Supplementary Materials

Cardiovascular profile of xanthone-based 1,4 dihydropyridines bearing a lidoflazine pharmacophore fragment

Alessandra Bisi*, Matteo Micucci, Silvia Gobbi, Federica Belluti, Roberta Budriesi, Angela Rampa.

Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126 Bologna, Italy **Table S1.** Activity of Tested Compounds on K⁺-depolarized Guinea Pig Vascular Smooth Muscle.

	Aorta		
Cpd	Activity ^d	IC ₅₀ ^e	95% conf lim
	(m ± SEM)	(µM)	(x10 ⁻⁶)
Nif.	82 ± 1.3^{f}	0.009	0.003-0.02
Lidofl	42 ± 1.7^{g}		
1^a	59 ± 4.9 ^{<i>g</i>}	0.76	0.69–0.85
2^a	7 ± 0.2		
3a ^b	51 ± 2.2	2.18	1.88-2.36
4 a	16 ± 0.7		
5a	20 ± 0.3		
3 b ^b	55 ± 1.6	1.04	0.78–1.37
4b	21 ± 1.3		
5b	48 ± 2.1		
3c ^c	44 ± 3.4		
4c	6 ± 0.3		
5c	25 ± 2.0		
3d ^c	31 ± 2.8		
4d	9 ± 0.9		
5d	36 ± 2.3		
3e ^c	33 ± 2.5		
4 e	9 ± 0.3		
5e	6 ± 0.2		

^{*a*}Taken from ref 1. ^{*b*}Taken from ref 2. ^{*c*}Taken from ref 3. ^{*d*}Percent inhibition of calcium-induced contraction on K⁺-depolarized (80 mM) guinea pig vascular smooth muscle (aortic strips) at 5x10⁻⁵ M. For compounds that reach the maximum intrinsic activity at concentrations different from those indicated in "d" the maximum active concentration is indicated with a specific superscribed letter. ^{*e*}Calculated from log concentration-response curves (Probit analysis by Litchfield and Wilcoxon [20] with n = 6-7). When the maximum effect was <50%, the IC₅₀ values were not calculated. ^{*f*}At 10⁻⁶ M. ^{*g*}At 10⁻⁵ M. Bold: unpublished data. Conf lim: confidential limit.

Figure S1. ¹H NMR spectra of new compounds.

4b

4c

STANDARD 18 OBSERVE - profile

Sample Nane: 1314 Data Collected on: agilent400-vnmrs400 Archive directory:

Sample directory:

FidFile: PROTON

Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Nov 13 2018

Figure S2. ¹³C NMR spectra of new compounds.

References

1. Chiarini A, Rampa A, Budriesi R, Bisi A, Fabbri G, Valenti P. 1,4-Dihydropyridines bearing a pharmacophoric fragment of lidoflazine. *Bioorg Med Chem*. 1996; 10:1629-1635.

2. Valenti P, Chiarini A, Gasperi F, Budriesi R. Xanthone 1,4-dihydropyridine derivatives with a potent selective bradycardic effect. *Arzneimittelforschung*. 1990; 40:122-125.

3. Chiarini A, Rampa A, Bisi A, Budriesi R, Valenti P. Negative inotropic and chronotropic activity of calcium channel ligands possessing a xanthone 1,4-dihydropyridine backbone. *Arzneimittelforschung*. 1992; 42:797-801.