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Abstract: Hot spots are the subset of interface residues that account for most of the binding free energy,
and they play essential roles in the stability of protein binding. Effectively identifying which specific
interface residues of protein–protein complexes form the hot spots is critical for understanding the
principles of protein interactions, and it has broad application prospects in protein design and drug
development. Experimental methods like alanine scanning mutagenesis are labor-intensive and
time-consuming. At present, the experimentally measured hot spots are very limited. Hence, the use
of computational approaches to predicting hot spots is becoming increasingly important. Here,
we describe the basic concepts and recent advances of machine learning applications in inferring the
protein–protein interaction hot spots, and assess the performance of widely used features, machine
learning algorithms, and existing state-of-the-art approaches. We also discuss the challenges and
future directions in the prediction of hot spots.
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1. Introduction

Protein–protein interactions play critic roles in many physiological activities, such as gene
replication, transcription, translation, and cell cycle regulation, signal transduction, immune response,
etc. In order to understand and utilize these interactions, it is necessary to identify residues at the
interface of the interaction [1]. Studies have shown that the protein interaction interface is usually
large; a typical interaction interface is about 1200–2000 Å2, but only a few (<5%) of the residues called
hot spots contribute to most of the binding free energy and play important roles in the stability of
protein binding [2]. Deeper exploration of protein–protein interaction hot spots is critical to molecular
recognition mechanisms and regulation, as well as a solid foundation for bioengineering such as
protein engineering and drug design, and this solid foundation may still provide key clues for the
identification of cancer-triggered genes in the future [3]. Experimental identification of hot spots
is typically performed by alanine scanning mutagenesis. This process involves the mutation of
a residue of interest to alanine in the bound and unbound state, and calculating the binding free
energy changes (∆∆G). Widely used databases of experimental verified hot spots include the Alanine
Scanning Energetics Database (ASEdb) [4], the Binding Interface Database (BID) [5], the Protein-protein
Interaction Thermodynamic (PINT) [6], and the Structural database of kinetics and energetic of mutant
protein interactions (SKEMPI) [7].

Analysis and exploration of the composition, structure and mechanism of hot spots is the basis
for the development of prediction methods. Studies have shown that hot spots are not randomly
composed of amino acids, and tryptophan (21%), arginine (13.3%), and tyrosine (12.3%) have the
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highest background probabilities of occurrence [2]. Most energy hot spots are tightly located in the
protein's complemented pockets that are pre-organized in the unbound states [8]. These pockets
show great complementarity with hot spots in shape and amino acid arrangement. Clackson and
Wells proposed the O-ring theory [9], which reveals that hot spots are usually located in the center of
protein interfaces, and they are surrounded by energetically less important residues that are shaped
like an O-ring to block water molecule intrusion, and they provide a suitable solvent environment
for functional hot spots. Li and Liu [10] proposed the double water exclusion hypothesis, which
characterizes the topological organization of hot spots and their neighboring residues. These findings
facilitate the development of computational methods to predict energy hot spots.

Existing hot spot prediction methods can be roughly divided into three types: knowledge-based
methods, molecular simulation techniques, and machine learning methods [11]. The knowledge-based
empirical function evaluates the change in binding free energy by reducing the empirical model
obtained using experiments. The introduced molecular dynamics model uses alanine to perform
fixed-point scanning by mutagenesis technology, and it detects the hot spot by detecting the change of
binding energy (∆∆G) in the process of mutation to alanine. However, it is limited by factors such as
the expensiveness of the experimental equipment, the long computing time it takes, and the limited
number of hot spots tested. The machine learning approaches provides a more convenient way for hot
spot prediction.

Figure 1 shows the typical applications of machine learning in predicting protein-protein
interaction hot spots. Usually, the input to the hot spot predictor is a target interface residue that is
encoded by a variety of sequence, structural, and energy features. Dimensionality reduction (feature
selection or feature extraction) is then used to remove the irrelevant and redundant information and to
obtain a set of principal variables. Finally, predictive models are built using efficient machine learning
algorithms. This paper focuses on machine learning-based methods and introduces some important
issues that should be considered when adopting these approaches for hot spot prediction, including
feature generation, dimensionality reduction, and algorithm design. More importantly, we generate
a benchmark dataset and an independent dataset to investigate the performance of widely used
biological features and classical machine learning algorithms. We also perform an independent test to
evaluate the performance of state-of-the-art hot spot prediction approaches. The datasets, features,
and results of this study are freely available at http://denglab.org/pphot_review/.

2. Feature Engineering

The steps of using machine learning to predict hot spots usually include data preparation, feature
engineering, choosing a machine learning model, a training and testing model, and predicting
the output. Feature engineering is a crucial step for developing effective hot spot prediction
approaches, since the features have a significant impact on the prediction performance. Often,
a large number of features or attributes are collected from the protein sequence, structure, and energy
data. Dimensionality reduction approaches are used to obtain the most effective features for future
classification tasks.

2.1. Sequence-Based Features

Protein sequence features, including the physicochemical properties of amino acids, evolutionary
information in terms of evolutionary conservation score and position-specific scoring matrix
(PSSM), and other sequence descriptors, have been widely used in computational biology [12,13].
Physicochemical features (e.g. hydrophobicity, hydrophilicity, polarity and average accessible surface
area) from the AAindex1 database [14] are extracted to predict hot spots [15,16]. Position-specific
scoring matrices (PSSMs) are a commonly used sequence feature that can be obtained from NCBI
non-redundant databases via PSI-BLAST [17]. Several studies [11,18,19] have used PSSMs for hot spot
prediction. The local structural entropy (LSE) [20] mainly describes the degree of consistency of protein
sequences. It has also been proven to be useful in the prediction of hot spots [21]. The evolutionary
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conservation score is calculated using multiple sequence alignments (MSAs) and a phylogenetic
tree [22]. Higa et al. [23] incorporated a conservation score, an evolutionary profile, and other structural
features to predict binding hot spot residues. Shingate et al. developed a computational approach
named ECMIS [24] to identify hotspots using a conservation score, a mass index score, and an energy
scoring scheme.

Figure 1. Overview of machine learning approaches to predicting protein–protein interaction hot
spots. For the binding of interface residues in protein–protein interactions, a large number and variety
of features are extracted from diverse data sources. Then feature extraction and feature selection
approaches are used for dimensionality reduction. Finally, the machine learning-based prediction
models are trained and applied to make predictions of hot spots.

2.2. Structure-Based Features

Protein tertiary structure refers to the folding arrangement of amino acids in three dimensions,
which can help to understand the function of proteins at the molecular level. Incorporating structural
features can better apply the spatial structure features of proteins to hot spot prediction, and generally
obtains better results than sequence-based features. The solvent accessible surface area (ASA) is
defined as the locus of the center of the virtual solvent molecule as it rolls over the surface of the
protein, and it is usually calculated by DSSP (Definition of Secondary Structure of Proteins) [25]
and Naccess [26]. ASA-related features are widely used in protein–protein interaction interfaces
and hot spot prediction [11,12,27,28]. Biochemical contacts, including atom contacts, residue contacts,
hydrogen bonds, and salt bridges, are also important structural features for predicting hot spots [29–31].
The four-body statistical pseudo-potential (FBS2P) is calculated based on the Delaunay triangulation
of proteins [32,33], and it has been used in PredHS [11,34].
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2.3. Energy-Based Features

Energy features have been applied to hot spot prediction in recent studies. Kortemme et al. [35]
used a linear combination of a Lennard–Jones potential, an implicit solvation model,
an orientation-dependent hydrogen-bonding potential, and an estimate of unfolded reference state
energies for the prediction of energetically important residues. Tuncbag et al. [27,36] applied statistical
inter-residue pair potentials to improve the accuracy of hot spot prediction. Lise et al. [37,38]
calculated Van der Waals potentials, solvation energy, side-chain intermolecular energies, environment
intermolecular energies, and side-chain intramolecular energies to the predictions of hot spot residues.
Deng et al. [11] incorporated side-chain energy, residue energy, interface propensity, and two combined
energy scores calculated by ENDES [32,39].

2.4. Feature Selection

Feature selection can provide a deeper insight into the underlying means that generate the data,
avoid overfitting, and improve the prediction performance [40]. Typical feature selection algorithms
include the F-score [41], random forest [42], support vector machines–recursive feature elimination
(SVM-RFE) [43], minimum redundancy maximum relevance (mRMR) [44,45], and maximum relevance
maximum distance (MRMD) [46]. Several feature selection approaches have been used for hot spot
prediction. APIS [28] used the F-score to select relevant features. MINERVA [30] used a decision tree
to select useful features. Wang et al. [47] and Moreira et al. [19] used random forest to predict hot
spots. PredHS [12] combined random forest and sequential backward elimination algorithms to select
optimal features for predicting hot spots. Qiao et al. [48] developed a hybrid feature selection strategy
which combines the F-score, mRMR, and the decision tree.

2.5. Feature Extraction

Feature extraction is another dimensional reduction approach in machine learning applications.
Principal component analysis (PCA) [49,50] and linear discriminant analysis (LDA) [51] are
two commonly used feature extraction techniques. PCA works by establishing an orthogonal
transformation of the data to convert a set of possible correlated variables into a set of
linearly-uncorrelated ones, the so-called principal components. Melo et al. [18] applied PCA to reduce
the dimensionality of a high-dimensional dataset (79 features), and improved hot spot prediction.
Moreira et al. [19] used PCA to generate different datasets (PCA, PCAUp and PCADown) and evaluated
the performance in hot spot prediction.

3. Machine Learning Approaches for Hot Spot Prediction

In addition to selecting effective features or feature combinations, using appropriate machine
learning methods can also play an important role in improving the performance of hot spot prediction.
Machine learning methods, such as nearest neighbor [52], support vector machines [53], decision
trees [54], Bayesian networks [55], neural networks [56], and ensemble learning [57], have been widely
used in protein–protein interaction hot spots prediction in recent years. Table 1 summarizes the existing
machine learning-based methods for hot spot identification.

3.1. Nearest Neighbor

The nearest neighbor algorithm [52] is an instance-based lazy learning method, and one of
the simplest understandings of machine learning algorithms. Hu et al. [58] proposed a protein
sequence-based model, in which the classifier is implemented by the improved IBK (Instance-based k
means) algorithm of the k-nearest neighbors, which overcomes the shortcomings of the recent neighbor
algorithm, which is sensitive to some data. Jiang et al. [16] also proposed a sequence-based model,
using the IBK algorithm to obtain a better random projection set through the training set.
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3.2. Support Vector Machines

SVM [53] is the most widely used machine learning method. It establishes the optimal hyperplane
in a high-dimensional feature space to ensure the classification risk by ensuring the minimum structural
risk. It has the advantages of high efficiency and high accuracy, but it also has shortcomings such as
input data requiring labels and only being suitable for two types of classification problems. Several
hot spot prediction models are built using SVM [3,11,28,30,48,59].

Cho et al. [30] proposed MINERVA, which used 54 features of structure, sequence, and molecular
interaction, and selected the top three best features using a decision tree. They used a support vector
machine to create a predictive model of protein–protein interaction hot spots. Xia et al. [28] carefully
studied 62 sequence and structure features, and used the F-score to remove redundant features.
The APIS predictor has been developed to identify hot spots using SVM. The experimental results
show that APIS can identify more hot spots than traditional hot spot prediction methods. Zhu et al. [60]
built two hot spot prediction models (KFC2a and KFC2b) using support vector machines. PredHS [11]
used 38 optimal selected features to train SVM models, and it demonstrated a significant improvement
in predictive performance. Ye et al. [59] selected the optimal 58-dimensional feature subset containing
10 network and micro-environment features by a random forest algorithm, and then applied the
feature subset and support vector machine to construct a hot spot prediction model. HEP [3] used 108
sequences, structures, and domain features, and selected two highest-ranking features using a two-step
feature selection method. The final prediction model was constructed by using the support vector
machine. Lise et al. [37] and Higa et al. [23] also incorporated the SVM classifier to predict hot spots.

3.3. Decision Trees

As a widely used supervised learning method, the decision tree [54] represents a mapping
relationship between features and tags in the predictive model. Each branch is a predicted output;
a category represented by each leaf node. One of the ways in which decision-making stops branching
is pruning, which helps to achieve tree balance. In addition to the advantages of easy understanding
and simple data preparation, the decision tree can not avoid the disadvantages of increasing the
error rate of the category and making it difficult to predict continuous fields. The classic KFC
(knowledge-based FADE and contacts) method [31] is a combination of two decision tree models,
K-FADE and K-CON. The machine learning algorithm C5.0 [61] was used to search for patterns within
the training data, and to generate a learned decision tree that predicts the hot spot residues within the
protein–protein complexes.

3.4. Bayesian Networks

As an extension of the Bayesian method [55], the Bayesian networks [62,63] magnify the
independent hypothesis of each variable on the premise hypothesis compared to the naive Bayesian
foundation [64], which assumes that each variable is discrete. This mathematical model based on
probabilistic reasoning, which is based on the combination of the Bayesian principle and graph theory,
has good performance in solving the problem of strong correlation, but its shortcoming is mainly
reflected in its inability to filter variables. The PCRPi [65] method combined three main sources of
information, namely the energy, structure, and evolutionary determinants of the Bayesian network
(BN). The Bayesian network toolbox for MatLab (BNT) was used to implement BNs, and the R package
'Deal' was used to learn the structure of expert BNs. A large number of experiments have proven that
PCRPi can provide consistent and accurate prediction results in hot spot prediction. Most importantly,
PCRPi can handle some of the missing protein data, as well as unreliable conditions.

3.5. Neural Networks

Artificial neural networks (ANN) [56] simulate human intuitive thinking, which can form
distributed storage of data and parallel collaborative processing. Here, each node represents
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a particular output function, and the connection between the nodes represents the weighted value of
the signal. The development of artificial neural networks has shown excellent and intelligent features
in pattern recognition, and biology and medicine. Ofran and Rost [66] predicted that a residue is a hot
spot of interaction from the sequence of a single protein, and it does not need to know the interacting
partner. They trained standard feed-forward neural networks with back-propagation and momentum
terms on windows of nine consecutive residues.

3.6. Ensemble Learning

Ensemble methods are machine learning algorithms that combine multiple classifiers into one
predictive model to obtain better predictive performance. Many ensemble algorithms exist, including
random forest [67], AdaBoost [68], gradient tree boosting [69], xgboost [70], etc.

Table 1. Summary of machine learning classification methods for protein–protein interaction hot
spot prediction.

Classification Methods Description References

Nearest neighbor

The model consists of 83 classifiers using the IBk
algorithm, where instances are encoded by sequence
properties.

Hu et al. [58]

Training the IBk classifier through the training
dataset to obtain several better random projections
and then applying them to the test dataset.

Jiang et al. [16]

Support vector machine

The decision tree is used to perform feature selection
and the SVM is applied to create a predictive model. Cho et al. [30]

F-score is used to remove redundant and irrelevant
features, and SVM is used to train the model. Xia et al. [28]

Proposed two new models of KFC through SVM
training Darnell et al. [31]

The two-step feature selection method is used to
select 38 optimal features, and then the SVM method
is used to establish the prediction model.

Deng et al. [11]

The random forest algorithm is used to select the
optimal 58 features, and then the SVM algorithm is
used to train the model.

Ye et al. [59]

Use the two-step selection method to select the two
best features, and then use the SVM algorithm to
build the classifier.

Xia et al. [3]

When the interface area is unknown, it is also very
effective to use this method. Qian et al. [48]

Decision trees Formed by a combination of two decision tree
models, K-FADE and K-CON. Darnell et al. [31]

Bayesian networks Can handle some of the missing protein data, as well
as unreliable conditions. Assi et al. [65]

Neural networks Does not need to know the interacting partner. Ofran and Rost [66]

Ensemble learning

The mRMR algorithm is used to select features,
SMOTE is used to handle the unbalanced data, and
finally AdaBoost is used to make prediction.

Huang and Zhang [72]

Random forest (RF) is used to effectively integrate
hybrid features. Wang et al. [71]

Bootstrap resampling approaches and decision
fusion techniques are used to train and integrate
sub-classifiers.

Deng et al. [11]

Wang et al. [71] proposed a novel random forest (RF) model to effectively integrate hybrid features,
including a wide range of information on the target residue and its spatially neighboring residues,
for predicting hot spots in protein interfaces. Huang et al. [72] used SMOTE [73] to process unbalanced
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data, and applied AdaBoost to predict protein hot spots. Deng et al. [11] proposed an ensemble model
(PredHS-Ensemble), which uses an ensemble of n classifiers and a decision fusion technique on the
training datasets. An asymmetric bootstrap resampling approach is adopted to generate subsets.
It performs random sampling with replacement only on the majority class so that its size is equal to
the number of minority samples, and keeps the entire minority samples in all subsets.

4. Comparative Assessment

4.1. Datasets

We constructed a benchmark dataset from four databases, including Alanine Scanning Energetics
(ASEdb) [4], SKEMPI database [7], Assi et al.'s Ab+ data [65] and Petukh et al.'s Alexov_sDB [74].
We combined the alanine-mutated data from the four databases, and excluded the proteins existing in
the BID dataset [5]. We used CD-HIT [75] to remove the redundant proteins and obtained a benchmark
of 34 protein complexes, which contained 313 mutated interface residues. The interface residues
were defined as hot spots with ∆∆G >= 2.0 kcal/mol, and the others were defined as non-hot spots.
As a result, the benchmark (HB34) contained 133 hot spots residues and 180 non-hot spot residues.

We also generated an independent test dataset from the BID database [5]. Only “strong” mutations
in the BID database were defined as hot spots, and others were non-hot spots. The proteins in
this independent test set were non-homologous to those proteins in the above training dataset.
The test dataset (BID18) was a collection of 18 complexes containing 127 alanine-mutated residues,
where 39 interface residues were hot spots.

4.2. Performance Measures

To quantify how correct are the predictions made by an algorithm, we performed 50 times 10-fold
cross-validation on the training benchmark dataset and computed commonly used measures, including
specificity (SPE), precision (PRE), sensitivity (SEN), accuracy (ACC), F1-score (F1), and Matthews
correlation coefficient (MCC).

SPE =
TN

TN + FP
(1)

PRE =
TP

TP + FP
(2)

SEN =
TP

TP + FN
(3)

ACC =
TP + TN

TP + TN + FP + FN
(4)

F1 =
2 × SEN × PRE

SEN + PRE
(5)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

where TP, TN, FP, and FN represent the numbers of true positive, true negative, false positive, and false
negative residues in the prediction, respectively. We also calculated the area under the receiver
operating characteristic curve (AUC) to evaluate the overall prediction performance.

4.3. Performance Evaluation of Different Features

As described in Section 2, a wide range of sequence, structures, and energy-based features
have been utilized for hot spot prediction. Here we only evaluated five categories of representative
features, including physicochemical features (12 features) [14], position-specific score matrix (PSSM)
(20 features) [17], blocks substitution matrix (Blosum62) (20 features) [76], solvent accessible area
(ASA) (six features) [77], and solvent exposure (seven features) [78]. Eleven physicochemical features
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(hydrophobicity, hydrophilicity, polarity, polarizability, propensities, average accessible surface area,
number of atoms, number of electrostatic charges, number of potential hydrogen bonds, molecular
mass, and electron–ion interaction pseudopotential) were obtained from the AAindex database [14],
and pseudo hydrophobicity (PSHP) is defined in HEP [3]. PSSM profiles were calculated using
PSI-BLAST [17], searching against the NCBI non-redundant database with parameters j = 3 and
e = 0.001. The relative frequencies of amino acids and their substitution probabilities were computed
using Blosum62 [76]. ASA features were calculated using DSSP [25]. Exposure features were computed
using hsexpo [78], including HSEAU (number of Cα atoms in the upper sphere), HEAD (number of
Cα atoms in the lower sphere), HSEBU (the number of Cβ atoms in the upper sphere), HSEBD (the
number of Cβ atoms in the lower half sphere), CN (coordination number), RD (residue depth), and
RDa (Cα atom depth). We also combined the five categories of features (Combined) to investigate
whether fusion features would improve the performance.

We used three classical algorithms, including support vector machine (SVM) [53], random forest
(RF) [67], and gradient tree boosting (GTB) [69], to build the classifiers. To compare the performance
of these features more fairly, the 10-fold cross-validation procedure was repeated 50 times, and the
average performance was calculated. As shown in Table 2, structural features (ASA and solvent
exposure) performed significantly better than sequence features (physicochemical features, PSSM
and blocks substitution matrix). For SVM models, the F1 score, MCC, and AUC of the sequence
characteristics were 0.51~0.52, 0.17~0.20, and 0.56~0.63, respectively, while these measures of the
structural features were 0.63, 0.33~0.36, and 0.72~0.73, respectively. Similar results were obtained on
the RF and GTB models. The ASA-related features performed better than the other four categories of
features (physicochemical features, PSSM, blocks substitution matrix, and solvent exposure features)
on all of the three machine learning models. Among the three machine learning algorithms (SVM, RF
and GTB), GTB had the best performance for single or combined features.

Table 2. Performance comparison of different features on the benchmark dataset (HB34).

Methods Features SPE SEN PRE ACC F1 MCC AUC

SVM

Physicochemical 0.672 0.521 0.545 0.608 0.520 0.196 0.566
PSSM 0.696 0.504 0.553 0.614 0.515 0.204 0.634

Blocks substitution matrix 0.644 0.522 0.529 0.594 0.511 0.170 0.595
ASA 0.677 0.688 0.612 0.660 0.638 0.362 0.737

Solvent exposure 0.609 0.726 0.580 0.658 0.635 0.339 0.724
Combined 0.711 0.638 0.684 0.699 0.652 0.393 0.757

RF

Physicochemical 0.624 0.549 0.521 0.592 0.522 0.174 0.635
PSSM 0.682 0.561 0.567 0.632 0.555 0.244 0.648

Blocks substitution matrix 0.620 0.550 0.521 0.590 0.523 0.17 0.632
ASA 0.722 0.587 0.614 0.664 0.589 0.312 0.696

Solvent exposure 0.682 0.552 0.565 0.626 0.549 0.236 0.669
Combined 0.756 0.656 0.624 0.699 0.631 0.384 0.766

GTB

Physicochemical 0.587 0.586 0.514 0.586 0.535 0.173 0.635
PSSM 0.612 0.641 0.550 0.624 0.584 0.251 0.669

Blocks substitution matrix 0.591 0.588 0.517 0.591 0.540 0.179 0.635
ASA 0.665 0.648 0.588 0.658 0.608 0.310 0.693

Solvent exposure 0.624 0.639 0.558 0.631 0.587 0.261 0.669
Combined 0.717 0.656 0.727 0.719 0.681 0.439 0.787

We also evaluated the performance of the feature combinations. The results are shown in
Table 3. Due to the large number of pair combinations, only the results of using the GTB classifier
are listed. In general, combining two types of features was better than using a single type of feature.
Among these pair combinations, combining ASA related features and PSSM (ASA+PSSM) achieved
the best predictive performance, with AUC and F1 scores of 0.761 and 0.663, respectively. As
expected, the combination of all features showed the best predictive performance with sensitivity =
0.727, precision = 0.656, F1 = 0.681, and AUC = 0.787 when using GTB as the modeling algorithm.
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The results indicated that a combination of sequence and structural features can boost the performance
of prediction.

Table 3. Performance comparison of feature combinations on the benchmark dataset (HB34) using GTB.

Methods Features SPE SEN PRE ACC F1 MCC AUC

GTB

ASA + PSSM 0.708 0.705 0.642 0.707 0.663 0.410 0.761
PSSM + Solvent exposure 0.671 0.718 0.617 0.691 0.656 0.385 0.760

Blosum62 + Solvent exposure 0.664 0.699 0.606 0.679 0.640 0.359 0.734
ASA + Solvent exposure 0.674 0.695 0.612 0.683 0.642 0.366 0.728
Phy+Solvent exposure 0.664 0.696 0.605 0.677 0.639 0.357 0.728

ASA + Blosum62 0.658 0.651 0.585 0.656 0.608 0.307 0.718
ASA + Phy 0.669 0.644 0.590 0.658 0.607 0.311 0.717

Phy + PSSM 0.629 0.650 0.566 0.638 0.597 0.277 0.683
PSSM + Blosum62 0.619 0.655 0.560 0.635 0.595 0.271 0.679
Phy + Blosum62 0.593 0.590 0.520 0.592 0.541 0.183 0.639

Combined (all features) 0.717 0.656 0.727 0.719 0.681 0.439 0.787

To further evaluate the performance of various features, we used the BID18 dataset for
independent test. The results are shown in Table 4. The overall performance of the independent
test was worse than the 10-fold cross-validation (Table 2). Among the five categories of features, ASA
related features had the best performance, but solvent exposure performed similar or worse than
the sequence features in hot spot prediction. This indicates that structural features are not always
better than sequence features. Like 10-fold cross-validation, the combination of all the sequence and
structural features were significantly better than the individual features. Combining more effective
features may further improve the prediction performance.

Table 4. Performance comparison of different features on the independent test dataset (BID18).

Methods Features SPE SEN PRE ACC F1 MCC AUC

SVM

Physicochemical 0.577 0.393 0.597 0.583 0.472 0.162 0.634
PSSM 0.675 0.438 0.561 0.640 0.491 0.223 0.663

Blocks substitution matrix 0.626 0.435 0.632 0.628 0.512 0.242 0.661
ASA 0.597 0.446 0.716 0.634 0.549 0.290 0.693

Solvent exposure 0.642 0.403 0.532 0.608 0.456 0.167 0.617
Combined 0.569 0.464 0.832 0.650 0.586 0.353 0.732

RF

Physicochemical 0.632 0.414 0.576 0.614 0.479 0.196 0.624
PSSM 0.703 0.417 0.474 0.632 0.443 0.171 0.616

Blocks substitution matrix 0.62 0.408 0.575 0.607 0.474 0.185 0.627
ASA 0.604 0.437 0.686 0.629 0.534 0.268 0.679

Solvent exposure 0.59 0.402 0.612 0.597 0.484 0.188 0.64
Combined 0.612 0.466 0.753 0.656 0.575 0.338 0.758

GTB

Physicochemical 0.531 0.384 0.643 0.566 0.478 0.163 0.625
PSSM 0.681 0.416 0.506 0.627 0.456 0.178 0.638

Blocks substitution matrix 0.580 0.400 0.617 0.592 0.480 0.184 0.624
ASA 0.585 0.437 0.718 0.626 0.543 0.280 0.679

Solvent exposure 0.592 0.389 0.579 0.588 0.465 0.159 0.646
Combined 0.621 0.476 0.766 0.666 0.597 0.378 0.769

We summarized the numbers of residues that were correctly predicted using the three machine
learning approaches (SVM, RF, and GTB) with combined features on the independent dataset (Figure 2).
The results predicted by the three machine learning methods were mostly the same. 67 out of 127
residues, of which 26 were hot spots, and 41 were non-hot spots, were correctly predicted by all
of the three machine learning algorithms. A small number of residues could only be predicted by
one or two machine learning algorithms. For example, there were seven residues that could only
be correctly predicted by GTB, and there were six residues that could only be correctly predicted by
GTB and SVM. The results were consistent with our expectations, because these machine learning
methods use the same features. The number of true positives (TP), true negatives (TN), false positives
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(FP) and false negatives (FN) of the three machine learning methods are shown in Table 5. Some
proteins (e.g. 1FAK_T, 1G3I_A, and 1GL4_A) were well predicted, but some (e.g. 1DVA_H and 1JPP_B)
were hard to predict. One of the possible reasons is that the training set had only a small number of
experiment-determined hot spots.

Figure 2. A Venn diagram showing the number of correctly predicted residues from the three machine
learning algorithms for the independent dataset (BID18).

Table 5. Detailed prediction results for each protein on the independent test dataset (BID18).

PDB ID
GTB RF SVM

TP FP TN FN TP FP TN FN TP FP TN FN

1CDL_A 1 1 1 0 1 1 1 0 1 1 1 0
1CDL_E 5 3 1 0 5 1 3 0 5 3 1 0
1DVA_H 0 4 7 1 0 4 7 1 0 4 7 1
1DVA_X 3 3 4 1 4 2 5 0 4 3 4 0
1DX5_N 1 1 13 2 1 2 12 2 2 3 12 0
1EBP_A 3 0 1 0 3 0 1 0 3 0 1 0
1EBP_C 1 3 1 0 1 1 3 0 1 0 4 0
1ES7_A 1 3 0 0 0 3 0 1 1 3 0 0
1FAK_T 2 5 14 0 2 5 14 0 2 7 12 0
1FE8_A 0 3 1 0 0 3 1 0 0 3 1 0
1FOE_B 1 0 1 0 1 0 1 0 0 0 1 1
1G3I_A 6 0 0 0 5 0 0 1 6 0 0 0
1GL4_A 4 1 1 1 3 2 0 2 3 1 1 2
1IHB_B 0 2 2 0 0 2 2 0 0 2 2 0
1JAT_A 1 0 0 0 0 0 0 1 0 0 0 1
1JAT_B 1 0 0 0 1 0 0 0 1 0 0 0
1JPP_B 0 2 3 2 1 3 2 1 2 5 0 0

1MQ8_B 0 0 0 1 0 0 0 1 0 0 0 1
1NFI_F 1 0 1 0 1 1 0 0 1 1 0 0

1NUN_A 0 2 1 0 0 2 1 0 0 2 1 0
1UB4_C 0 1 0 0 0 1 0 0 0 1 0 0
2HHB_B 0 0 1 0 0 0 1 0 0 0 1 0

4.4. Performance Comparison of Existing Hot Spot Prediction Methods

As summarized in Table 1, a variety of existing hot spot prediction approaches have been proposed
in the past few years. Comparing the performance of these published methods is difficult, mainly
because the heterogeneity of the datasets that are employed to benchmark the methods, and sometimes
the difficulty of obtaining the methods themselves. Here, we evaluate some widely used methods that
are easier to implement, or that have a web server using the BID18 dataset. These methods include
HEP [3], PredHS [11], iPPHOT [48], KFC2 [60], PCRPi [65,79], MINERVA [30], APIS [28], KFC [31],
Robetta [80], and FOLDEF [81]. The results are shown in Table 6. Regarding the overall performance,
HEP had the highest F1 score of 0.70. The F1 score is a robust measure that estimates the relationship
between the precision and the sensitivity; hence, HEP has a better balance between precision and
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sensitivity rates. PredHS-SVM achieved the best precision (PRE = 0.79). High-precision is very useful
since the costs of false positives are high in practical application. Although HEP and PredHS-SVM
performed well in the independent test, the overall performance was still relatively low, and there is
still much room for improvement.

Table 6. Performance comparison of existing approaches on the independent test dataset (BID18).

Methods Classifier SPE SEN PRE ACC F1 MCC

HEP SVM 0.76 0.6 0.84 0.79 0.70 0.56
PredHS-SVM SVM 0.93 0.79 0.59 0.83 0.68 0.57

iPPHOT SVM 0.586 0.462 0.794 0.650 0.584 0.353
KFC2a SVM 0.73 0.55 0.74 0.73 0.63 0.44
KFC2b SVM 0.87 0.64 0.55 0.77 0.60 0.44
PCRPi Bayesian network 0.75 0.51 0.39 0.69 0.44 0.25

MINERVA SVM 0.90 0.65 0.44 0.76 0.52 0.38
APIS SVM 0.76 0.57 0.72 0.75 0.64 0.45
KFC Decision trees 0.85 0.48 0.31 0.69 0.38 0.19

Robetta Knowledge-based method 0.88 0.52 0.33 0.72 0.41 0.25
FOLDEF Knowledge-based method 0.88 0.48 0.26 0.69 0.34 0.17

5. Discussion

Predicting protein–protein binding hot spots on protein interfaces will become increasingly crucial
as reliable identification of protein binding hot spots has broad applications in computational protein
design and drug discovery. In this paper, we present a comprehensive survey on machine learning
approaches for protein–protein interaction hot spot prediction. These approaches are categorized
based on the features that they utilize, and different machine learning algorithms. We evaluate the
performance of widely used features and machine learning algorithms using a 10-fold cross-validation
and independent test. We also perform independent test for the existing state-of-the-art approaches.
The evaluation results show that as more and more features are discovered, the application of new
machine learning methods, and the field of computational identifying hot spots has made great
progress in recent years. Although there has been significant progress, there are many difficulties and
much room for improvement in hot spot prediction. Challenges and future directions are summarized
as follows:

(1) Hot spots are mainly discovered through biological experiments, lacking mature theoretical
support and unified identification standards. Although the O-ring theory [9] with great influence
explains the arrangement relationship between energy hot spots and surrounding residues well,
it still has much controversy; the change of free energy (∆∆G) is usually used to discriminate
energy hot spots, but different articles use different thresholds under different conditions, and
they lack uniform standards.

(2) Systematic mutagenesis experiments are currently expensive and time-consuming to perform;
the experimental data of energy hot spots are very limited, resulting in a lack of large benchmark
datasets. As we observed in this study, supervised learning methods, especially GTB, have
achieved good results, but the performance of each 10-fold cross-validation varies on repetition.
Alternatively, semi-supervised learning and transductive inference approaches can be used to take
advantage of the large number of unlabeled data to further improve the predictive performance.

(3) Due to the small number of samples and the large number of features in hot spot prediction,
machine learning methods are easy to overfit. Improved feature extraction methods and feature
selection approaches can help avoid overfitting. At the same time, the number of hot spots is far
less than the number of non-hot spots, leading to the so-called imbalance problem. It is necessary
to design effective algorithms (e.g. ensemble learning) to solve this problem.

(4) The characteristics of accurately identifying energy hot spots have not been well discovered,
and no single feature can fully identify energy hot spots from the interface residues. This requires
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finding new and effective features, and studying the effects of combining different categories
of features. For example, most existing machine learning hot spot predictors use statistical
sequence and structural information to encode input feature vectors, but the spatial arrangement
of residues has not been well exploited.

(5) Molecular dynamics simulation and molecular docking techniques can simulate the changes in
binding free energy before and after alanine mutation. A promising future direction is developing
effective ways to combine computational docking with machine learning methods, which has the
potential to dramatically boost hot spot predictions.
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