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Abstract: Proline dehydrogenase (ProDH) is a ubiquitous flavoenzyme that catalyzes the oxidation of
proline to ∆1-pyrroline-5-carboxylate. Thermus thermophilus ProDH (TtProDH) contains in addition to
its flavin-binding domain an N-terminal arm, consisting of helices αA, αB, and αC. Here, we report
the biochemical properties of the helical arm truncated TtProDH variants ∆A, ∆AB, and ∆ABC,
produced with maltose-binding protein as solubility tag. All three truncated variants show similar
spectral properties as TtProDH, indicative of a conserved flavin-binding pocket. ∆A and ∆AB are
highly active tetramers that rapidly react with the suicide inhibitor N-propargylglycine. Removal
of the entire N-terminal arm (∆ABC) results in barely active dimers that are incapable of forming a
flavin adduct with N-propargylglycine. Characterization of V32D, Y35F, and V36D variants of ∆AB
established that a hydrophobic patch between helix αC and helix α8 is critical for TtProDH catalysis
and tetramer stabilization.

Keywords: flavoprotein; proline dehydrogenase; protein engineering; protein oligomerization;
solubility tag; suicide inhibition; TIM-barrel

1. Introduction

Proline dehydrogenase (ProDH; EC 1.5.5.2) is a ubiquitous enzyme involved in proline catabolism.
ProDH catalyzes the flavin-dependent oxidation of L-proline to ∆1-pyrroline-5-carboxylate (P5C).
After P5C hydrolysis, the resulting glutamic semialdehyde (GSA) is oxidized to glutamate through the
action of ∆1-pyrroline-5-carboxylate dehydrogenase (P5CDH; EC 1.2.1.88) (Scheme 1). ProDH and
P5CDH exist as separate monofunctional enzymes in eukaryotes and some bacteria, but are fused into
a bifunctional [1,2] or trifunctional [3] enzyme in other bacteria. In these multi-functional enzymes,
called proline utilization A (PutA), the C-terminus of ProDH is fused to P5CDH, allowing for the
channeling of the P5C/GSA intermediate between the enzymes [4–9].

ProDH has a distorted (βα)8 TIM-barrel fold (Figure 1A), which is conserved throughout the
PutA/ProDH family [11,12]. Opposed to the classic TIM-barrel fold, the ProDH barrel begins with
a helix (α0) rather than a strand (Figure 1). This extra helix occupies the location that is normally
reserved for α8. As a consequence, α8 is not located alongside β8, but on top of the barrel [1,13,14].
The distorted location of α8 is crucial for catalysis, since it contributes three strictly conserved residues
(Tyr-x-x-Arg-Arg) that interact with the substrate [13,14].

Molecules 2018, 23, 184; doi:10.3390/molecules23010184 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-2405-4404
https://orcid.org/0000-0002-6551-2782
http://dx.doi.org/10.3390/molecules23010184
http://www.mdpi.com/journal/molecules


Molecules 2018, 23, 184 2 of 15
Molecules 2018, 23, 184 2 of 15 

 

 
Scheme 1. Conversion of L-proline to L-glutamate by proline dehydrogenase (ProDH) and Δ1-
pyrroline-5-carboxylate dehydrogenase (P5CDH). Scheme based on [10]. 

The N-terminal sequence of ProDH is poorly conserved. Monofunctional eukaryotic ProDHs, 
including the human enzyme [15], have an elongated N-terminus when compared to monofunctional 
bacterial ProDHs [11,12]. ProDH from Thermus thermophilus (TtProDH) contains an N-terminal arm 
consisting of three helices: αA, αB, and αC (Figure 1). Helix α8 fits into the cleft, which is formed by 
helices αA, αB and αC. This cleft is assumed to be involved in channeling P5C/GSA between 
TtProDH and TtP5CDH [1,16]. 

Previously, we showed that TtProDH is overproduced in Escherichia coli (E. coli) when its N-
terminus is fused to maltose-binding protein (MBP) [17] and that the recombinant enzyme does not 
discriminate between FAD and FMN as cofactor [18]. Replacing Phe10 and Leu12 in helix αA with 
Glu residues (further referred to as MBP-TtProDH variant EE) successfully released MBP-TtProDH 
from non-native self-association, yielding homogeneous tetramers [19]. Although TtProDH 
crystallizes as a dimer (Figure 1) [1], it is worthy of note that in solution, the enzyme remains a 
tetramer after removal of the MBP solubility tag [13]. 

 
Figure 1. Structural features of Thermus thermophilus proline dehydrogenase (TtProDH). (A) Three-
dimensional model of the crystal structure of the TtProDH dimer (PDB entry 2G37). The N-terminal 
helices αA (green), αB (red), and αC (blue) are indicated, as well as helix α0 (purple) and the C-
terminal helix α8 (brown); (B) Amino acid sequence of TtProDH. Secondary structural elements on 
top of the sequence have the same colors as in Figure 1A. Figure 1A is based on [19]. 

Scheme 1. Conversion of L-proline to L-glutamate by proline dehydrogenase (ProDH) and
∆1-pyrroline-5-carboxylate dehydrogenase (P5CDH). Scheme based on [10].

The N-terminal sequence of ProDH is poorly conserved. Monofunctional eukaryotic ProDHs,
including the human enzyme [15], have an elongated N-terminus when compared to monofunctional
bacterial ProDHs [11,12]. ProDH from Thermus thermophilus (TtProDH) contains an N-terminal arm
consisting of three helices: αA, αB, and αC (Figure 1). Helix α8 fits into the cleft, which is formed by
helices αA, αB and αC. This cleft is assumed to be involved in channeling P5C/GSA between TtProDH
and TtP5CDH [1,16].

Previously, we showed that TtProDH is overproduced in Escherichia coli (E. coli) when its
N-terminus is fused to maltose-binding protein (MBP) [17] and that the recombinant enzyme does not
discriminate between FAD and FMN as cofactor [18]. Replacing Phe10 and Leu12 in helix αA with Glu
residues (further referred to as MBP-TtProDH variant EE) successfully released MBP-TtProDH from
non-native self-association, yielding homogeneous tetramers [19]. Although TtProDH crystallizes as a
dimer (Figure 1) [1], it is worthy of note that in solution, the enzyme remains a tetramer after removal
of the MBP solubility tag [13].
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Figure 1. Structural features of Thermus thermophilus proline dehydrogenase (TtProDH).
(A) Three-dimensional model of the crystal structure of the TtProDH dimer (PDB entry 2G37).
The N-terminal helices αA (green), αB (red), and αC (blue) are indicated, as well as helix α0 (purple)
and the C-terminal helix α8 (brown); (B) Amino acid sequence of TtProDH. Secondary structural
elements on top of the sequence have the same colors as in Figure 1A. Figure 1A is based on [19].
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To investigate the functional impact of the N-terminal arm of TtProDH in catalysis and
oligomerization in closer detail, we constructed MBP-fused variants, lacking, respectively, one (∆A),
two (∆AB), or three (∆ABC) N-terminal helices. ∆A and ∆AB turned out to be highly active tetramers,
while ∆ABC was an almost inactive dimer. To further probe the role of helix αC, we addressed the
properties of site-specific variants V32D, Y35F, and V36D of ∆AB. This revealed that a hydrophobic
patch between helix αC and helix α8 is critical for TtProDH catalysis and tetramer stabilization.

2. Results

2.1. Protein Expression and Purification

MBP-TtProDH EE, ∆A, ∆AB and ∆ABC were overproduced in E. coli TOP10 cells. From 1 L of
culture about 200–250 mg of each variant was purified, yields that we have described before for the
heterologous production of MBP-TtProDH [17,19]. From SDS-PAGE analysis of the purified enzymes,
it can be appreciated that sequential removal of three helices results in a gradual decrease of subunit
molecular mass (Figure 2).
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Figure 2. Purified MBP-TtProDH variants visualized on sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE). Molecular masses of marker proteins (M), from top to bottom: 100, 75, 50,
37, 25 kDa.

Previously, we demonstrated that removal of the MBP fusion tag with trypsin does not
significantly affect the catalytic properties and oligomerization behavior of TtProDH [17]. However,
as found with EE [19], trypsinolysis of the arm-truncated variants did not result in homogeneous
preparations. Therefore, we used the MBP-fused variants for further studies.

2.2. Spectral Properties

The far-UV CD spectra of EE and the N-terminal variants are very similar (Figure 3A) and
comparable to that of MBP-TtProDH [17]. The visible flavin absorption spectra of EE and the
arm-truncated variants (Figure 3B) are also nearly identical to that of MBP-TtProDH [17,19], except
that the lowest energy absorption band of ∆ABC has shifted about 2 nm to higher wavelengths. These
data support that there are no major structural changes and that deletion of the N-terminal helices
does not significantly alter the microenvironment of the flavin-binding site. A recent crystallographic
study confirmed that ∆ABC (residues 38–279; PDB 5M42) has a similar overall structure as TtProDH
(PDB 2G37) with an rmsd value of 0.338 Å (for 221 Cα atoms of A chains) [1,18].
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native mass spectrometry. The estimated masses (Table 1) confirm that ΔA and ΔAB exist 
predominantly as tetramers, and ΔABC as dimer. With ΔABC, minor amounts of tetramers are 
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dimers are observed with native mass spectrometry, and for ΔABC monomers, although their 
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absorption spectra.

2.3. Hydrodynamic Properties

EE purifies as a tetramer [17,19]. The truncated variants ∆A and ∆AB also form tetramers as
indicated by size exclusion chromatography (Figure 4A). ∆ABC elutes mainly as a dimer (Figure 4A),
suggesting that αC plays a role in the tetramerization process. Previously, we showed that TtProDH
prepared from MBP-TtProDH also forms tetramers, but that the addition of 1 M GuHCl induces the
formation of dimers [17]. The crystal structure also shows a dimeric structure (cf. Figure 1A).
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Figure 4. Hydrodynamic properties of EE, ∆A, ∆AB, and ∆ABC as monitored by Superdex 200
size-exclusion chromatography. (A) Elution pattern of the MBP-TtProDH variants; (B) Hydrodynamic
properties of EE and ∆ABC, mixed in equal amounts and equilibrated at room temperature overnight.
SDS-PAGE of the gel filtration fractions is also shown.

Mixing of EE and ∆ABC followed by analytical gel filtration reveals two separate peaks, a peak
for the tetrameric species of EE and a peak for the dimeric species of ∆ABC (Figure 4B). This indicates
that mixing of the two enzyme forms does not lead to EE-∆ABC association. Moreover, SDS-PAGE of
the gel filtration fractions shows that no subunit exchange occurs (inset Figure 4B).

Additional information about the oligomeric state of the different variants was obtained by native
mass spectrometry. The estimated masses (Table 1) confirm that ∆A and ∆AB exist predominantly as
tetramers, and ∆ABC as dimer. With ∆ABC, minor amounts of tetramers are present, in agreement
with the analytical gel filtration results (Figure 4A). For ∆A and ∆AB, some dimers are observed
with native mass spectrometry, and for ∆ABC monomers, although their abundance is rather low.
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Denaturing the different complexes enabled an accurate mass measurement of the individual subunits
(Table 1). These masses show that all of the variants exist of identical subunits.

Table 1. Molecular masses of EE, ∆A, ∆AB, and ∆ABC as determined by native and denatured ESI-MS.
Both predicted (Pred.) as well as experimental (Exp.) masses are given in kDa with experimental errors
less than 0.01%. For calculation of the predicted native masses, it has been taken into account that each
subunit contains a non-covalently bound FAD cofactor (molecular mass 786 Da).

Native Denatured

Tetramer Dimer Monomer

Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp.

MBP-TtProDH EE * 317.8 319.6 158.9 158.9 79.5 - 78.7 78.7
MBP-TtProDH ∆A 310.1 311.3 155.0 154.9–155.7 77.5 - 76.7 76.8

MBP-TtProDH ∆AB 305.1 307.6–307.8 152.6 152.6–153.7 76.3 - 75.5 75.5
MBP-TtProDH ∆ABC 300.7 290.0–290.7 150.4 145.0–146.0 75.2 71.9–72.7 74.4 71.9

MBP-TtProDH ∆AB V32D 305.2 296.2–304.4 152.6 146.5–149.0 76.3 73.0–76.0 75.5 73.0
75.5

MBP-TtProDH ∆AB Y35F 305.1 307.4 152.5 152.3–152.9 76.3 - 75.5 75.5

MBP-TtProDH ∆AB V36D 305.2 296.2 152.6 151.1–151.9 76.3 - 75.5 73.0
75.5

* As determined previously [19].

The experimental masses of native and denatured ∆ABC do not correspond with the predicted
masses. The observed species appears to be C-terminally truncated [18]. Based on the estimated
mass, cleavage occurs before Arg288, leading to the removal of a part of the C-terminal tail with
sequence (288-RRIAERPENLLLVLRSLVSGLE-309). This truncated form has a predicted subunit mass
of 71,884.9 Da, close to the measured mass of 71,899.3 Da [18].

2.4. Catalytic Properties

Figure 5 presents an overview of the steady-state kinetic properties of the MBP-TtProDH variants.
The kinetic parameters derived from these experiments are summarized in Table 2. The proline Km

values of EE, ∆A, ∆AB, and ∆ABC are comparable. However, ∆A and ∆AB have a slightly higher
activity than EE while ∆ABC is almost inactive. These data suggest that αA and αB are not required
for optimal activity, and that further deletion of helix αC is critical for catalysis.
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Table 2. Kinetic parameters of the MBP-TtProDH variants at 25 ◦C, pH 7.4, as determined with the
Proline:DCPIP oxidoreductase assay, using proline as the variable substrate, and specific activities
of the MBP-TtProDH variants as determined by the proline:O2 assay, at a concentration of 100 mM
proline. Each data point for the Proline:DCPIP assay was retrieved in triplicate; the data points for the
Proline:O2 assay were retrieved in duplicate. The raw kinetic data of the Proline:DCPIP assay, used to
determine the Km and kcat, is provided in Table S1.

Proline:DCPIP Assay Proline:O2 Assay

Km (mM) kcat (s−1) kcat/Km (s−1 M−1) Specific Activity (mU/mg)

MBP-TtProDH EE * 68 ± 8 9.8 ± 0.5 146 266 ± 12
MBP-TtProDH ∆A 116 ± 5 12.6 ± 0.3 109 405 ± 15

MBP-TtProDH ∆AB 60 ± 3 13.6 ± 0.3 229 228 ± 8
MBP-TtProDH ∆ABC 114 ± 8 0.7 ± 0.02 6 20 ± 1

MBP-TtProDH ∆AB V32D 309 ± 25 3.2 ± 0.2 10 265 ± 4
MBP-TtProDH ∆AB Y35F 161 ± 29 14.1 ± 1.5 88 388 ± 5
MBP-TtProDH ∆AB V36D 189 ± 27 0.3 ± 0.03 1.6 21 ± 1

* As determined previously [19].

Since TtProDH has a low but significant proline oxidase activity [1], it was of interest to address the
oxygen reactivity of the N-terminal arm variants. For all of the variants described above, micromolar
concentrations of enzyme were needed to reliable measure consumption of oxygen, and very low
specific activities were observed (Table 2). Nevertheless, these data confirm that removal of the
complete N-terminal arm (∆ABC) also impairs the proline oxidase activity of MBP-TtProDH.

2.5. Reaction with N-propargylglycine

TtProDH is irreversibly inactivated by the suicide inhibitor N-propargylglycine [10]. Inactivation
involves the initial oxidation of N-propargylglycine to N-propargyliminoglycine and the subsequent
formation of a bicovalent linkage between flavin N(5) and the ε-amino group of Lys99 (Figure 6C).
Lys99 is located in the loop between β2 and α2 and is involved in binding the carboxylic moiety of
proline [1]. Upon reaction with N-propargylglycine the absorption maximum of TtProDH at 450 nm
disappears, while the maximum around 380 nm gradually increases. Furthermore, the peak at 380 nm
shifts to longer wavelengths. This behavior is indicative of the initial reduction of the flavin and the
subsequent formation of the covalent Lys99-FAD adduct [8,10]. After reaction with N-propargylglycine,
the enzyme is locked in the reduced state.

To probe the catalytic features of the MBP-TtProDH variants in further detail, we investigated
the reactivity of EE and the arm-truncated variants with N-propargylglycine. Figure 6A shows that
all of the variants except ∆ABC form a covalent flavin adduct, and that the reactions result in similar
absorption changes, as observed before with TtProDH [10]. However, a more careful analysis of the
kinetics of the reactions reveals significant differences.

For EE, ∆A, and ∆AB, flavin reduction and adduct formation are clearly observed (Figure 6A).
Reduction of EE by N-propargylglycine is relatively slow, as evidenced from the time-dependent
decrease in absorption at 450 nm. Flavin reduction is immediately followed by covalent adduct
formation as evidenced from the absorbance increase around 380 and 405 nm. Variants ∆A and ∆AB
reveal an increased rate of reduction compared to EE. This corresponds with the increased kcat values
for these variants (Table 2). The peak at 380 nm shows a red shift to 385 nm for EE and to 388 nm
for ∆A and ∆AB. Furthermore, both for ∆A and ∆AB, the increase in absorbance around 388 nm is
more pronounced.

∆ABC shows neither flavin reduction nor formation of a flavin adduct (Figure 6A). However,
a slow rise in absorption with a maximum at 290 nm is observed in the near-UV region, pointing to the
conversion of N-propargylglycine to N-propargyliminoglycine. Activity measurements with DCPIP
suggest that N-propargylglycine is indeed a poor substrate for ∆ABC.
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Activity of the different enzyme variants before and after incubation with 2.5 mM of
N-propargylglycine was measured (Figure 6B). For EE, residual activity after 90 min of incubation
with the inhibitor is about 13%. For ∆A and ∆AB the activity loss is even more pronounced, in good
agreement with the spectral results. The residual activity of ∆ABC after 90 min incubation with
N-propargylglycine is extremely low (Figure 6B).Molecules 2018, 23, 184 7 of 15 
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Figure 6. Reactivities of the N-terminal arm TtProDH variants with N-propargylglycine. (A) Left:
absorption spectral changes of the variants upon incubation with N-propargylglycine. The black
line indicates the spectrum before the addition of N-propargylglycine. Spectra were recorded
at 1 min intervals for 90 min. Right: absorbance changes of the variants upon incubation with
N-propargylglycine followed at 380, 405, and 450 nm; (B) Activity of the different enzyme variants
before and after incubation with N-propargylglycine. Error bars are based on three replicates.
(C) Chemical structure of N-propargylglycine and the covalent Lys99-FAD adduct.

2.6. Interactions between Helix αC and Helix α8

∆ABC is produced as a catalytically impaired dimer. In addition, this MBP-TtProDH variant is
truncated at its C-terminal helix α8. This suggests that helix αC is important for the stabilization of
helix α8. The three-dimensional model of the crystal structure of TtProDH suggests that there is a
hydrogen bond between Tyr35 of αC and Glu295 of α8 (Figure 7). Glu295 is part of the sequence that
is cleaved off in ∆ABC. To investigate whether the Tyr-Glu interaction is important for the stabilization
of helix α8, we changed Tyr35 to Phe. In addition, there is a hydrophobic patch between helix αC
and α8 (Figure 7). To examine the importance of this patch for the stabilization of helix α8, Val32,
and Val36 individually were changed into Asp. The single amino acid substitutions were introduced in
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MBP-TtProDH ∆AB, since this variant is fully active and forms stable tetramers. In this way, we only
look at the interaction between helix αC and α8 without possible interference of helix αA and αB.Molecules 2018, 23, 184 8 of 15 
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Figure 7. Interactions between helix αC and helix α8. The residues in helices αC and α8 are colored
in a hydrophobic (red) to non-hydrophobic (white) gradient, according to the hydrophobicity scale
introduced by Eisenberg et al. [20]. The remaining part of the catalytic domain is shown in grey and
the FAD cofactor is shown in yellow. (A) Ion pair Tyr35 (αC) and Glu295 (α8); (B) Hydrophobic patch
between αC and α8 with Val32 (αC) and Val36 (αC) indicated. Data according to the crystal structure
of TtProDH (PDB entry 2G37).

The far-UV CD spectra of V32D, Y35F, and V36D (Figure 8A) are identical to the far-UV CD-spectra
of the N-terminal variants (Figure 3A). The visible flavin absorption properties of the ∆AB variants
show that the low energy absorption bands of V32D and V36D have shifted about 2 nm to higher
wavelength, as compared to those of ∆AB and Y35F (Figures 3B and 8B). Thus, the flavin absorption
properties of V32D and V36D resemble those of ∆ABC (Figure 3B).

Size exclusion chromatography of Y35F indicates that substitution of Tyr35 with Phe does not
affect the tetrameric nature of ∆AB (Figure 8C). Therefore, the interaction between Tyr35 and Glu295
does not seem critical for stabilization of helix α8. V32D and V36D elute much later from the gel
filtration column than Y35F, suggesting that these variants mainly form dimers (Figure 8C). Native MS
of Y35F confirms the presence of tetramers. Furthermore, V32D and V36D are present both as tetramers
and dimers (Table 1). The mass of denatured Y35F shows the presence of identical subunits, while
V32D and V36D show two subunit masses, of which one corresponds with the predicted mass (Table 1).
The differences between the subunit masses suggest that both V32D and V36D are partially intact
and partially cleaved before R288 (predicted mass 73,001.2 Da), indicating flexibility and instability of
helix α8.
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flavin reduction and adduct formation are similar as found for ΔAB (Figure 6A). For V32D, flavin 
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than for ΔAB. The flavin prosthetic group of V36D is not reduced by N-propargylglycine, and the 
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Figure 8. Properties of helix αC variants of ∆AB. (A) Far-UV CD spectra; (B) Visible flavin absorption
spectra; (C) Hydrodynamic properties as monitored by Superdex 200 size-exclusion chromatography;
and, (D) Steady-state kinetic data as determined with the Proline:DCPIP assay. Each data point was
retrieved in triplicate. The raw kinetic data of the Proline:DCPIP assay, used to determine the Km and
kcat values, is provided in Table S1.

Analysis of the catalytic properties of Y35F confirms that the interaction between Tyr35 and
Glu295 is not crucial for the functioning of TtProDH (Figure 8D). The minor decrease in catalytic
efficiency when compared to ∆AB mainly results from a slight increase in Km for the proline substrate
(Table 2). V32D and V36D, on the other hand, are poorly active (Figure 8D). With these variants,
a considerable decrease in catalytic efficiency is observed (Table 2). Oxidase activity of especially V36D
is very low (Table 2), as found with ∆ABC.

The catalytic features of the helix αC variants were investigated in more detail by probing their
reactivity with the suicide inhibitor N-propargylglycine (Figure 9). For Y35F (Figure 9A), the rates
for flavin reduction and adduct formation are similar as found for ∆AB (Figure 6A). For V32D,
flavin reduction and adduct formation are also observed (Figure 9A), but these processes are much
slower than for ∆AB. The flavin prosthetic group of V36D is not reduced by N-propargylglycine, and
the typical absorption increase around 380 nm, indicative for adduct formation, is also not observed
(Figure 9A). However, as for ∆ABC, a slow rise in absorption occurs in the region 300–350 nm, pointing
to the conversion of N-propargylglycine to N-propargyliminoglycine.

All the helix αC variants lose activity when treated with N-propargylglycine. After incubation
for 90 min, Y35F is almost completely inactivated, but V32D and V36D retain 30% and 63% of their
original (rather low) activity (Figure 9B).
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Figure 9. Reactivities of helix αC variants of ∆AB with N-propargylglycine. (A) Left: absorption
spectral changes of the variants upon incubation with N-propargylglycine. The black line indicates
the spectrum before the addition of N-propargylglycine. Spectra were recorded at 1 min intervals for
90 min. Right: absorbance changes of the variants upon incubation with N-propargylglycine followed
at 380, 405, and 450 nm; (B) Activity of the different enzyme variants before and after incubation with
N-propargylglycine. Error bars are based on three replicates.

3. Discussion

Proline dehydrogenases contain a conserved (βα)8 TIM-barrel domain and an N-terminal arm that
differs in length among monofunctional bacterial and eukaryotic ProDHs. In this study, we investigated
the functional impact of the N-terminal arm of Thermus thermophilus ProDH. We analyzed variants that
lack one (∆A), two (∆AB), or three (∆ABC) N-terminal helices and compared these variants to the EE
variant of MBP-fused TtProDH. The latter variant is a highly active soluble form of the enzyme that
exclusively forms tetramers [19]. Spectral analysis showed that truncation of the N-terminal arm of
TtProDH does neither affect the binding of the FAD cofactor nor the microenvironment of the flavin
isoalloxazine ring.

We already showed that non-native aggregation of MBP-TtProDH is due to the hydrophobicity
of helix αA. Replacing Phe10 and Leu12 of αA with glutamates eliminates the formation of larger
aggregates [19]. Here, we established that the complete removal of helix αA (∆A), or removal of helices
αA and αB (∆AB), has the same effect: no aggregates are observed and ∆A and ∆AB exclusively
form tetramers. This confirms that αA is responsible for the in vitro aggregation of MBP-TtProDH
and that both helices αA and αB are not essential for the tetramerization process. Furthermore,
estimation of kinetic parameters revealed that αA and αB are not essential for the enzymatic activity
of MBP-TtProDH. Actually, ∆AB is the most active MBP-fused TtProDH variant reported thus far.
Incubations with the mechanism-based inhibitor N-propargylglycine yielded supporting information
about the catalytic competence and the structural integrity of ∆A and ∆AB. The flavin cofactor of
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both arm-truncated variants is rapidly reduced, immediately followed by covalent adduct formation.
This leads to irreversible suicide inactivation of the enzymes by N-propargylglycine (Figure 6).

Helix αC turned out to be more crucial for oligomerization and catalysis. Removal of the
complete N-terminal arm (∆ABC) resulted in catalytically impaired dimers and poor reactivity with
N-propargylglycine. MS analysis showed that ∆ABC has lost 22 residues at the C-terminus, including
Arg288 and Arg289, involved in proline binding [1]. Thus, the dissociation of tetramers into dimers
and loss in catalytic performance of ∆ABC might be caused by the removal of αC and/or the partial
absence of helix α8. We do not have indications that the loss in activity is caused by dimer formation,
since the dimer-dimer interactions in the tetramer seem to be relatively weak. The oxidase activity
remains low for all deletion variants, suggesting that the removal of the N-terminal helices does not
improve the access of oxygen to the flavin.

For Deinococcus radiodurans ProDH (DrProDH, PDB 4H6Q) [21], Bradyrhizobium japonicum PutA
(BjPutA, PDB 3HAZ) [22] and Geobacter sulfurreducens PutA (GsPutA, PDB 4NM9) [7], a conserved
Arg-Glu ion pair (Arg288-Glu65 in TtProDH) (Figure S1) is suggested to act as an active site gate.
Arg288 is present in helix α8 while Glu65 is present in the β1-α1 loop. In the presence of substrate, this
loop moves towards the active site and the Arg-Glu ion pair can form. In ∆ABC, helix α8 is cleaved
before Arg288, thereby disrupting this ion pair and excluding this possibility for active site stabilization.

Triggered by the properties of ∆ABC, we introduced single amino acid substitutions in ∆AB that
might disrupt the interaction between helix αC and helix α8 in a more delicate way. Replacement of
Tyr35 with Phe showed that the hydrogen bond interaction between Tyr35 and Glu259 is not crucial
for the catalytic performance of the enzyme, and also not for protein tetramerization. Incubation with
N-propargylglycine confirmed that the flavin reactivity and structural integrity of Y35F are highly
comparable to that of ∆AB.

The Tyr35–Glu295 interaction is not conserved in DrProDH, although both amino acid residues are
present in a region with highly conserved sequence. The latter enzyme is the only other monofunctional
ProDH of which a crystal structure is available [21]. In DrProDH, Tyr35 is replaced by a phenylalanine
(Phe34), while Glu295 is replaced by an arginine (Arg298). The absence of the Tyr-Glu interaction in
DrProDH is another indication that this ion pair is not of great importance for the structural integrity
of TtProDH.

The V32D and V36D variants of ∆AB provided further insight into the functional role of helix
αC. Both of the variants mainly form dimers, show partial proteolytic processing at the C-terminus,
and display low catalytic efficiencies. This lends support to the proposal that the hydrophobic
patch between helix αC and α8 (Figure 7) is not only important for tetramer formation, but also
for the proper functioning of the active site. Assessment of the reactivity of V32D and V36D with
N-propargylglycine revealed interesting differences. While slow flavin reduction and covalent adduct
formation are observed for V32D, these processes do not take place with V36D. In agreement with this,
V36D is less active with proline than V32D, and resembles ∆ABC in this respect (Table 2). When we
compare the hydrophobicity of helices αC and α8 against their counterparts in DrProDH, we observe
a similar hydrophobic patch between both helices. In addition, analysis of the crystal structures of
E. coli PutA (PDB 4O8A), BjPutA, and GsPutA suggests that helix α8 might also be stabilized by
hydrophobic contacts, although in PutA enzymes helix α8 might also be stabilized by additional N-
and C-terminal helices.

In conclusion, our results strengthen the idea that helix αC is involved in TtProDH tetramerization
and stabilization of helix α8. The hydrophobic patch between helix αC and helix α8 stimulates
tetramerization and is important for catalysis because it orients helix α8 for proper binding of the
substrate and interaction with the active site.

We have shown that helix αA and αB of TtProDH are not crucial for the in vitro activity of
the enzyme. However, αA and αB of TtProDH might be of importance in vivo, by serving as a
docking interface for partner enzyme TtP5CDH during channeling [16] and/or for interaction with the
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membrane. Concerning these issues, it is of interest to study the function of the elongated N-terminus
of monofunctional eukaryotic ProDHs, especially of human ProDH [15].

4. Materials and Methods

4.1. Construction of MBP-TtProDH Variants

Three N-terminally shortened MBP-fused variants were constructed; each variant was shortened
with one additional N-terminal helix. To amplify the DNA, pBAD-MBP-TtProDH [19] was used as
template DNA. The primers listed in Table 3 were used for amplification. Using EcoRI and HindIII
restriction sites, the amplified fragments were introduced into a pBAD-MBP vector, which resulted
in N-terminal fusions of the TtProDH variants to MBP. The resulting constructs MBP-TtProDH ∆A,
MBP-TtProDH ∆AB, and MBP-TtProDH ∆ABC were verified by automated sequencing of both
strands (Macrogen, Seoul, Korea) and the plasmids were transformed to E. coli TOP10 host cells for
recombinant expression.

Table 3. Oligonucleotides used for the construction of the various MBP-TtProDH variants. For the
helix αC variants, codon changes are underlined.

Variant Oligonucleotide Sequence (5′ to 3′)

∆A, forward AATTAGAATTCCAGGTTGAACGTCTGATTAAACATCGTGCAAAAGG

∆AB, forward AAT TAGAATTCAAAGGTCTGGTTCGTCGTTATGTTGCCGGTG

∆ABC, forward AATTAGAATTCCAGGTTGAACGTCTGATTAAACATCGTGCAAAAGG

∆A, ∆AB, ∆ABC, reverse GCCCAAGCTTTTATTCTAGACCGCTAACCAGGC

∆AB, V32D, forward * CGAGGGAAGGATTTCAGAATTCAAAGGTCTGGATCGTCGTTATGTTGCCGGTGAAACCCTGG

∆AB, Y35F, forward * CGAGGGAAGGATTTCAGAATTCAAAGGTCTGGTTCGTCGTTTTGTTGCCGGTGAAACCCTGG

∆AB, V36D, forward * CGAGGGAAGGATTTCAGAATTCAAAGGTCTGGTTCGTCGTTATGATGCCGGTGAAACCCTGG

* As a reverse primer, the complement reverse sequence of the forward primer was used.

The obtained plasmid for MBP-TtProDH ∆AB was used as a template to construct point mutations
in helix αC. V32D, Y35F, and V36D were constructed using the procedure described earlier [19], with
the exception that in this case both a forward and a reverse primer were used (Table 3).

4.2. Expression and Purification of MBP-TtProDH Variants

The MBP-TtProDH variants were purified following a previously described procedure [19].
In short, the variants were produced in E. coli TOP10 cells and purified using amylose affinity and
anion-exchange chromatography.

4.3. Protein Analysis

Enzyme purity was checked with sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). 10% polyacrylamide slab gels were used and the proteins were stained with Coomassie
Brilliant Blue R-250. 0.5 µg of purified N-terminal variants was loaded per lane. As a molecular weight
marker, Precision Plus Protein Standard (Biorad, Hercules, CA, USA) was used.

4.4. Analytical Gel Filtration

The hydrodynamic properties of the MBP-TtProDH variants were analyzed by size exclusion
chromatography, as described previously [19]. In addition, 20 µM EE and 20 µM ∆ABC in 50 mM
sodium phosphate pH 7.4 were mixed, incubated at room temperature overnight, and subsequently
analyzed by size exclusion chromatography.
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4.5. ESI-MS

The native and denatured masses of the MBP-TtProDH variants were determined using
nanoflow electrospray ionization mass spectrometry (ESI-MS) according to a previously established
procedure [17,19], whereby the settings were optimized for the current application. Source backing
pressure was increased to 7.8 mbar and the cone voltage was varied between 100 and 150 V.

4.6. Spectral Analysis

Far-UV circular dichroism (CD) spectra of the MBP-TtProDH variants were recorded, as described
before [17]. 1 µM samples were prepared in 50 mM sodium phosphate, pH 7.4. Optical flavin absorption
spectra of the MBP-TtProDH variants were recorded as has been described previously [19].

4.7. Enzyme Activity

Enzyme activity of the MBP-TtProDH variants was determined at 25 ◦C on a Hewlett Packard
8453 diode array spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) using the
proline:dichlorophenolindophenol (DCPIP) oxidoreductase assay [17]. For the standard assay, 0.07–0.66
of enzyme was added to a 600 µL reaction mixture containing 65 µM DCPIP and 100 mM L-proline
in 50 mM sodium phosphate pH 7.4. Steady-state kinetic parameters were determined at 25 ◦C,
essentially as described previously [19].

Proline oxidase activity of the MBP-TtProDH variants was determined at 25 ◦C in air-saturated
50 mM sodium phosphate pH 7.4, containing 3.5–7.5 µM enzyme, using a Hansatech Oxytherm system
(Hansatech Instruments, King’s Lynn, UK). Reactions were started by the addition of 100 mM L-proline.

4.8. Inactivation with N-propargylglycine

The synthesis of N-propargylglycine was based on a procedure described before [23]. A clear
solution of iodoacetic acid (1.05 g, 5.6 mmol) and N-propargylamine (2.6 g, 47 mmol) was refluxed
in 50 mL aqueous ethanol for 24 h. The dark mixture was cooled to room temperature and the
solvent was removed in vacuo. The crude product was precipitated from 1:1 ethanol:ethyl acetate.
Recrystallization from aqueous ethanol and ethyl acetate and final drying under high vacuum yielded
the N-propargylglycine as a white solid (28 mg, 4%). 1H-NMR (DMSO-d6): δ = 3.42 (d, 2H, J = 2.4 Hz),
3.24 (s, 2H), 3.16 (t, 1H, J = 2.4 Hz).

Spectral changes that were associated with the reaction of TtProDH with N-propargylglycine
were monitored at 25 ◦C on a Hewlett Packard 8453 diode array spectrophotometer. A fresh stock
solution of 75 mM N-propargylglycine was prepared in 50 mM sodium phosphate pH 7.4. 40 µM of the
MBP-TtProDH variants in 50 mM sodium phosphate pH 7.4 was incubated with a final concentration of
2.5 mM N-propargylglycine. Immediately after the addition of N-propargylglycine, the first spectrum
was recorded. Subsequent spectra were recorded at 1 min intervals for 90 min. Before and after the
incubation of the enzyme variants with N-propargylglycine, 10 µL aliquots were removed from the
cuvette and the enzyme activity was determined with the standard assay. Activity measurements were
performed in triplicate.

Supplementary Materials: The following are available, Table S1: Raw kinetic data of the Proline:DCPIP assay of
EE, ∆A, ∆AB, ∆ABC and helix αC variants V32D, Y35F and V36D. Figure S1: Alignment of TtProDH, DrProDH,
and the ProDH domains of BjPutA and GsPutA.
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Abbreviations

CD circular dichroism
DCPIP dichlorophenolindophenol
ESI-MS electron spray ionization mass spectrometry
FAD flavin adenine dinucleotide
FMN flavin mononucleotide
GSA glutamic semialdehyde
MBP maltose-binding protein
ProDH proline dehydrogenase
P5C ∆1-pyrroline-5-carboxylate
P5CDH ∆1-pyrroline-5-carboxylate dehydrogenase
PutA proline utilization A
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
Tt Thermus thermophilus
EE MBP-TtProDH with Phe10 and Leu12 replaced by Glu
∆A MBP-TtProDH lacking helix αA
∆AB MBP-TtProDH lacking helices αA and αB
∆ABC MBP-TtProDH lacking helices αA, αB and αC
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