDPS protection, Mitsunobu reaction with 181
and debenzylation, alcohol 180 was obtained. Chiral 172 was formed through a cascade cyclization
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under oxidative conditions. Finally, the first asymmetric synthesis of (+)-ovafolinins A and B was
achieved after deprotection operations. Based on optical rotation comparisons between the synthetic
samples and the natural compounds, Barker’s group demonstrated that natural ovafolinins A and
B were both isolated in scalemic mixtures. And the original stereochemical assignment of natural
ovafolinin B was corrected.Molecules 2018, 23, x 17 of 22 
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Recently, we developed a new asymmetric synthetic route to (+)-ovafolinins A and B
(Scheme 31) [94]. Starting from benzyl syringaldehyde 182, bromide 183 was prepared after reduction
and bromination. The diastereoselective alkylation of (S)-Taniguchi lactone 184 introduced two adjacent
stereogenic centers in excellent stereoselectivity, affording lactone 185. Subsequent double benzyl
protection opened the lactone ring and generated ester 186. Compound 189 was obtained from the
reduction and connected with 188 through Mitsunobu reaction. After oxidative cleavage of double
bond, aldehyde 190 was obtained. The polycyclic skeleton in 191 was constructed through a double
Friedel-Crafts reaction of 190. The synthesis of (+)-ovafolinin B was accomplished through the global
debenzylation. And the synthesis of (+)-ovafolinin A was achieved through subsequent benzylic
oxidation cyclization enabled by Cu(OAc)2.
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5. Conclusions

In this review, we have summarized the advances in the synthesis of lignan natural products
reported from 2008 to 2018. Synthetic progress in three areas was outlined: acyclic lignan derivatives,
dibenzocycooctadiene derivative and arylnaphthalene derivatives. Novel synthetic methodologies
had been applied for construction of challenging structures existing in lignan natural products. As the
result, many elegant synthetic approaches to lignans had been developed. However, as a long term
program, the promising biological features and development of concise synthetic approaches to
lignan natural products and their analogues are continuing to attract more and more interest from the
pharmaceutical industry and the organic synthesis community.
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