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Abstract: Polyphenols are natural occurring micronutrients that can protect plants from natural
weathering and are also helpful to humans. These compounds are abundantly found in fruits or
berries. Because of berry seasonal availability and also due to their rapid degradation, people have
found multiple ways to preserve them. The most common options are freezing or making jams.
Polyphenol stability, during processing is a continuous challenge for the food industry. There are
also multiple published data providing that they are sensitive to light, pH or high temperature,
vectors which are all present during jam preparation. In this context the aim of this study was to
assess phytochemical composition and bioactive compounds degradation after jam preparation. We
also monitored their degradation during storage time and their in vitro antiproliferative potential
when tested on melanoma cells. The obtained results revealed that when processed and stored in
time, the bioactive compounds from berries jams are degrading, but they still exert antioxidant and
antiproliferative potential. Prior to LC-MS analysis, polyphenolic compounds were identified as:
flavonoids (anthocyanins (ANT), flavonols (FLA)) and non-flavonoid (hydroxycinnamic acids (HCA)
and hydroxybenzoic acids (HBA)). The most significant decrease was observed for HCA compared to
other classes of compounds. This variation is expected due to differences in constituents and phenolic
types among different analyzed berries.
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1. Introduction

Fruits and vegetables are important sources of bioactive compounds which were shown to
have positive health benefits [1,2]. In recent years, food and nutrition sciences aimed to improve
health through intelligent foods containing bioactive plant-based molecules that were proven to
have positive health benefits, such as the prevention of cardiovascular diseases or cancer [3,4].
The demand for innovative and functional food products had increased lately due to the fact that
consumers are more aware of their bodies and mental health. Diets rich in vegetables or fruits were
proven to provide essential bioactive molecules which can play important roles in human health.
These plant-based bioactive molecules include polyphenols (phenolic acids, flavonoids, anthocyanins,
catechins), enzymes, amino acids, vitamins (vitamin C, folate, and provitamin A), minerals (potassium,
calcium, and magnesium), and fibers (inulin, pectin, lignan). The related body of literature indicates
a strong correlation between diet and degenerative diseases, and due to this fact, the use of natural
compounds as ingredients in food has become a major concern for food technologists [5,6]. Berries and
fruits are the main sources of bioactive compounds with many applications in the food, pharmaceutical,
nutraceutical and cosmetic industries [7–10]. These bioactive compounds are mainly polyphenols,
and among them, anthocyanins which have proved to have high nutritional and potential health
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value [11]. In vivo studies have shown that anthocyanins have many positive effects on the prevention
of cardiovascular diseases, diabetes, and cancers (lung, colon, breast, and skin). Red berries, including
the chokeberry, blueberry, blackcurrant, elderberry, raspberry, and cranberry, are widely consumed
fresh or in processed forms, such as jams, juices, syrups, and various types of jellies. These fruits
have been extensively investigated from the chemical point of view, particularly in fresh, juice, or
dried forms [12]. Due to the fact that fresh berry consumption is not always possible, jam production
is a good option for the food industry. In order to obtain high quality berry jams, the technological
process must use low temperatures, environmentally-friendly and non-destructive methods. In this
way, bioactive compounds can be protected from degradation, and the colour of the products can
also be preserved. In order to influence consumers’ acceptance, the product—jam in this case—must
still have an attractive colour. This colour is related to the anthocyanin content and has a strong
association with the antioxidant capacity. However, the temperature and time of processing must be
chosen properly to ensure the stability of the anthocyanins and the conservation of the antioxidant
activity [13–15]. Moreover, several other factors can affect the colour of berry jams, including the
storage temperature, amount of light exposure, and pH [16–18]. The antioxidant capacity can decrease,
remain unchanged, or even increase during processing or storage. Previous studies have revealed
that the optimum storage temperature for jam is 4 ◦C, and the brief storage of raspberry jam at
4 ◦C has been associated with a lower rate of anthocyanin degradation compared to jam stored at a
higher temperature (15 ◦C) [19]. The thermal treatment of anthocyanins is related to both anthocyanin
and antioxidant capacity degradation [20]. In this context, the aim of present study is to prepare
homemade jams using chokeberry, elderberry, blackcurrant, or blackthorn and to evaluate phenolic
compounds degradation during storage time. Moreover the in vitro antiproliferative potential of
the rich polyphenolic extracts will be tested on melanoma cell line. However, to the best of our
knowledge, no previous studies have investigated the effect of food compounds processing on
the phenolic compound content and the antioxidant capacity of homemade jams prepared using
chokeberry (Aronia melanocarpa), elderberry (Sambucus nigra), blackcurrant (Ribes nigrum) or blackthorn
(Prunus spinosa).

2. Results

2.1. LC-PDA-ESI/MS Identification and Quantification of Phenolic Compounds

2.1.1. Chokeberry Jam

The obtained jams and fresh berries were characterized by the presence of 11 compounds: five
anthocyanins, four flavonols, one HCA and one HBA (Table 1). The identified anthocyanins were only
glycosylated cyanidin, whereas, in the case of flavonols, we identified glycosylated quercetin as well
as caffeic and ellagic acids which are forms of HCA and HBA, respectively. Cyanidin-3-O-galactoside
was found to be the main compound among all the identified anthocyanins (Figure 1). It was identified
by the m/z 449 molecular ion, which was confirmed by the fragment ion m/z 287, which corresponds
to aglycone cyanidin (Figure 2).

The ESI-MS analysis of peaks 8, 9, and 10 showed the presence of molecular ions at m/z 419,
corresponding to cyanidin-3-O-arabinoside; m/z 449, corresponding to cyanidin-3-O-glucoside; and
m/z 419, corresponding to cyanidin-3-O-xyloside. Regarding the quantitative analysis, the flavonol
profiles were consistent with those reported previously, except that quercetin-3-O-rutinoside was
found to be present in a higher amount [21,22]. In addition to the flavonols identified in our
study, Mikulic-Petkovsek et al. identified four more quercetin glycosides: glucuronide, xyloside,
arabinopyranoside, and robinobioside [21,23]. At peak 1, the MS parent ion m/z 163 was identified as
caffeic acid which is in agreement with the available literature [24].
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Table 1. Chromatographic, mass spectral characteristics and tentative identification of compounds
compounds in berry jams by LC-PDA-ESI/MS.

Peak No. Rt (min) Parent Ion Fragment Ion MW UV Spectra Compound Ref

Chokeberry

1 13.42 181 163 180 323 Caffeic acid

[22,23,25]

2 14.79 465 303 464 355 Quercetin-3-O-galactoside
3 15.42 611 303 610 354 Quercetin-3-O-rutinoside (Rutin)
4 16.11 465 303 464 355 Quercetin-3-O-glucoside
5 16.29 - 303 302.1 364 Ellagic acid
6 21.90 - 303 302 369 Quercetin
7 10.80 449 287 449 528 Cyanidin-3-O-galactoside
8 11.57 419 287 419 517 Cyanidin-3-O-arabinoside
9 12.58 419 287 454 519 Cyanidin-3-O-xyloside
10 13.20 449 287 449 518 Cyanidin-3-O-glucoside
11 14.31 - 287 287 528 Cyanidin

Blackthorn

1 13.14 181 163 180 319 Caffeic acid

[26]

2 14.47 355 181, 163 354 325 Neochlorogenic acid
3 15.19 611 303 610 354 Quercetin-3-O-rutinoside (rutin)
4 21.38 303 302 369 Quercetin
5 449 287 449 528 Cyanidin-3-O-galactoside
6 10.84 595 449, 287 595 516 Cyanidin-3-O-rutinoside
7 11.96 609 463, 301 611 524 Peonidin-3-(6”-coumaroyl) glucoside

Elderberry

1 13.39 355 181, 163 354 352 Chlorogenic acid

[27]

2 15.44 611 303 610 354 Quercetin-3-O-rutinoside
3 16.14 465 303 464 355 Quercetin-3-O-glucoside
4 21.38 - 303 302 369 Quercetin
5 10.94 581 449, 287 616 518 Cyanidin-3-O-sambubioside
6 14.29 449, 287 449 518 Cyanidin-3-O-glucoside

Blackcurrant

1 11.16 301 139 300 252 4-Hydroxybenzoic
acid-4-O-glucoside

[12,28,29]

2 13.59 343 181, 163 343 321 Caffeic acid-4-O-glucoside
3 13.97 595 287 594 346 Kaempferol-3-O-rutinoside
4 14.59 627 319 626 355 Myricetin-3-O-rutinoside
5 15.04 465 319 646 372 Myricetin-3-O-rhamnoside
6 15.66 611 303 610 354 Quercetin-3-O-rutinoside
7 16.37 465 303 464 355 Quercetin-3-O-glucoside
8 16.70 357 195 194 316 Ferulic acid-4-O-glucoside
9 17.47 449 287 448 346 Kaempferol-3-O-galactoside
10 17.84 567 319 566 355 Myricetin-3-O-(6”-malonyl-glucoside)
11 19.25 319 300 255 Hydroxybenzoic acid-4
12 20.25 551 303 550 358 Quercetin-3-O-(6”-malonyl-glucoside)
13 21.99 303 302 369 Quercetin
14 22.53 449 287 448 346 Kaempferol-3-O-glucoside
15 22.98 287 286 365 Kaempferol
16 10.12 465 303 465 524 Delphinidin-3-O-glucoside
17 10.57 611 528 Delphinidin-3-O-rutinoside
18 11.38 595 287 449 518 Cyanidin-3-O-glucoside
19 14.38 449 287 287 514 Cyanidin
20 15.64 303 303 520 Delphinidin

A decrease in the content of anthocyanins was observed immediately after processing and also,
during storage time as it is shown in Figure 3.
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This degradation can be attributed to the hydrolytic reactions that led to the conversion of
anthocyanin glycosides into chalcones, whose form can be rapidly transformed into phenolic acids
and aldehydes.

Moreover, heat stable forms of polyphenol oxidase or peroxidase may play roles in the reduction
of anthocyanins [30,31]. Another mechanism that may be associated with anthocyanin degradation
is related to the hydrolysis of the glycoside linkages. This hydrolysis is known as the first step
towards anthocyanin degradation, because high temperatures can shift the anthocyanin equilibrium
towards the colorless chalcones. Chalcone degradation can occur due to the presence of oxidation
reactions which can generate brown compounds or pigments that have high molecular weights.
Additionally, pH values can affect the flavylium salt degradation, which is stable under highly
acidic conditions. At higher pH values, salts can lose a proton and are easily transformed into an
unstable pigment (quinoidal base) that is bonded to water and forms a colorless compound, commonly
known as chromanol [30,32]. During processing and at the end of the storage period, anthocyanin
degradation ranged from 58.90% to 74.30%. The results of the loss of anthocyanin content were lower
compared with data reported previously for processed and stored black carrot jam and marmalade
(87.60–95.60%). Degradation was also observed in flavonoids immediately after processing and during
storage. This finding is in agreement with the previously reported data for Rubus coreanus Miquel berry
jams [33]. The results revealed that jams prepared at pH 2.0–3.0 lost 33–35% of their anthocyanins,
while the total amount of anthocyanins in jams obtained at pH 3.5–4.0 were degraded by 40–48%.
In another study on blueberry jam, in contrast to other polyphenolics, the level of total flavonols was
stable in response to processing, with >94% retention, compared to levels found in fresh berries [31]
(Figure 3). Our study showed a degradation of HBA compound ranging from 70 to 90%. This had the
highest degradation rate comparing with other existing compounds.

Chokeberries are a rich source of anthocyanins compared with other fruits. Due to this, they are
usually used in the food industry as colorants or as a supplementary source of antioxidants. A recent
study showed that the supplementation of strawberry jams with chokeberries and flowering quince
during processing increase in the content of phenolic components in final products, especially for
proanthocyanidins [34].

2.1.2. Blackthorn

These berries are becoming very popular in the food industry due to their complex and valuable
phytochemical composition and also due to their easily availability in nature. The chromatographic
analysis of fresh berries or jams revealed the presence of five phenolic compounds (Figure 4).
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The identified compounds are summarized in Table 1. The mass spectra of peak 1 displayed a
parent ion at m/z 181 and one fragment ion at m/z 163, which was identified as caffeic acid, while peak 2
had an ion at m/z 181 which was identified as neochlorogenic acid. Two more molecules were identified
as quercetin (m/z 303) and quercetin-3-O-rutinoside (m/z 611). Anthocyanins were shown to be the
most abundant class (fresh berries, jam), followed by flavonols and HCA. In contrast to the other berries
in this study, blackthorn did not contain HBA. The identified anthocyanins were two glycosylated
cyanidins and one acylated peonidin. For peak 5, in the case of cyanidins, the ESI-MS analysis indicated
the presence of a molecular ion at m/z 449 corresponding to cyanidin-3-O-galactoside.

The second isolated anthocyanin showed a molecular ion at m/z 595, suggesting the presence
of cyanidin-3-O-rutinoside. In this case, the ion at m/z 449 showed a loss of one molecule of
rhamnoside and an ion at m/z 287, confirming the presence of aglycone cyanidin. Further, the
peaks, registered with a molecular ion at m/z 603 and a fragment ion at m/z 301, were identified as
peonidin 3-(6”-coumaroyl) glucoside. Peak 4 had a molecular ion at m/z 609 and two fragment ions at
m/z 463 and m/z 301, which indicated the presence of peonidin 3-(6”-coumaroyl) glucoside (Figure 5).
This anthocyanin identification is in agreement with Stefǎnut, et al., who also reported the presence
of peonidin-3-O-rutinoside [26]. These differences may be attributed to the climatic conditions or
harvesting time.
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After processing, the bioactive compounds of blackthorn jam decreased (Figure 6). The amount of
anthocyanins in berries decreased by 50% immediately after thermal processing compared to fresh
ones and reached 82.56% after 6 months of storage. The same results were reported for black carrot
(Daucus carota) jams and marmalades [30]. After 20 weeks of storage, the preserved anthocyanins
and antioxidant capacity in samples stored at 4 ◦C were 53.4–81.0% and 45.2–92.0%, respectively.
Time-dependent degradation of flavonols, ranging from 23 to 67%, was also observed. As in the case
of HCA, the amounts of caffeic and neochlorogenic acid dramatically decreased from 41 to 81% during
storage time.
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compared with data reported previously for processed and stored black carrot jam and marmalade 
(87.60–95.60%). Degradation was also observed in flavonoids immediately after processing and 
during storage. This finding is in agreement with the previously reported data for Rubus coreanus 
Miquel berry jams [33]. The results revealed that jams prepared at pH 2.0–3.0 lost 33–35% of their 
anthocyanins, while the total amount of anthocyanins in jams obtained at pH 3.5–4.0 were degraded 
by 40–48%. In another study on blueberry jam, in contrast to other polyphenolics, the level of total 
flavonols was stable in response to processing, with >94% retention, compared to levels found in fresh 
berries [31] (Figure 3). Our study showed a degradation of HBA compound ranging from 70 to 90%. 
This had the highest degradation rate comparing with other existing compounds.  

Chokeberries are a rich source of anthocyanins compared with other fruits. Due to this, they are 
usually used in the food industry as colorants or as a supplementary source of antioxidants. A recent 
study showed that the supplementation of strawberry jams with chokeberries and flowering quince 
during processing increase in the content of phenolic components in final products, especially for 
proanthocyanidins [34].  

2.1.2. Blackthorn  

These berries are becoming very popular in the food industry due to their complex and valuable 
phytochemical composition and also due to their easily availability in nature. The chromatographic 
analysis of fresh berries or jams revealed the presence of five phenolic compounds (Figure 4).  
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study showed that the supplementation of strawberry jams with chokeberries and flowering quince 
during processing increase in the content of phenolic components in final products, especially for 
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These berries are becoming very popular in the food industry due to their complex and valuable 
phytochemical composition and also due to their easily availability in nature. The chromatographic 
analysis of fresh berries or jams revealed the presence of five phenolic compounds (Figure 4).  

p < 0.001).

2.1.3. Elderberry

Thus far, elderberries were not very popular for consumers due to their alkaloid content. However,
this can easily be neutralized by thermal processing. Recently, an interest in elderberries has developed
due to their rich polyphenolic compound content and thus, high antioxidant potential. Consequently,
these berries are now becoming a very popular crop in Europe, and thus, we included them in our
study. The HPLC analysis revealed that elderberry has a simple phenolic fingerprint, characterized by
the presence of six compounds: two anthocyanins and four hydroxycinnamic acids (HCA) (Figure 7).
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The identified anthocyanins in fresh fruits and prepared jam were exclusively cyanidin-based
anthocyanins, quercetin derivatives, and chlorogenic acid. Peak 1 was assigned to chlorogenic acid
because it has a parent ion at m/z 355 and two fragments ions at m/z 181 and 163. The next three
peaks (2, 3, 4) were found to be quercetin-3-O-rutinoside (m/z 611, 303), quercetin-3-O-glucoside
(465, 303), and quercetin (303) (Figure 8). Further, the ESI-MS analysis showed the presence of
molecular ions at m/z 381 corresponding to cyanidin-3-O-sambubioside, while peak 6 was identified
as cyanidin-3-O-glucoside (m/z 449, 287) (Table 1, Figure 8).

Three flavonols were identified in this sample, with quercetin-3-O-rutinoside (Figure 7) being the
major one, followed by quercetin-3-O-glucoside. This rank was maintained after thermal processing
and storage (Figure 9).

Molecules 2018, 23, x FOR PEER REVIEW  9 of 18 

 

The identified anthocyanins in fresh fruits and prepared jam were exclusively cyanidin-based 
anthocyanins, quercetin derivatives, and chlorogenic acid. Peak 1 was assigned to chlorogenic acid 
because it has a parent ion at m/z 355 and two fragments ions at m/z 181 and 163. The next three peaks 
(2, 3, 4) were found to be quercetin-3-O-rutinoside (m/z 611, 303), quercetin-3-O-glucoside (465, 303), 
and quercetin (303) (Figure 8). Further, the ESI-MS analysis showed the presence of molecular ions 
at m/z 381 corresponding to cyanidin-3-O-sambubioside, while peak 6 was identified as cyanidin-3-
O-glucoside (m/z 449, 287) (Table 1, Figure 8).  

Three flavonols were identified in this sample, with quercetin-3-O-rutinoside (Figure 7) being 
the major one, followed by quercetin-3-O-glucoside. This rank was maintained after thermal 
processing and storage (Figure 9). 

  
  

 
 

 Quercetin-3-O-glucoside  Cyanidin-3-O-sambubioside 

Figure 8 HPLC-MS spectra, UV/vis scanning spectra, and the chemical structures of peaks 2 and 5. 

The obtained results regarding phenolic changes during processing are in agreement with the 
available literature [35]. The current body of literature indicates that thermal processes have a large 
influence on flavonoid stability, especially for rutin which has higher stability compared to its 
aglycon form (quercetin) [32,33]. These findings were attributed to the presence of carbanion 
formation because of the glycosylation of the 3-hydroxyl group in the C-ring.  

Other authors also reported that glycosylated form are more stable: luteolin was found more 
resistant to heat than rutin or luteolin-7-glucoside when heated at 180 °C for 180 min [34]. Moreover, 
the highest level of polyphenolic compounds was observed in the extraction of Orthosiphon 
stanmineus leaf, with 80% methanol at 40 °C and a significant degradation of the analytes recorded at 
temperatures above 60 °C [16]. The results of the previously cited study also showed a significant 

Figure 8. HPLC-MS spectra, UV/vis scanning spectra, and the chemical structures of peaks 2 and 5.

The obtained results regarding phenolic changes during processing are in agreement with the
available literature [35]. The current body of literature indicates that thermal processes have a large
influence on flavonoid stability, especially for rutin which has higher stability compared to its aglycon
form (quercetin) [32,33]. These findings were attributed to the presence of carbanion formation because
of the glycosylation of the 3-hydroxyl group in the C-ring.

Other authors also reported that glycosylated form are more stable: luteolin was found more
resistant to heat than rutin or luteolin-7-glucoside when heated at 180 ◦C for 180 min [34]. Moreover,
the highest level of polyphenolic compounds was observed in the extraction of Orthosiphon stanmineus
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leaf, with 80% methanol at 40 ◦C and a significant degradation of the analytes recorded at temperatures
above 60 ◦C [16]. The results of the previously cited study also showed a significant reduction in
the free radical-scavenging activity of the samples which were treated at temperatures above 60 ◦C.
To conclude, the antioxidant capacity of the flavonoids, and therefore, their pathway to oxidative
degradation is linked with their special structural features.
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p < 0.001).

2.1.4. The Blackcurrant

This sample had the most complex matrix of polyphenol constituents. Prior to the ESI-MS
analysis, we were able to identify 20 individual compounds (Figure 10). The available literature data
indicates that the polyphenolic compounds present in blackcurrant are caffeic acid, hydroxybenzoic
acid, quercetin, myricetin, cyanidin, and delphinidin [28,29,36]. Table 1 presents the retention
times, molecular ions, and fragmentation information for all polyphenolic compounds found in
the present study. The mass spectra of peak 1 displayed a parent ion at m/z 341 and one fragment
ion at m/z 139 which was identified as 4-hydroxybenzoic acid-4-O-glucoside. This sample was also
characterized by the presence of 13 flavonols-mainly kaempferol-as well as quercetin or myricetin
derivates. For anthocyanins, glucosides and rutinosides were the main sugar moieties of delphinidin
and cyanidin identified (Table 1). Overall, the anthocyanins identified in the present study are in
agreement with those detected in previous studies [12].

The first identified anthocyanin (peak 1) was delphinidin-3-O-glucoside (m/z 303), while the
second isolated anthocyanin showed a parent ion at 611 and a molecular ion at m/z, suggesting the
presence of delphinidin-3-O-rutinoside (Figure 11). Moreover, the ion at m/z 449 indicated the loss
of one molecule of rhamnoside, and the ion at m/z 287 confirmed the presence of aglycone cyanidin
(Table 1).
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Our results indicated that heating and prolonged storage time are influencing the contents
of the individual phenolic compounds, and moreover, their content decreased overall (Figure 12).
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These findings are in agreement with a previous study [37] which reported that flavonoid loss may
depend on the preparation method used, such as boiling, frying with oil and butter, or microwaving.
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p < 0.001).

2.2. Cell Proliferation

Cell proliferation was performed by evaluating the mitochondrial succinate dehydrogenase
activity of both cell lines (normal and melanoma) after applying a 24 h treatment with RPE. In the case
of a normal fibroblast cell line (HFL-1), all the extracts showed a stimulation of proliferation, especially
elderberry extract, while blackthorn extract exerted a less significant influence on cell proliferation.
These differences could be explained by their varied phytochemical compositions. In this context we
can state that elderberry extract was characterised by the presence of anthocyanins and HCA, while
blackthorn, in addition to its anthocyanin and HCA contents, was shown to contain flavonols as well.
Further, for the human melanoma cell line (A375), the applied treatments reduced cell proliferation
after 24 h at the highest applied concentration (100 µg/mL) (Figure 13). The obtained results were
well correlated with the dose concentration. Moreover, data showed that all of the applied treatments
on the melanoma cell line have a cell proliferation effect ranging from 20–25%. The extract with the
highest antiproliferative potential was the one obtained from blackthorn. This fact can be attributed
to their phytochemical composition which is abundant in glycosylated and acylated anthocyanins
(356 mg/100 g FW). In other words, there was no dose that inhibited 50% of the cultivated cells.
The obtained results demonstrate that extracts rich in polyphenols have antiproliferative potential on
tumour cells, while on normal cells, they have been proven to stimulate cell proliferation in a dose
dependent manner.
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This fact is in agreement with other published data [38]. However, like all natural plant
metabolites, anthocyanins are unstable and highly susceptible to degradation. Their stability is
highly influenced by pH, temperature, light and also the presence of complexing compounds such
as other phenolic acid and flavonoids or metals ions [39]. Moreover, it is not clear how exactly
anthocyanins act at cellular level, but their proprieties seem to be closely related to their antioxidant
activity [40]. Bein unstable molecules, when exposed to high pH values, during the in vitro testing,
anthocyanins can rapidly degrade or be breakdown in different metabolites. Very little is known about
the details and the mechanisms of anthocyanin absorption and transportation when comparing with
other flavonoid groups, such as flavonols. Anthocyanins exhibit complex biochemistry and much
remained to be discovered about the biochemical activity of these compounds.

Currently, most investigations on anthocyanins are focusing on solving these problems, as well
as anthocyanin bioavailability which seems to be very low with <1% absorption from the ingested
dietary dose [41]. Moreover anthocyanins are subject to degradation in vivo, resulting in a breakdown
to phenolic acids and aldehydes [42], such as protocatechuic acid (PCA) and phloroglucinol aldehyde
(PGA) in the case of cyanidin. For other anthocyanins classes such as glycosylated or acylated form,
the consumption and bioavailability of dietary phenolics have become a major concern in phenolic
chemopreventive and cancer therapy research and these were not researched as far as we know.

3. Discussion

The obtained results revealed that during processing and storage, the bioactive compounds from
all berry jams degraded over time, but they still exert antioxidant activity. Prior to the chromatographic
analysis, polyphenolic compounds were identified as flavonoids (anthocyanins (ANT), flavonols (FLA))
or non-flavonoids (phenolic acids derivates of hydroxycinnamic acids (HCA) and hydroxybenzoic
acids (HBA)). The polyphenolic compounds were identified by comparing the peak m/z of each
molecule as well as their fragmentation and elution orders (retention time) with previously published
values and available standards.

Compared to the other classes of quantified compounds, the most significant decrease was
observed in HCA. This variation was expected due to the variation in the constituents and phenolic
types among the different analyzed berries. These data correspond with similar conclusions of previous
experiments reported regarding polyphenols antioxidant activity and their thermal degradation [43].
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Moreover any processing of berries (especially thermal) and also storage were proved to be responsible
for the significant losses of polyphenols. In a recent study, processing methods had insignificant effects
on blueberry ellagitannins, but juice processing of berries resulted in total ellagitannin losses of about
70–82% [44]. Same author reported that storage at 25 degrees C of all processed products resulted in
dramatic losses in monomeric anthocyanins with as much as 75% losses of anthocyanins throughout
storage [45]. Another study, reported that thermal processes blackberries, showed a decreased content
of anthocyanins (cyanidin-3-glucoside (by 52%) and cyanidin-3-malonyl glucoside (64%) respectively).
They also reported that anthocyanins continue to decline during storage, especially when temperatures
were high [46]. The obtained values for each type of berry of processed product are not easy to
compare with literature available data due to the source of the berries or fruit. Their initial amount of
polyphenols may vary with cultivation type, variety or climatic condition.

For the in vitro test we have obtained promising results which can be compared with available
published data. Many studies have proved that anthocyanins present beneficial effects for human
health [47]. Because of their physiological activities, the consumption of anthocyanins may play a
significant role in preventing lifestyle-related diseases such as cancer, diabetes, cardiovascular and
neurological disease. However, the exact roles of the anthocyanins in human health maintenance
versus other phytochemicals in a complex mixture from a fruit extract or whole food have not been
completely sorted out. In vitro studies have shown various beneficial effects of anthocyanins regarding
human health, but without doubt, in vivo, epidemiological and clinical trials would be more accurate.
However, to the best of our knowledge, no report exists on the effect of processing on the phenolic
compounds content of homemade jams from chokeberry, elderberry, blackcurrant or blackthorn.

4. Materials and Methods

All solvents, reagents, and standards used to perform the experiments were of analytical
grade and purchased from Sigma-Aldrich (Darmstadt, Germany) The anthocyanin standards
cyanidin-3-O-glucoside chloride, pelargonidin-3-O-glucoside chloride, cyanidin-3-O-galactoside
(purity 90%), cyanidin-3-O-arabinoside (purity 97%), cyanidin-3-O-glucoside (purity 95%), and
cyanidin (purity 95%) were purchased from Polyphenols AS (Sandnes, Norway). Chlorogenic acid,
caffeic acid, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, ellagic acid, and myricetin were also
purchased from Sigma-Aldrich (Darmstadt, Germany).

4.1. Sampling Procedure

Berry fruits (chokeberry, elderberry, blackcurrant, and blackthorn) were purchased from local
farmers near Cluj-Napoca, Romania. Immediately after harvesting, the berries were frozen at −18 ◦C
for future analyses. Basically, a common and simple jam-making procedure was followed in this study.
Jams were prepared from berries using 250 g of sugar and 500 g of chopped berries, this being the
most common ratio found in homemade jam products. The obtained mixture was heated in a gas
stove (85 ◦C) for 15 min each day over 3 consecutive days. After boiling on the 3rd day, the jams were
allowed to cool down to room temperature before being placed in glass jars (45 g). The obtained jams
were analyzed immediately after preparation, and the remaining jams were divided into four batches
and stored in the dark at 4 ◦C. Samples were analyzed after 1, 3, 6, and 9 months of storage.

4.2. Extraction of Anthocyanin and Non-Anthocyanin Phenolics from Fresh Berries and Berry Jam

For the extraction of polyphenols, 5 g of fresh berries of each type were ground using an ultraturrax
(Miccra D-9 KT Digitronic, Heitersheim, Germany). Additionally, the same amount of berry jams was
homogenized and weighed, followed by the addition of 10 mL of methanol containing hydrochloric
acid (0.3% v/v). The obtained mixtures were sonicated for 20 min in the dark and then centrifugated
at 5000 rpm for 5 min. The supernatant was collected, and the extraction process was repeated
until the samples were colorless. The extracts obtained for each sample were concentrated at 35 ◦C
under reduced pressure (Rotavapor R-124, Buchi, Flawil, Switzerland) and then filtered through a
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0.45 µm Millipore filter. All the sample preparation steps were carried out in subdued light and under
controlled conditions.

4.3. RP-HPLC-PDA Identification and Quantification of Phenolic Compounds

HPLC analysis was performed on a Shimadzu (Kyoto, Japan) system equipped with a binary
pump delivery system (model LC-20 AT Prominence), a degasser (model DGU-20 A3 Prominence),
a UV–VIS diode array detector (model SPD-M20), and a Luna C-18 column (film thickness, 5 µm;
25 cm, 4.6 mm) (Phenomenex, Torrance, CA, USA). The mobile phases were formic acid (4.5%) in
double-distilled water (solvent A) and acetonitrile (solvent B). The gradient elution system was as
follows: 10% B, 0–9 min; 12% B, 9–17 min; 25% B, 17–30 min; 90% B, 30–50 min; and 10% B, 50–55 min.
The flow rate was 0.8 mL/min, and all analyses were performed at 35◦C. Identification and peak
assignments were conducted based on their retention times UV-VIS spectra, standards and available
literature. The chromatograms were monitored at 340 and 520 nm. Anthocyanin quantification was
conducted using a cyanidin-3-O-galactoside standard curve while for flavanol and phenolic acid was
assessed using a rutin or chlorogenic acid standard curve.

4.4. HPLC-PDA/-ESI-MS Identification and Quantification of Phenolic Compounds

To confirm the identified compounds, an ESI-MS analysis was also conducted. The ESI-MS
analysis was performed using an Agilent 1200 system equipped with a binary pump delivery system
(LC-20 AT, Prominence), a degasser (DGU-20 A3, Prominence), a diode array SPD-M20 A UV–VIS
detector (DAD), and an Eclipse XDB C18 column (4 µm, 4.6 × 150 mm) was used. The mobile phases
used the following solvents: (A) bidistilled water and 0.1% acetic acid/acetonitrile (99/1 v/v), and
(B) acetonitrile and acetic acid 0.1%. The gradient elution system conditions were as follows: 0–2 min,
isocratic with 5% (v/v) eluent B; 2–18 min, linear gradient from 5% to 40% (v/v) eluent B; 18–20 min,
linear gradient from 40% to 90% (v/v) eluent B; 20–24 min, isocratic on 90% (v/v) eluent B; 24–25 min,
linear gradient from 90% to 5% (v/v) eluent B; 25–30 min, isocratic on 5% (v/v) eluent B. The flow rate
was 0.5 mL/min, and the column temperature was maintained at 25◦ C. The chromatograms were
monitored at 280 and 340 nm, respectively. The identification of compounds was conducted based on
their retention times, UV-VIS spectra, standards (chlorogenic acid, caffeic acid, quercetin-rutinoside,
quercetin-glucoside, ellagic acid, and myricetin, all purchased from Sigma-Aldrich, and published data.
The mass spectrometric data were obtained using a single quadrupole 6110 mass spectrometer (Agilent
Technologies, Chelmsford, MA, USA) equipped with an ESI probe with scanning range between 280
to 1000 m/z. The measurements were performed in the positive mode, with an ion spray voltage of
3000 V and a capillary temperature of 350 ◦C.

4.5. Cell Culture

The metastatic B16-F10 murine melanoma cell line was purchased from ATCC (Rockville, MD,
USA) and grown under standard conditions. More specifically the cells were cultivated in DMEM
(Dulbecco’s Modified Eagle Medium) medium containing 4.5 g/L glucose, 10% FBS supplemented
with 2 mM glutamine, 1% penicillin, and streptomycin. The non-tumor model (HFL-1 human fetal lung
fibroblast cell line, ATCC) was cultivated in a F-12K (Kaighn’s Modification of Ham’s F-12 Medium)
medium containing 10% FBS and 1% penicillin/streptomycin. Both cell lines were maintained under
standard conditions at 37 ◦C, 5% CO2 and 95% relative humidity.

4.6. Analysis of Cell Proliferation

For proliferation analysis, both cell lines were plated at a density of 8 × 103 cells/well in a 96-well
microplate and cultured in complete medium for 24 h. The medium was then replaced with a complete
medium containing, or not containing rich polyphenolic extracts (RPE) at various concentrations
(0–100 µg/mL) for 24 h at 37 ◦C with 5% CO2. The RPE stock solution was prepared with a complete
medium containing 0.3% DMSO. The treatment was applied for 24 h at 37 ◦C with 5% CO2. To assess
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the cell viability after treatment with RPE we used a standard procedure. Briefly, the cell culture
medium was removed and freshly prepared MTT reagent (0.5 mg/mL) was added to each well. After
2 h of incubation at 37 ◦C, the MTT solution was carefully removed, and DMSO was added in order to
dissolve the formazan crystals that had formed in the mitochondria. The solubilized formazan formed
in the viable cells was measured at 550 and 630 nm (for the sample and background, respectively)
using the microplate reader, HT BioTek Synergy (BioTek Instruments, Winooski, VT, USA). The results
are expressed as the survival percentage with respect to an untreated control. The control cells were
assessed to be 100% viable.

4.7. Statistical Analysis

Data are expressed as the mean ± standard error of mean (SEM) of three analyses of each sample.
Analysis of variance (ANOVA) and Dunnett’s multiple comparisons test were used to determine
significant differences between values (p < 0.05).
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Normal fibroblast cell line HFL-1
Rich polyphenolic extracts RPE
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