Supporting Information

Natalenamides A-C, Cyclic Tripeptides from the Termite-associated *Actinomadura* sp. RB99

Seoung Rak Lee¹, Dahae Lee¹, Jae Sik Yu¹, René Benndorf², Sullim Lee³, Dong-Soo Lee⁴, Jungmoo Huh⁵, Z. Wilhelm de Beer⁶, Yong Ho Kim⁷, Christine Beemelmanns², Ki Sung Kang⁴, and Ki Hyun Kim^{1,*}

- ¹ School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; <u>davidseoungrak@gmail.com (S.R.L.)</u>; <u>pjsldh@naver.com</u> (D.L.); jsyu@bu.edu (J.S.Y.)
- ² Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; <u>rene.benndorf@hki-jena.de</u> (R.B.); <u>Christine.beemelmanns@hki-jena.de</u> (C.B.)
- ³ College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea; sullimlee@gachon.ac.kr (S.L.)
- ⁴ College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; vet4animal@hotmail.com (D.-S.L.); kkang@gachon.ac.kr (K.S.K.)
- ⁵ College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; <u>goodhjm112@snu.ac.kr</u> (<u>J.H.</u>)
- ⁶ Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria, South Africa; wilhelm.debeer@fabi.up.ac.za (Z.W.B.)
- ⁷ SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea; <u>yhkim94@skku.edu</u> (Y.H.K.)
- * Correspondence: khkim83@skku.edu; Tel.: +82-31-290-7700

Supporting Information Contents:

Figure S1. HR-ESIMS data of 1	S3
Figure S2. ¹ H NMR spectrum of 1 (CD ₃ OD, 800 MHz)	S4
Figure S3. ¹ H- ¹ H COSY spectrum of 1 (CD ₃ OD)	S5
Figure S4. HSQC spectrum of 1 (CD ₃ OD)	S6
Figure S5. HMBC spectrum of 1 (CD ₃ OD)	S7
Figure S6. HR-ESIMS data of 2	
Figure S7. ¹ H NMR spectrum of 2 (CD ₃ OD, 800 MHz)	
Figure S8. ¹ H- ¹ H COSY spectrum of 2 (CD ₃ OD)	S10
Figure S9. HSQC spectrum of 2 (CD ₃ OD)	S11
Figure S10. HMBC spectrum of 2 (CD ₃ OD)	S12
Figure S11. HR-ESIMS data of 3	S13
Figure S12. ¹ H NMR spectrum of 3 (CD ₃ OD, 800 MHz)	S14
Figure S13. ¹ H- ¹ H COSY spectrum of 3 (CD ₃ OD)	S15
Figure S14. HSQC spectrum of 3 (CD ₃ OD)	S16
Figure S15. HMBC spectrum of 3 (CD ₃ OD)	S17
Figure S16. Retention times of the L-FDAA derivatized amino acids of standards	S18–25
Figure S17. Retention times of the L-FDAA derivatized amino acids from compound 1	
Figure S18. Retention times of the L-FDAA derivatized L-Leu from compound 2	S29
Figure S19. Stimulation of production of compounds 1–3	S30
Figure S20. Expanded key HMBC correlations of 1	S31–33
Figure S21. Expanded key HMBC correlations of 2	S34–36
Figure S22. Expanded key HMBC correlations of 3	S37–39
Figure S23. LC/MS analysis of compounds 1-3	S40–S41
Figure S24. Inhibitory effects of three fatty acid analogues on melanin content in B16F10 cells	S42
Structural elucidation of the impurities in compound 3	S43
Figure S25. Neighbor-joining tree based on almost complete 16S rRNA gene sequences	S44

Figure S1. HR-ESIMS data of 1

Figure S2. ¹H NMR spectrum of 1 (CD₃OD, 800 MHz)

S4

Figure S3. ¹H-¹H COSY spectrum of 1 (CD₃OD)

Figure S6. HR-ESIMS data of 2

S10

S12

Figure S11. HR-ESIMS data of 3

Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	Н	N	0	Na	^	~
446.1694	446.1705	-1.1	-2.5	17.5	C24 H21 N7 O Na	223.7	0.369	69.12	24	21	7	1	1		
	446.1689	0.5	1.1	16.5	C21 H20 N9 O3	225.2	1.846	15.79	21	20	9	3			1
	446.1692	0.2	0.4	12.5	C23 H25 N3 O5 Na	225.4	2.086	12.42	23	25	3	5	1		
	446.1716	-2.2	-4.9	15.5	C25 H24 N3 O5	227.6	4.269	1.40	25	24	3	5			
	446.1676	1.8	4.0	11.5	C20 H24 N5 O7	228.5	5.150	0.58	20	24	5	7			
	446.1729	-3.5	-7.8	20.5	C26 H20 N7 O	229.1	5.704	0.33	26	20	7	1			
	446.1665	2.9	6.5	13.5	C19 H21 N9 O3 Na	229.5	6.162	0.21	19	21	9	3	1		
	//6 1732	-3 S	-8.5	16.5	C28 H25 N O3 Na	220.7	7 250	0.06	28	25	1	2	1	Y	1

Figure S12. ¹H NMR spectrum of 3 (CD₃OD, 800 MHz)

1) L-Glu

5) L-Phe

7) L-Leu

8) D-Leu

Figure S18. Retention times of the L-FDAA derivatized L-Leu from compound 2

Figure S19. Stimulation of production of compounds 1-3

Actinomadura sp. RB99 was grown in 500 mL ISP2 broth supplemented with varying NaCl concentrations (1-3%) for 10 days at 30 °C. Culture supernatant was extracted with activated HP20 resin using the following steps: 1. Wash step using 1 L dH₂O, 2. elution with 20% MeOH (500 mL), 50% MeOH (500 mL), 100% MeOH (500 mL) and 100% Acetone (500 mL). Organic solvents were evaporated under reduced pressure and resuspended in 20% MeOH and purified using an activated SPE C18 column using the following step gradient (20% MeOH, 50% MeOH, 80% MeOH, 100% MeOH). SPE fractions were analysed using HRMS and HPLC-UV and main metabolite signals dereplicated using an in-house MS/UV data base.

