Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application

Jie Zhu¹, Hua Han¹, Tingting Ye¹, Faxue Li^{1,*}, Xueli Wang², Jianyong Yu²

and Dequn Wu 1,*

- ¹ Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China; zj910205@126.com; hanhua8983309@163.com; dhuytt@sina.com; fxlee@dhu.edu.cn; dqwu@dhu.edu.cn
- ² Modern Textile Institute, Donghua University, Changning District, Shanghai 200051, China; wxl@dhu.edu.cn; yujy@ dhu.edu.cn
- * Correspondence: dqwu@dhu.edu.cn; Tel.: +86-182-1770-0746

The crosslinking density (1/Mc) could be estimated by Flory-Rehner's equation (Equation S1 and S2) as shown below [1,2].

$$Q_V^{5/3} = \frac{v}{V} \left(\frac{1}{2} - x\right) M_C \tag{S1}$$

$$Q_V = 1 + \frac{\rho}{\rho_s} (Q_M - 1)$$
(S2)

In this equation, *Mc* is average molar mass between the network crosslinks, Qv is the volume swelling ratio of hydrogels, v is the polymer volume, V is the molar volume of H₂O, x is the Flory interaction parameter between a solvent and a polymer, ρ is the polymer density and ρ_s is the density of H₂O. The estimation crosslinking density result of hydrogels (pH = 7) is shown below.

Table S1. Calculation results of crosslinking density of hydrogels (pH = 7).

Hydrogel	Crosslinking Density (10-5)
Gel-1	5.2
Gel-2	5.7
Gel-3	6.0
Gel-4	6.8

Figure S1. The pore size and size distribution measured from the SEM images of freeze-dried (a) Gel-1, (b) Gel-2, (c) Gel-3 and (d) Gel-4 hydrogels. The pore sizes of Gel-1, Gel-2, Gel-3 and Gel-4 were about 9.78 ± 1.59 , 7.22 ± 1.46 , 4.79 ± 0.86 and $3.00 \pm 0.46 \mu m$, respectively. It could be seen that with the increasing of peptide-based bis-acrylate contents, the pore size of the hydrogels would decrease.

References

- 1. Bo, J. Study on PVA hydrogel crosslinked by epichlorohydrin. *J. Appl. Polym. Sci.* **1992**, *46*, 783–786, DOI: 10.1002/app.1992.070460505.
- Adnadjevic, B.; Jovanovic, J. Hydrogel synthesis directed toward tissue engineering: impact of reaction condition on structural parameters and macroscopic properties of xerogels. *Int. J. Polym. Sci.* 2011, 343062, DOI: 10.1155/2011/343062.