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Abstract: For proteins entering the secretory pathway, a major factor contributing to maturation and
homeostasis is glycosylation. One relevant type of protein glycosylation is O-mannosylation, which
is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide
study in the eukaryotic model organism Saccharomyces cerevisiae revealed that more than 26% of all
proteins entering the secretory pathway receive O-mannosyl glycans. In a first attempt to understand
the impact of O-mannosylation on these proteins, we took advantage of a tandem fluorescent timer
(tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of
137 unique O-mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in
mutants lacking the major protein O-mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three pmt∆
mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins
could be identified. We observed that O-mannosylation may cause both enhanced and diminished
protein abundance and/or stability when compromised, and verified our findings on the examples of
Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards
unraveling the multiple functions of O-mannosylation at the molecular level.

Keywords: glycosylation; mannosyltransferase; fluorescent protein timers; secretory pathway;
O-mannosyl glycans; protein turnover; Saccharomyces cerevisiae; PMT1; PMT2; PMT4; yeast

1. Introduction

O-Mannosylation is an evolutionarily conserved protein modification that was first described in the
yeast Saccharomyces cerevisiae [1]. Very recently, different families of protein O-mannosyltransferases have been
identified, and it has become obvious that O-mannosylation is much more diverse than originally thought [2].
Here, we are focusing on O-mannosylation based on PMT-family Protein O-MannosylTransferases.
This essential protein modification is conserved among fungi, animals, and human [3].

PMTs initiate O-mannosylation in the endoplasmic reticulum (ER) transferring mannose from
dolichol phosphate-activated mannose to serine and threonine residues of their protein substrates [3].
In baker’s yeast, the PMT-family comprises seven members (Pmt1 to Pmt7), among which Pmt1-Pmt2
heteromeric and Pmt4 homomeric complexes are the most potent transferases in vivo [4]. These polytopic
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ER membrane enzymes act on their substrate proteins during and/or after translocation of those into
the ER, and show different selectivity towards acceptor polypeptides [4]. Several substrate proteins
are mainly mannosylated by Pmt1-Pmt2, others by Pmt4. In addition, there are examples, such as
Ccw5, in which Pmt1-Pmt2 and Pmt4 complexes act on the same protein, but mannosylate distinct
regions [5]. Usually, canonical target proteins are highly O-mannosylated, and the mannosyl chains are
clustered in serine/threonine-rich regions. Signals determining O-mannosylation of substrate proteins
and selectivity of the PMT-family members are not yet understood. O-Mannosylated proteins can leave
the ER and enter the Golgi apparatus once they are properly folded. The protein-bound mannoses can be
further elongated by α-1,2- and α-1,3-mannosyltransferases in the Golgi apparatus with GDP-mannose
as carbohydrate donor [6]. In this way, short linear oligomannose chains are formed. The recently
established S. cerevisiae O-mannose glycoproteome showed that at least 26% of the proteins that are
targeted to the secretory pathway receive O-mannosyl glycans [7].

Baker’s yeast is an ideal eukaryotic model to study the functional impact of PMT-based
O-mannosylation. The characterization of viable single (e.g., pmt1∆, pmt2∆ or pmt4∆) and conditional
lethal multiple pmt∆ (e.g., pmt2pmt4∆) mutants revealed that O-mannosylation is important for the
formation and maintenance of a functional cell wall, which is a vital structure for yeasts and other fungi [8].
Genome-wide studies further showed that biosynthetic pathways of certain cell wall components, as well
as signaling pathways that counteract cell wall defects, are crucial for cell growth when O-mannosylation
becomes limiting [9,10]. In addition, a signaling pathway that counteracts unbalanced ER protein
homeostasis, namely the unfolded protein response, becomes indispensable for cell growth when
O-mannosylation is impaired, suggesting a role of this modification for proper protein maturation,
stability, and/or localization [9,10]. In agreement, O-mannosyl glycans are known to play crucial
roles in maintaining the stability of certain canonical substrates of PMTs. For example, abrogating
O-mannosylation by Pmt1, Pmt2, or Pmt4 impacts the maturation and significantly reduces the stability
of the plasma membrane sensors of cell wall integrity: Wsc1, Wsc2, Mid2, and Mtl1 [11,12]. Similar effects
were observed for Sec20, a tSNARE involved in retrograde vesicle trafficking, which displays maturation
defects and decreased stability in pmt∆ mutants of the human pathogenic yeast Candida albicans [13].
Pmt1 and Pmt2 also play a role in ER protein quality control, which broadly monitors the folding state of
secretory proteins and triggers their degradation in case of error [14]. In this scenario, O-mannosyl glycans
can increase the solubility of misfolded proteins, and thereby support their exit from the ER. Depending
on the nature of the protein model studied, degradation by either the ER-associated degradation pathway
or in the vacuole, as well as secretion out of the cell, have been reported [15–19]. O-Mannosyl glycans
have even been suggested as molecular timer abrogating futile folding cycles of polypeptide chains in the
ER [20]. The diverse effects of O-mannosyl glycans on both canonical acceptor proteins and in protein
quality control so far have been studied for a very limited number of proteins [4].

We recently described the yeast O-mannose glycoproteome and identified 293 O-mannosylated
putative PMT-target proteins [7]. In addition to cell wall proteins, many proteins of the secretory
pathway and the plasma membrane have been identified as targets of O-mannosylation for the first
time. In a first attempt to understand the impact of O-mannosylation on these proteins, it is imperative
to know whether (and which of) the substrate proteins are affected in terms of their stability and
localization in the absence of O-mannosylation. In this study, we used fusions to the tandem fluorescent
timer reporter to monitor protein dynamics of 137 unique O-mannosylated proteins in pmt1∆, pmt2∆,
and pmt4∆ mutants in vivo. This reporter functions as a fluorescent timer protein, and by this it
accounts for protein stability. Since fluorescent proteins are affected also by the physico-chemical
environment, they simultaneously also serve as sensors for the altered localization of proteins [21–23].

2. Results

2.1. Large Scale Analysis of the Impact of O-Mannosylation on Protein Stability Using Tandem Fluorescent Protein Timers

We used the tandem fluorescent protein timer (tFT) approach to address the impact of
O-mannosylation on the stability of secretory and membrane proteins in living cells. As demonstrated
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recently by mass spectrometry ([7]; Supplemental Table S1), 137 candidate proteins carrying O-mannosyl
glycans were selected from a genome-wide library of yeast strains each expressing a different C-terminally
tagged tFT-fusion protein [21]. The tFT tag is composed of two fluorescent proteins, mCherry and
superfolder GFP (sfGFP), whose fluorophores have distinct maturation kinetics (Figure 1a, [21]). The
fluorophore of sfGFP matures rapidly and becomes fluorescent shortly after protein translation is
completed. In contrast, the fluorophore of mCherry matures slowly and the protein takes much longer to
become fluorescent. The fluorescence intensities of the two proteins can be monitored and quantified
independently of each other in vivo. The difference in green fluorescence by sfGFP is therefore indicative
for changes in protein abundance. The difference in mCherry fluorescence compared to sfGFP fluorescence
intensity, on the other hand, allows us to measure differences in steady-state protein stability: a decrease
of the intensity ratio indicates an increase of the degradation rate of the tFT-fusion protein, and vice
versa [21]. In addition, both proteins exhibit different pKa values and protease sensitivity. Thus, in
case the tFT reporter is facing the lumen, it can be expected that it might also report alterations of the
environment, e.g., neutral pH in the ER and Golgi versus acidic pH in the vacuole.
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Putting our main focus on O-mannosylated proteins of the endomembrane system, the vacuole 
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Figure 1. Tandem fluorescent protein timer (tFT) screening. (a) Representation of a C-terminal
tFT-fusion protein analyzed. The slow maturing mCherry and the fast maturing sfGFP are fused
in tandem to the C-terminus of O-mannosylated proteins of interest. (b) Workflow of the screening
of the selected fusion proteins. In brief, 137 individual tFT fusions of the tFT library established by
Khmelinskii and coworkers [21] were selected based on the presence of O-mannosyl glycans on these
proteins [7]. The 137 tFT query strains were crossed with pmt1∆ (MLY201), pmt2∆ (MLY202), or pmt4∆
(MLY204) mutants using synthetic genetic array methodology [24]. Haploid yeast strains carrying
both genetic modifications (tFT-fusion and pmt deletion) were selected. mCherry/sfGFP ratio was
calculated for each protein and used for comparison between wild-type and mutants.

Putting our main focus on O-mannosylated proteins of the endomembrane system, the vacuole
and the plasma membrane, we introduced pmt1∆, pmt2∆ andpmt4∆ deletion alleles into the selected
subset of the tFT library strains using high-throughput genetic crosses ([24]; Supplemental Table S1).
Three replicates of each cross and an untagged control strain (to monitor background fluorescence)
were arranged next to each other on synthetic complete medium lacking leucine. The mCherry and
sfGFP fluorescence intensities of the final yeast colonies were recorded after growth at 30 ◦C for 24 h
using a fluorescent plate reader (Figure 1b).

The effect of pmt1∆, pmt2∆, and pmt4∆ deletion on each of the 137 unique tFT-fusion proteins was
quantified as ∆-score, as detailed in Materials and Methods. sfGFP and mCherry/sfGFP intensity ∆-scores
are indicative for changes in protein abundance and stability, respectively. Negative mCherry/sfGFP
∆-score values indicate stabilization, while positive values show destabilization of the tFT-fusion protein
in the mutant compared to the wild-type. Further, for fusion proteins with the tFT-reporter positioned
in the lumen of the secretory pathway or the vacuole, changes in ∆-score values might also point to
differences in localization. As shown in Figure 2a,b, the majority of the analyzed proteins were not
or only marginally affected in the three mutants (Supplemental Table S1; Supplemental Figure S1).
For some proteins, however, significant changes of the ∆-score values could be detected (Figure 2a,b;
Supplemental Table S1). In the three pmt∆ mutants, a total of 39 individual proteins were clearly influenced.
Among those, the tFT-fusion proteins Pmt3, Tsc3, Kre6, Opy2, Vth2, Ted1, Fab1, Lam6, YNL058c, Coy1,
Osm1, YCR061w, Sec12, Nis1, and Mnl2 showed the strongest changes (Supplemental Table S1; net
∆-score > 0.5; p-value < 0.1). According to TOPCONS [25], C-terminal tFT reporter of at least 59% of the
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identified proteins is oriented towards the cytosol (Figure 2c). Accordingly, their ∆-scores are indicative
of relevant changes in protein abundance and/or stability. We also analyzed the localization of genuine
representatives with different C-terminal orientation of the reporter (e.g., Axl2, Coy1, Kre6, Mnn11, Osm1,
Sec12, Ted1, Tsc3, Vrg4, Wsc2) using live fluorescence microscopy. No major differences in localization
could be observed between wild-type and mutant for any of those proteins (see below and data not
shown). Thus, it is highly likely that for the majority of the identified tFT proteins, abundance, and/or
stability, rather than localization, are affected.
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Figure 2. Identification of proteins affected in pmt1∆, pmt2∆ and pmt4∆ deletion mutants. (a) Volcano
plots illustrating changes in tFT-fusion protein stability in the indicated mutant strains with regard to
statistical significance of data as inferred from variance analysis. Plots show ∆-scores mCherry/sfGFP
for changes in protein stability on the x-axis and the negative logarithm of p-values on the y-axis. Data
were subset for relevance based on thresholds as indicated by red dashed lines (p-value < 0.1 and
net ∆-score > 0.2). (b) Correlation of ∆-scores mCherry/sfGFP, as a measure of tFT-fusion protein
stability and turnover (x-axis), and ∆-scores sfGFP, as a measure of change in protein abundance
(y-axis). (a,b) Data referring to proteins further analyzed or discussed in this study are labeled in red.
The example of Vrg4-tFT shows, that even minor effects could be reproducibly detected. (c) Heatmap
with hierarchical clustering of ∆-scores mCherry/sfGFP from a subset of data that passes the thresholds
of significance in at least one of the indicated mutant strains (p-value < 0.1 and net ∆-score > 0.2).
Cytosolic and luminal orientation of the tFT reporter is indicated with C and L, respectively.
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Hierarchical clustering groups selected tFT-fusion proteins, which are affected similarly by a
lack of Pmt1, Pmt2, or Pmt4, and highlights differences in response to the absence of particular Pmts
(Figure 2c). For instance, Pmt3 and Sec12 are stabilized in the three mutants, whereas Tsc3 and Wsc2
are destabilized. In agreement, an increase in the abundance of the PMT-family member Pmt3, as
well as aberrant maturation of the plasma membrane sensor protein Wsc2, have been shown in pmt∆
mutants at steady state in the past by Western blot [11,26–28]. Other tFT-fusion proteins, however,
show distinct effects; for instance, Opy2 is destabilized in pmt1∆ and pmt2∆, but not pmt4∆, whereas
for Axl2 (see below), the opposite effect holds true.

In summary, using the tFT technology, we identified several glycoproteins that are affected most
likely in abundance and/or stability upon decrease of O-mannosylation. Consistent with the manifold
effects of O-mannosyl glycans described so far, protein stabilization as well as destabilization could
be observed.

2.2. Validation of the Screening Results on the Example of Axl2

To further address the validity of our findings, we chose the well-characterized type I plasma
membrane protein Axl2 as an example. Axl2 was among the proteins with the strongest ratio change
destabilized proteins in mutant pmt4∆ (Figure 2a–c). Axl2 is required for axial budding in haploid
cells [29]. The glycoprotein has been experimentally confirmed as a canonical Pmt4-specific substrate
which is less stable in absence of O-mannosylation [30]. In agreement, our screen identified the Axl2-tFT
protein to be destabilized in pmt4∆ but not in pmt1∆ and pmt2∆ mutants (Figure 2c). We created an
independent pmt4∆ knock out strain expressing Axl2-tFT and confirmed the destabilization of the
tFT-fusion protein also under conditions of logarithmic growth using fluorescence flow cytometry
(Table 1).

Table 1. Fluorescence flow cytometry of selected candidate strains. Fluorescence intensities of sfGFP
and mCherry were measured by flow cytometry in mutants EZY107 (pmt4∆, Axl2-tFT), EZY91 (pmt1∆,
Kre6-tFT), EZY96 (pmt1∆, Vrg4-tFT), EZY106 (pmt2∆, YNL058C-tFT) and the corresponding wild-type
strains. Intensity ratios were calculated as detailed in Materials and Methods. Ratios > 1 and < 1
are indicative for protein destabilization and stabilization, respectively. Mean ± SD values of three
measurements are shown. Indicated p-values were calculated using Student’s t-test.

pmt∆ Mutant tFT-Fusion Protein WTmCherry/sfGFP/pmt∆mCherry/sfGFP ± SD p-Value

pmt4∆ Axl2 1.118 ± 0.033 0.088
pmt1∆ Kre6 0.842 ± 0.027 0.037
pmt1∆ Vrg4 0.873 ± 0.040 0.047
pmt2∆ YNL058C 0.787± 0.042 0.010

As described for the wild-type protein, Axl2-tFT marks the presumptive bud site and is found in
ring structures at the mother-bud neck in wild-type cells (Figure 3a, [29,30]). In the mutant pmt4∆, the
Axl2-tFT protein is largely localized to the vacuole and shows a similar degradation pattern to that
previously described for a functional HA-tagged version of the protein (Figure 3b, [30]).

Our data confirm that the tFT readout allows tracking the impact of O-mannosylation on the
stability of glycoproteins and thereby even PMT-specific substrates can be identified.
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Figure 3. Analyses of Axl2-tFT protein. (a) Live fluorescence microscopy of both wild-type (WT; WT
Axl2-tFT) and pmt4∆ (EZY107) cells expressing the Axl2-tFT. Prior to imaging, cells were stained with
the vacuolar vital dye 7-amino-4-chloromethylcoumarin (CMAC). Scale bar, 5 µm. (b) Membranes
(equivalent to 1 OD600 units of yeast cells) from wild-type and pmt4∆ cells expressing Axl2 C-terminally
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2.3. Defects in O-Mannosylation Result in Protein Stabilization

Interestingly, our screening revealed many proteins to be stabilized when O-mannosylation is
decreased (supplemental Table S1; Figure 2a–c). This finding is particularly interesting in view of the
suggested role of O-mannosylation by Pmt1 and Pmt2 in the turnover of several misfolded protein
models [14].

To further examine this issue, we created independent pmt∆ mutants expressing the most
stabilized tFT-fusion proteins identified with a p-value < 0.015 in pmt1∆ or pmt2∆ (Supplemental
Table S1), and analyzed protein stability by fluorescence flow cytometry. Among the selected
tFT-fusions, stabilization of Kre6, Vrg4 and YNL058c could also be confirmed under conditions
of logarithmic growth (Table 1).

To rule out effects of pmt∆ strains leading to protein stabilization that are not related to protein
turnover, only strains with sfGFP/mCherry and sfGFP intensity ∆-score values that indicate increased
stability and abundance, respectively, were considered. The Kre6-tFT fusion protein meet all the
requirements suggesting impaired degradation, and showed the biggest change of both parameters
compared to other tFT-fusions in mutants pmt1∆ as well as pmt2∆ (Figure 2a,b).

Kre6 is a type II transmembrane protein involved in the biosynthesis of cell wall β-1,6-glucan [31].
It has been demonstrated previously that a large proportion of the native Kre6 protein is localized
in the ER, but a fraction of the protein is also found at the plasma membrane at sites of cell wall
growth [32]. Here we observe that the Kre6-tFT fusion protein is present in the ER, but especially in the
vacuole (Figure 4a; sfGFP), with the older protein being found exclusively in the vacuole (Figure 4a;
mCherry). In mutant pmt1∆, Kre6-tFT is more abundant, and its localization largely corresponds to
that in wild-type cells (Figure 4a). The correct localization of other type II transmembrane proteins,
such as the Golgi mannosyltransferase Mnn11, is not changed by the C-terminal tFT (Figures 4b and
5a), ruling out that the orientation of the tFT towards the ER lumen does per se alter protein sorting
and/or targeting. It was previously shown that the multiple ER chaperon-like proteins contribute to
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the correct folding and localization of Kre6 [33,34]. Thus, the large C-terminal tFT tag might hamper
such interactions and in turn Kre6 ends up in the vacuole.

Next, we monitored abundance of Kre6-tFT in cell lysates of wild-type and pmt1∆ cells by
SDS-PAGE and Western blot. In addition, stability of the protein was examined by cycloheximide
chase analysis as detailed in Material and Methods. As shown in Figure 5b, at steady state significantly
more Kre6-tFT protein could be detected in pmt1∆ cells when compared to wild-type. Following the
addition of the translational inhibitor cycloheximide, Kre6-tFT was readily degraded in wild-type
cells. However, loss of Pmt1 substantially stabilized the tFT-fusion protein (Figure 5c) confirming that
degradation of the Kre6-tFT protein is negatively affected in absence of Pmt1.

In summary, our data show that the tFT readout allows tracking the impact of O-mannosylation
not only on the stability of canonical target proteins, but also subtle effects on the degradation of
mislocalized and/or misfolded proteins.Molecules 2018, 23, x FOR PEER REVIEW  7 of 14 
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Figure 5. Analyses of Kre6-tFT protein. (a) Topology model of Axl2, Kre6 and Mnn11 depicting the
orientation of the tFT timer for type I and type II transmembrane proteins. (b,c) Cell lysates from
wild-type (WT; WT Kre6-tFT) and pmt1∆ (EZY91) cells expressing Kre6-tFT were resolved on 8%
polyacrylamide gels and subjected to Western blot analysis using anti-GFP antibodies. Pgk1 served
as a loading control. (b) Steady state levels of Kre6-tFT. Cell lysates equivalent to 0.2 OD600 units of
yeast cells were analyzed. (c) Cycloheximide chase analysis as detailed in Materials and Methods.
Cell lysates equivalent to 0.2 OD600 units (1x; pmt1∆) and 0.4 OD600 units (2x; WT) of yeast cells
were analyzed, to allow for better comparability. (b,c) Three forms of Kre6-tFT were detected as
previously demonstrated for the native protein [33]. The major band is more abundant at steady state
(b) and slower degraded (c) in mutant pmt1∆. Experiments have been replicated at least two times;
representative results are shown.



Molecules 2018, 23, 2622 8 of 15

3. Discussion

In yeast and other eukaryotes, about 20–30% of all gene products are entering the secretory
pathway [35]. During or after translocation, these proteins potentially become subject to modification
by protein glycosylation, which is a major function of the ER and a major factor contributing to
a protein’s cellular fate. A recent proteome-wide screening identified about 290 glycoproteins
as targets of PMT-based O-mannosylation. O-mannosyl glycans were assigned to 68% of all cell
wall proteins, 22% of the ER-localized, 18% of the Golgi-resident, 17% of the vacuolar, and 16%
of all plasma membrane annotated proteins [7]. To investigate what impact O-mannosylation has
for a subset of these proteins, we took advantage in this study of the tandem fluorescent timer
approach that, in recent years, was successfully applied to monitor changes in protein abundance
and turnover on a proteome-wide scale [21,22,36]. We analyzed tFT fusions of 137 proteins mainly of
the secretory pathway, the vacuole and the plasma membrane. Due to the C-terminal localization of
the tFT, glycosylphosphatidylinositol (GPI)—anchored cell wall proteins, which are major targets of
O-mannosylation [7], could not be included.

Under the applied conditions, the abundance and stability of the majority of proteins tested was
not strikingly affected (supplemental Table S1; Figure 2). Nevertheless, in the three pmt∆ mutants,
a total of 39 individual proteins was clearly influenced (Figure 2a–c). Among those, Nis1, YJR015W,
Mnl2, Sec12, Emp24, Vtc1, Mns1, Prm5 and Pmt3 show negative mCherry/sfGFP ∆-score values,
indicating increased protein abundance and/or stability in pmt1∆, pmt2∆ and pmt4∆. These proteins
are involved in either ER protein quality control (Mnl2, Mns1, Emp24), cell integrity signaling (Prm5),
or membrane trafficking (Sec12, Vtc1); pathways that are affected when O-mannosylation becomes
limiting [10]. The transcription of some of the corresponding genes is enhanced in response to
diminished O-mannosylation [9]. Thus, the observed effects are most likely part of previously described
compensatory mechanisms counteracting O-mannosylation defects [9]. Also, transcription of PMT3
is enhanced in the absence of other Pmts [9]. The O-mannosyltransferase Pmt3, a paralog of Pmt2,
is found among the most significantly increased/stabilized proteins (Figure 2). It was shown by
biochemical means that Pmt3 is only weakly detected in wild-type cells. However, its abundance
strongly increases in the absence of the Pmt1-Pmt2 complex. In addition, the formation of alternative
complexes between Pmt3 and other PMT-family members was demonstrated in the absence of e.g.,
Pmt2 [26], which might further account for stabilization and decreased turnover of Pmt3 revealed in this
work. Furthermore, in all the three pmt∆ mutants, Tsc3 shows positive mCherry/sfGFP ∆-score values,
indicating a decrease in stability when O-mannosylation is diminished (Figure 2a–c). Interestingly,
Tsc3 is involved in the biosynthesis of sphingolipids [37], which are components of membrane domains
critical for the trafficking of GPI anchored proteins out of the ER [38]. GPI-anchored proteins are
major Pmt substrates [7], and Pmt1-Pmt2 complexes were even suggested as a means to facilitate ER
export of these proteins [39]. Thus, our findings point to a coordination between O-mannosylation
and sphingolipid biosynthesis to ensure proper ER export of GPI-anchored proteins. It will be an
intriguing task to unravel that interplay in the future.

In addition to the target proteins which are evenly affected in all pmt∆ mutants, we also found
candidates which are modified specifically in the pmt1∆, pmt2∆ or pmt4∆ mutants. Both increased
as well as decreased protein abundance/stabilization were found. Some of the proteins, such as
Axl2, Kre6 and Van1 (Figure 2c), show similar behavior in mutants pmt1∆ and pmt2∆ (negative
mCherry/sfGFP ∆-scores) which differ from pmt4∆ (positive mCherry/sfGFP ∆-score), most likely
reflecting varying specificity of Pmt1-Pmt2 and Pmt4 complexes towards their canonical protein
substrates [5,40,41]. Furthermore, as shown in Figure 2, more tFT-fusion proteins revealed negative
mCherry/sfGFP ∆-score values in mutant pmt2∆ and pmt4∆ when compared to pmt1∆. For example
in mutant pmt2∆, 11 (Jem1, Emp24, Fab1, Tgl4, Vtc1, YNL058C, Ire1, Lam6, Van1, Vth2, YPR063C) and
two (Sur1, YCR061W) tFT-fusion proteins with negative and positive ∆-score values (p-value < 0.1 and
net ∆-score > 0.2) could be detected, indicating that more proteins are stabilized than destabilized when
Pmt2 is absent. Only in mutant pmt2∆, proteins important during ER stress conditions, such as Ire1
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and Jem1, and for vacuolar sorting, such as Fab1 and Vth2, are among the most abundant/stabilized
proteins (Supplemental Table S1; Figure 2c). Our data are in agreement with the previously described
role of Pmts, predominantly of Pmt2, in ER protein quality control [14,19,20], and support a specific
role of Pmt2 for ER protein homeostasis. Further, our findings substantiate the reported varying
impact on Pmt1 and Pmt2 on protein targets [19,20,41], and support distinct roles and/or acceptor
specificities of the mannosyltransferases in the Pmt1-Pmt2 complex. Differences of these enzymes are
also reflected by the distinct phenotypes of pmt1∆ and pmt2∆ mutant strains not only in S. cerevisiae [8],
but also in Schizosaccharomyces pombe, where deletion of the Pmt2- but not the Pmt1-orthologue results
in lethality [42].

The tFT screen highlighted PMT-substrates whose stability is altered by defects of the PMT
machinery. Among the identified proteins, there may be canonical Pmt targets for which O-mannosyl
glycans are critical to ensure protein stability. As a proof of concept, we identified Axl2, a known
Pmt4-specific substrate protein [30], among the major destabilized proteins exclusively in pmt4∆
(Figure 2c). Also, the membrane protein sensors Wsc2 and Wsc4 were detected (Figure 2c).
Wsc2 destabilization in pmt∆ mutants has been reported [11]. Moreover, while addressing the
question of whether luminal orientation of the tFT tag affects the localization of type II transmembrane
proteins (see above; Figure 5a), fluorescence microscopy of an independent pmt4∆ knock out mutant
expressing Mnn11-tFT confirmed destabilization of this protein when O-mannosylation is decreased
(Figure 4b). As mentioned earlier, in many O-mannosylated proteins, the glycans are clustered
in distinct serine/threonine-rich regions [4]. The Golgi mannosyltransferase Mnn11 [43] depicts
such characteristic features: a serine/threonine-rich region, for which O-mannosylation has been
demonstrated by mass spectrometry [7], separating transmembrane and catalytic domain (Figure 5a).

On the other hand, we also identified proteins that are stabilized when O-mannosylation is
diminished, which is especially interesting with respect to the aforementioned role of O-mannosyl
glycans added by the Pmt1-Pmt2 complex for ER protein quality control and protein degradation [14].
From the candidates that were significantly stabilized in the absence of Pmt1 and Pmt2, Kre6-tFT was
analyzed in more detail since the mCherry/sfGFP and sfGFP intensity ∆-score values indicated
increased stability and abundance, respectively, suggesting impaired degradation (Figure 2a,b).
Stabilization could be confirmed by biochemical means for the Kre6-tFT. However, it was found
to mislocalize to the vacuole in wild-type and pmt1∆ cells (Figures 4 and 5). It is assumed, that Kre6
is a key protein in β-1,6-glucan synthesis due to its similarity to glycoside hydrolases; however, its
precise role is still unknown [31]. Complex folding and maturation of Kre6 has been demonstrated
that involves the ER Hsp40 chaperone Kar2 and several chaperone-like proteins such as Rot1 and
Keg1, as well as calnexin [33,34]. Although the bulk of the Kre6 protein is localized to the ER, Kre6
cycles between ER and Golgi, and is released to the plasma membrane upon cell polarization [32–34].
Interaction with calnexin is important to ensure proper localization of the protein. Degradation of
Kre6 is suggested to involve the ER associated degradation pathway, as well as the vacuole [34].
We observed that, in contrast to wild-type protein, Kre6-tFT is predominantly mislocalized to the
vacuole (Figure 4a). On Western blot, Kre6-tFT appeared as three protein bands with a pattern highly
similar to that of the native mature Kre6 protein [33]. Thus, most likely the tFT-tag is hampering
interactions with other components important for proper localization rather than protein folding.
There are various possibilities to explain how O-mannosylation might contribute to the stabilization of
the Kre6-tFT fusion protein. In one attractive scenario, O-mannosyl glycans of Kre6-tFT might even
enhance the efficiency of vacuolar proteases. With the Kre6-tFT fusion protein, we established a new
model to further unravel the unexpected functions of O-mannosylation in protein stabilization.

In conclusion, here we present the first high-throughput approach to determining the impact of
O-mannosylation on protein dynamics. Interestingly, O-mannosylation can cause both enhanced and
diminished protein abundance and/or stability when compromised. The identified target proteins are
a valuable resource to address different underlying molecular mechanisms.
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4. Materials and Methods

4.1. Yeast Strains and Growth Conditions

S. cerevisiae strains are listed in Table 2. Strains were grown and transformed under standard
conditions. The sequences of oligonucleotides used in this study are available on request.

Table 2. S. cerevisiae strains used in this study.

Strain Genotype Source

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Euroscarf
MLY201 BY4741 except pmt1∆::KANMX6 This study
MLY202 BY4741 except pmt2∆::KANMX6 This study
MLY204 BY4741 except pmt4∆::KANMX6 This study

YMaM330
MATα can1∆::STE2pr-SpHIS5
lyp1∆::STE3pr-LEU2 his3∆1

leu2∆0::GAL1pr-I-SCEI-natNT2 ura3∆0
[22]

WT Kre6-tFT YMaM330 except KRE6::mCherry-sfGFP [22]
EZY91 WT Kre6-tFT except pmt1∆::KANMX6 This study

WT Vrg4-tFT YMaM330 except VRG4::mCherry-sfGFP [22]
EYZ96 WT Vrg4-tFT except pmt1∆::KANMX6 This study

WT Axl2-tFT YMaM330 except AXL2::mCherry-sfGFP [22]
EZY107 WT Axl2-tFT except pmt4∆ This study

WT YNL058C-tFT YMaM330 except YNL058C::mCherry-sfGFP [22]
EZY106 WT YNL058C-tFT except pmt2∆ This study

WT Mnn11-tFT YMaM330 except MNN11::mCherry-sfGFP [22]
EZY109 WT Mnn11-tFT except pmt4∆ This study
MGY69 AXL2::HA [30]
MGY72 AXL2::HA except pmt4∆ [30]

To de novo delete PMT1, PMT2 and PMT4 in the selected tFT fusion query strains a DNA fragment
with a kanMX6 integration cassette was amplified by PCR on pUG6 [44] (using oligonucleotide pairs
1961/1962, 1963/1964, and 1967/1968, respectively) and transformed by homologous recombination
in each corresponding wild-type query according to [45]. Successful recombination of the kanMX6
PCR fragments on each locus was confirmed by PCR using oligonucleotide 1516 in combination with
312 and 1513 for PMT1 locus, 1518 in combination with 312 and 1515 for PMT2 locus, and 456a in
combination with 312 and 457 for PMT4 locus.

4.2. Tandem Fluorescent Protein Timers Screening and Data Analyses

A subset of query strains expressing tFT-tagged proteins that were shown to be O-mannosylated [7]
were recorded to localize to the secretory pathway (by classification of translocation according to [35]
or inferred from high confidence/manual curated database annotations were selected from the library;
Supplemental Table S1) and crossed with MLY201 (pmt1∆), MLY202 (pmt2∆) and MLY204 (pmt4∆) on
1536-colony format plates using the ROTOR HDA pinning robot (Singer Instruments, Somerset, UK)
following the SGA methodology described in [24]. In brief, both tFTqueries and MLY201, MLY202, or
MLY204 were mated, and the resulting diploids were selected, sporulated, and selected for haploids
carrying both the tFT-tagged protein and the pmt deletion by sequential pinning followed by selection
on appropriate media, as described in [22]. Three technical replicates of each cross were arranged next
to each other. Fluorescence intensities of the final colonies were measured after 24 h of growth on
synthetic complete medium lacking leucine at 30 ◦C using Infinite M1000 Pro plate readers equipped
with stackers for automated plate loading (Tecan, Männedorf, Switzerland) and custom temperature
control chambers. Measurements in mCherry (587/10 nm excitation, 610/10 nm emission, fixed
detector gain) and sfGFP (488/10 nm excitation, 510/10 nm emission, fixed detector gain) channels
were performed at 400 Hz frequency of the flash lamp, with ten flashes averaged for each measurement.
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Failed crosses after haploid selection were excluded from the measurement based on colony size.
For background correction, the fluorescence intensities of three negative control colonies arranged next
to each sample were subtracted of the average of sample colonies. Fluorescence intensity measurements
were log-transformed, and the data for each plate were normalized to the median fluorescence of a
reference strain set that was present on every plate as described in [46]. Changes in protein stability
between wild-type and mutant were estimated by subtracting the log-ratios of mCherry and sfGFP
intensities yielding a ∆-score. A moderated t-test implemented in the R package limma was used to
compute p-values [47]. Plots were generated using the ggplot2 (v2.2.1) package [48]. Data labels were
introduced using functions of the ggrepel (v0.7.0) package [49], and heatmaps were generated using the
heatmap.2 function of the gplots (v3.0.1) package [50].

4.3. Fluorescence Flow Cytometry

Cells expressing tFT-fusion proteins were grown to the mid-log phase in synthetic complete
medium. The sfGFP and mCherry fluorescence intensities of 20,000 cells were measured using the
cell analyzer BD FACSCanto™ (BD Biosciences; Heidelberg, Germany), in collaboration with Flow
Cytometry & FACS Core Facility (ZMBH, Heidelberg University; Heidelberg, Germany). To define the
age of a certain tFT-fusion protein, a first ratio mCherry/sfGFP was calculated for both wild-type and
pmt∆ mutant, and the corresponding p-value was calculated using Student’s t-test and considering the
null hypothesis as no showing difference between variances of each dataset. To address the impact of
the deletion on protein age, a second ratio was calculated as WTmCherry/sfGFP/pmt∆mCherry/sfGFP.

4.4. Preparation of Cell Extracts And Membranes

To prepare total cell extracts, cells were grown overnight in synthetic complete medium [51]
at 30 ◦C to OD-1, resuspended in breaking buffer (50 mM Tris-Cl, pH 7.4, 5 mM MgCl2)
supplemented with protease inhibitors (1 mM PMSF, 1 mM benzamidine, 0.25 mM 1-chloro-3-tosylamido-
7-amino-2-heptanone, 50 µg/mL of l-1-tosylamido-2-phenylethyl chloromethyl ketone, 10 µg/mL of
antipain, 1 µg/mL of leupeptin, and 1 µg/mL of pepstatin), and broken with glass beads. Cell debris was
removed by centrifugation at 1500 × gav for 5 min at 4 ◦C.

Total membranes were prepared by centrifugation (20,000 × gav for 60 min, 4 ◦C) of total cell
extracts. Membrane pellets were resuspended in membrane buffer (50 mM Tris-Cl, pH 7.4, 5 mM
MgCl2, 15% glycerol) supplemented with protease inhibitors (as described above).

4.5. Cycloheximide Chase Experiments

Cycloheximide chase experiments were performed as described in [52]. In brief, wild-type and
pmt1∆ cells expressing Kre6-tFT (strains WT Kre6-tTF and EZY91 respectively) were grown overnight
in synthetic complete medium at 30 ◦C to OD-1. Cells were initially sampled as time point zero, and
cycloheximide was immediately added to a final concentration of 100 µM. Equal amount of cells were
sampled at the following time points: 60, 120, and 240 min. After sampling, the chase was stopped at
each time point by adding NaN3 to a final concentration of 20 mM, and cells were kept on ice until the
last sample was collected. Total cell extracts were prepared from cells sampled at each time point as
described above.

4.6. Western Blot Analyses

Protein samples were incubated in Laemmli buffer either at 70 ◦C for 10 min (for total cell
extracts) or at 50 ◦C for 10 min (for membranes), resolved in glycine SDS-polyacrylamide gels
(8% polyacrylamide), transferred to nitrocellulose, and visualized by enhanced chemiluminescence
using the Amersham Biosciences ECL system (GE Healthcare; Munich, Germany). Blots were incubated
with the primary antibodies anti-GFP (dilution 1:5000, #ab13970; Abcam, Cambridge, UK) or anti-HA
(dilution 1:10,000, #MMS-101R; Covance, Princeton, NJ, USA), and peroxidase-conjugated anti-rabbit
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(dilution 1:10,000; #A6154; Sigma-Aldrich, St. Louis, MO, USA) or anti-mouse (dilution 1:10,000;
#A9044; Sigma-Aldrich) secondary antibodies respectively. For the detection of loading controls, the
same blots were incubated with either anti-Sec61 (for membranes, dilution 1:2500; gift from Karin
Römisch) or anti-Pgk1 (for total cell extracts, dilution 1:5000, #A6457 Thermo Fischer, Waltham, MA,
USA) as primary antibodies followed by either anti-rabbit or anti-mouse as secondary antibodies.

4.7. Microscopy

Cells expressing tFT-fusion proteins were grown to the mid-log phase in synthetic complete
medium. Prior to imaging, cells were treated with the vital dye 7-amino-4-chloromethylcoumarin
(CMAC, #C2110 Thermo Fischer) to a concentration of 10 µM to stain the lumen of yeast vacuoles.
After 15 min incubation at 30 ◦C, cells were washed once and resuspended in fresh medium.

Single plane images were acquired on a Delta Vision Elite system (Applied Precision, Issaquah,
WA, USA) consisting of an inverted epifluorescence microscope (IX71; Olympus, Tokio, Japan)
equipped with an LED light engine (SpectraX, Lumencor, Beaverton, OR, USA), 390/18-, 475/28- and
575/25-nm excitation and 435/48-, 525/50- and 624/40-nm emission filters (Semrock, Rochester, NY,
USA), a dual-band beam splitter 89021 (Chroma Technology, Bellows Falls, VT, USA), using either a
100× NA 1.4 UPlanSApo or a 60× NA 1.42 Plan ApoN oil immersion objective (Olympus), an sCMOS
camera (pco.edge 4.2, PCO), and a motorized stage contained in a temperature-controlled chamber.
Image processing and quality control were performed using ImageJ. sfGFP, as well as mCherry, images
obtained for wild-type and corresponding pmt∆ mutant were processed in the same manner.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/10/2622/
s1, Table S1. List of tFT-fusion proteins and results from automated microscopic fluorescence analysis, Figure S1.
Dynamics of tFT-fusion proteins in different pmt∆ strains.
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