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Abstract: Spiropyran derivatives have been studied as light-regulated chemosensors for a variety
of metal cations and anions, but there is little research on chemosensors that simultaneously detect
multiple metal cations. In this study, a spiropyran derivative with isoquinoline, SP-IQ, was prepared
and it functions investigated as a light-regulated sensor for both Co2+ and In3+ cations. A colorless
nonfluorescent SP-IQ converts to a pink-colored fluorescent MC-IQ by UV irradiation or standing in
the dark, and MC-IQ returns to SP-IQ with visible light. Upon UV irradiation with the Co2+ cation
for 7 min, the stronger absorption at 540 nm and the similar fluorescence intensity at 640 nm are
observed, compared to when no metal cation is added, due to the formation of a Co2+ complex with
pink color and pink fluorescence. When placed in the dark with the In3+ cation for 7 h, the colorless
solution of SP-IQ changes to the In3+ complex with yellow color and pink fluorescence, which shows
strong absorption at 410 nm and strong fluorescence at 640 nm. Selective detection of the Co2+ cation
with UV irradiation and the In3+ cation in the dark could be possible with SP-IQ by both absorption
and fluorescence spectroscopy or by the naked eye.
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1. Introduction

Cobalt salts have been used as pigments since ancient times to produce brilliant blue colors in
paint, porcelain, and glass [1,2]. Cobalt alloys are used in powerful magnets, jet turbines, and medical
orthopedic implants of the hip and knee because of its high-temperature strength, and corrosion and
wear resistance. Radioactive cobalt-60 is used to treat cancer in radiotherapy. Cobalt is an essential
trace element as a component of vitamin B12. However, cobalt is carcinogenic and causes heart and
lung problems, occupational asthma, and vision and hearing problems, including tinnitus, deafness,
and blindness [3].

Indium is notably used in the semiconductor industry to make indium tin oxide (ITO) for
transparent conductive coatings on glass, which is an important part of touch screens, flat-screen TVs,
and solar panels [4,5]. Indium metal is used as a light filter in low-pressure sodium vapor lamps,
and as a mirror finish on windows of tall of an embryo to be teratogenic [6].

Numerous chemosensors have been buildings. Indium compounds are highly toxic and damage
the heart, kidney, and liver, and causes the development developed for sensing various metal cations
and anions. Among those, the detection techniques based on the change of color and/or fluorescence
provide simple and inexpensive tools [7,8]. Therefore, colorimetric and/or fluorescent chemosensors
for the detection of toxic heavy metals, such as Co2+ and In3+, have attracted significant interest
because of their potential application in chemical, biological, industrial, and environmental research.

Organic photochromic materials have received great attention in various applications,
including light-tunable biological and chemical systems, molecular logic gates, and light-regulated
chemosensors [9]. Photochromic materials change their color reversibly through structural changes
depending on whether they are exposed to UV light.
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Spiropyran derivatives have been extensively studied as typical photochromic molecules,
which accomplish the reversible interconversion between colorless non-fluorescent spiropyran and
colored fluorescent merocyanine (Scheme 1) [10]. Upon UV irradiation, a ring-closed spiropyran form
is converted into a ring-opened merocyanine form by heterolytic cleavage of the spiro C–O bond [11].
Merocyanine is a resonance hybrid between a zwitterion form MCa and a neutral quinonoid form
MCb [12,13]. The merocyanine form is returned to the spiropyran form by ring-closure when exposed
to visible light or thermal energy.
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Scheme 1. Interconversion between spiropyran (SP) and merocyanine (MC). MC is a resonance hybrid
between MCa and MCb.

A negatively-charged phenolic oxygen in the ring-opened merocyanine form provides a chelating
site for a variety of metal cations [14]. Spiropyran derivatives appended with a suitable ligand,
which provides a cooperative binding site along with negatively-charged phenolic oxygen, can lead
to light-regulated sensors for metal cations [15]. A variety of spiropyran-based chemosensors has
been investigated as a selective, sensitive, and reproducible detection system for various metal
cations [13–18].

Although chemosensors for a specific metal cation have been extensively developed, there are
few studies on chemosensors that simultaneously detect multiple analytes [19–21].

In this paper, we report that SP-IQ, a spiropyran derivative appended with isoquinoline, functions
as a light-regulated sensor for both Co2+ and In3+ cations.

2. Results and Discussion

2.1. Interconversion between SP-IQ and MC-IQ

SP-IQ is colorless and non-fluorescent. It shows absorption maxima at 272 and 325 nm in
CH3CN/H2O (1/1, v/v).

Irradiation of SP-IQ using 350 nm light changed the colorless solution to MC-IQ of pink color.
Absorption and fluorescence spectral changes of SP-IQ in CH3CN/H2O (1/1, v/v) with the irradiation
at 350 nm are shown in Figure 1. Due to the photoinduced conversion by C–O bond cleavage from
SP-IQ, a spiropyran form, to MC-IQ, a merocyanine form, new absorption at 540 nm and new
fluorescence at 640 nm increase with irradiation time.

Figure 2 shows the spectral changes of absorption and fluorescence by the reverse reaction
from MC-IQ (formed after irradiation of SP-IQ with 350 nm light for 7 min) to SP-IQ over time
(0–28 min) under room illumination. When placed under room light, the pink color of MC-IQ is
blurred. As MC-IQ reverts to SP-IQ through a ring closure reaction by visible light, the absorbance at
540 nm and the fluorescence intensity at 640 nm decrease.
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Figure 1. (a) Absorption and (b) fluorescence spectral changes of SP-IQ with irradiation time (0–120 s, 
Different color lines represent different irradiation times.) with UV irradiation at 350 nm. Inset: Plots 
of (a) absorbance at 540 nm and (b) fluorescence intensity at 640 nm vs. irradiation time. 
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Figure 2. (a) Absorption and (b) fluorescence spectral changes by reverse reaction from MC-IQ 
(formed after irradiation of SP-IQ with 350 nm light for 7 min) to SP-IQ over time (0–28 min, Different 
color lines represent different irradiation times.) under room illumination. Inset: Plots of (a) 
absorbance at 540 nm and (b) fluorescence intensity at 640 nm vs. room illumination time. 

The absorption and fluorescence spectral changes of SP-IQ which is placed in the dark (Figure 3) 
are very similar to those of SP-IQ which is irradiated at 350 nm. The new absorption at 540 nm and 
the new fluorescence at 640 nm slowly increase over 6 h when the solution of SP-IQ is placed in the 
dark. The ring-opening reaction from SP-IQ to MC-IQ is thought to occur not only on UV irradiation, 
but also in the dark. Probably, the major isomer in UV light or darkness is MC-IQ, whereas the major 
isomer under visible light is SP-IQ. 
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illumination. When placed in a lit room, the absorbance at 540 nm and the fluorescence intensity at 640 
nm decrease, indicating that MC-IQ returns to SP-IQ through the ring closure reaction by visible light.  
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of (a) absorbance at 540 nm and (b) fluorescence intensity at 640 nm vs. irradiation time. 
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Figure 2. (a) Absorption and (b) fluorescence spectral changes by reverse reaction from MC-IQ 
(formed after irradiation of SP-IQ with 350 nm light for 7 min) to SP-IQ over time (0–28 min, Different 
color lines represent different irradiation times.) under room illumination. Inset: Plots of (a) 
absorbance at 540 nm and (b) fluorescence intensity at 640 nm vs. room illumination time. 

The absorption and fluorescence spectral changes of SP-IQ which is placed in the dark (Figure 3) 
are very similar to those of SP-IQ which is irradiated at 350 nm. The new absorption at 540 nm and 
the new fluorescence at 640 nm slowly increase over 6 h when the solution of SP-IQ is placed in the 
dark. The ring-opening reaction from SP-IQ to MC-IQ is thought to occur not only on UV irradiation, 
but also in the dark. Probably, the major isomer in UV light or darkness is MC-IQ, whereas the major 
isomer under visible light is SP-IQ. 

Figure 4 shows the spectral changes of absorption and fluorescence by reverse reaction from MC-
IQ (formed after dark incubation of SP-IQ for 7 h) to SP-IQ with time (0–11 min) under room 
illumination. When placed in a lit room, the absorbance at 540 nm and the fluorescence intensity at 640 
nm decrease, indicating that MC-IQ returns to SP-IQ through the ring closure reaction by visible light.  

Figure 2. (a) Absorption and (b) fluorescence spectral changes by reverse reaction from MC-IQ (formed
after irradiation of SP-IQ with 350 nm light for 7 min) to SP-IQ over time (0–28 min, Different color
lines represent different irradiation times.) under room illumination. Inset: Plots of (a) absorbance at
540 nm and (b) fluorescence intensity at 640 nm vs. room illumination time.

The absorption and fluorescence spectral changes of SP-IQ which is placed in the dark (Figure 3)
are very similar to those of SP-IQ which is irradiated at 350 nm. The new absorption at 540 nm and
the new fluorescence at 640 nm slowly increase over 6 h when the solution of SP-IQ is placed in the
dark. The ring-opening reaction from SP-IQ to MC-IQ is thought to occur not only on UV irradiation,
but also in the dark. Probably, the major isomer in UV light or darkness is MC-IQ, whereas the major
isomer under visible light is SP-IQ.

Figure 4 shows the spectral changes of absorption and fluorescence by reverse reaction from
MC-IQ (formed after dark incubation of SP-IQ for 7 h) to SP-IQ with time (0–11 min) under room
illumination. When placed in a lit room, the absorbance at 540 nm and the fluorescence intensity
at 640 nm decrease, indicating that MC-IQ returns to SP-IQ through the ring closure reaction by
visible light.
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Figure 4. (a) Absorption and (b) fluorescence spectral changes by reverse reaction from MC-IQ 
(formed after dark incubation of SP-IQ for 7 h) to SP-IQ with time (0–11 min, Different color lines 
represent different times.) under room illumination. Inset: Plots of (a) absorbance at 540 nm and (b) 
fluorescence intensity at 640 nm vs. room illumination time. 
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whether MC-IQ is formed by UV irradiation or in the dark, MC-IQ returns to SP-IQ under room 
illumination, i.e., visible light. These observations are unusual and interesting. It is thought that while SP-
IQ is the preferred isomer under visible light, MC-IQ is the preferred isomer in UV light or in the dark. 

N O NO2

O
N

O

N O

NO2

O

O

N

N O

NO2

O

O

N
UV or Dark

Vis

SP-IQ MCb-IQMCa-IQ  
Scheme 2. Interconversion between SP-IQ and MC-IQ. MC-IQ is a resonance hybrid between MCa-
IQ and MCb-IQ. In each pair of photos, left and right show the color and fluorescence of the 
solution, respectively. 

Figure 4. (a) Absorption and (b) fluorescence spectral changes by reverse reaction from MC-IQ (formed
after dark incubation of SP-IQ for 7 h) to SP-IQ with time (0–11 min, Different color lines represent
different times.) under room illumination. Inset: Plots of (a) absorbance at 540 nm and (b) fluorescence
intensity at 640 nm vs. room illumination time.

Most spiropyran derivatives convert from the spiropyran form to the merocyanine form by
UV irradiation. Conversely, merocyanine converts to spiropyran by visible light, or thermally [10].
However, a colorless nonfluorescent SP-IQ converts to a pink-colored fluorescent MC-IQ by UV
irradiation or in the dark, and MC-IQ returns to SP-IQ by visible light (Scheme 2). Regardless of
whether MC-IQ is formed by UV irradiation or in the dark, MC-IQ returns to SP-IQ under room
illumination, i.e., visible light. These observations are unusual and interesting. It is thought that while
SP-IQ is the preferred isomer under visible light, MC-IQ is the preferred isomer in UV light or in
the dark.
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the solution, respectively.
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2.2. Selective Sensing of Co2+

Absorption and fluorescence spectra of SP-IQ show no changes with adding various metal cations
(Ag2+, Al3+, Cd2+, Co2+, Cu2+, Cu+, Fe2+, Hg2+, In3+, Ni2+, Zn2+).

However, upon UV irradiation, some changes for the absorption and fluorescence spectra of
SP-IQ are observed with the addition of various metal cations. Figure 5 shows the absorption and
fluorescence spectra, and the visual color and fluorescence of SP-IQ after 350 nm UV irradiation
for 7 min with the addition of various metal cations. Figure 5a,b show that an absorption band at
540 nm and a fluorescence band at 640 nm appear after UV irradiation of SP-IQ without metal cations.
UV irradiation with the Co2+ cation exhibits a high absorbance at 540 and a similar fluorescence
intensity at 640 nm, compared to the absence of metal cations. In the presence of metal cations other
than Co2+ cation, the absorption at 540 nm and the fluorescence at 640 nm become weaker. Figure 5c
shows pink solutions with no metal cation and with the addition of Co2+ cation. Colorless and
nonfluorescent SP-IQ converts to pink MC-IQ after UV irradiation without metal cations. After UV
irradiation with the addition of the Co2+ cation, the solution shows a pink color and pink fluorescence
due to the formation of a complex MCa-IQ–Co2+ between MCa-IQ and the Co2+ cation. In the
presence of metal cations other than Co2+ cation, the pink color becomes pale. The solution is colorless
in the presence of the In3+ cation. Figure 5d shows pink fluorescence with no metal cation and with the
addition of Co2+ cation. In the presence of other metal cations other than Co2+ cation, the fluorescence
is weaker. The fluorescence is strongly quenched in the presence of In3+ cation. As shown in Figure 5e,
stronger absorption at 540 nm and similar fluorescence intensity at 640 nm are observed with the Co2+

cation, compared to when no metal cation is added. In the presence of metal cations other than the
Co2+ cation, the absorption at 540 nm and the fluorescence at 640 nm is weaker. Figure 5f shows that
the existence of other competing ions, except the In3+ cation, does not disturb the selective detection of
the Co2+ cation.
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Figure 5. (a) Absorption spectra, (b) fluorescence spectra, (c) photograph of visual color change,
(d) photograph of fluorescence change, and (e) relative absorbance and fluorescence intensity of SP-IQ
after 350 nm UV irradiation for 7 min with the addition of various metal cations; and (f) relative
absorbance of SP-IQ after 350 nm UV irradiation for 7 min with the addition of various metal cations
(1× 10−4 M; Ag2+, Cd2+, Cu+, Cu2+, Fe2+, Hg2+, In3+, Ni2+, Zn2+) in the presence of Co2+ (1 × 10−4 M).
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The Job plot indicates the formation of a 1:1 complex between SP-IQ and the Co2+ cation (Figure 6).
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Figure 7. (a) Absorption and (b) fluorescence spectra of SP-IQ after 350 nm UV irradiation for 7 min 
with the various concentration of Co2+ (0~45 μM, Different color lines represent different Co2+ 
concentrations.). Inset: Plots of (a) absorbance at 540 nm and (b) fluorescence intensity at 640 nm vs. [Co2+]. 

2.3. Effect of Other Metal Cations Except Co2+—in the Case of Fe2+ 

To investigate the changes in absorption and fluorescence in the presence of other metal cations 
except Co2+, we chose the Fe2+ cation arbitrarily among the cations. The absorption and fluorescence 
spectra of SP-IQ after 350 nm UV irradiation for 7 min with various concentration of Fe2+ are shown 
in Figure 8. Both absorption at 540 nm and fluorescence at 640 nm are weakened with the increased 
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Figure 6. Job plot of SP-IQ and Co2+ cation. Absorbance at 540 nm for the mixed solutions of SP-IQ
and Co2+ cation after 350 nm UV irradiation for 7 min was plotted as a function of the molar ratio
[Co2+]/([SP-IQ] + [Co2+]). The total concentration for the mixed solutions of SP-IQ and the Co2+

cation was 1 × 10−5 M.

Figure 7 shows the absorption and fluorescence spectra of SP-IQ after 350 nm UV irradiation for
7 min with the various concentrations of Co2+ cations. MC-IQ formed by 350 nm UV irradiation for
7 min produces MCa-IQ–Co2+ complex with the Co2+ cation. As the concentration of Co2+ increases,
more MCa-IQ–Co2+ complex are formed and the absorbance at 540 nm linearly increases up to
two-fold. However, the fluorescence intensity at 640 nm does not change significantly even when
the concentration of Co2+ increases. It is thought that the fluorescence efficiency of MCa-IQ–Co2+

complexes are similar with that of MC-IQ.
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Figure 7. (a) Absorption and (b) fluorescence spectra of SP-IQ after 350 nm UV irradiation for
7 min with the various concentration of Co2+ (0~45 µM, Different color lines represent different Co2+

concentrations.). Inset: Plots of (a) absorbance at 540 nm and (b) fluorescence intensity at 640 nm
vs. [Co2+].

2.3. Effect of Other Metal Cations Except Co2+—in the Case of Fe2+

To investigate the changes in absorption and fluorescence in the presence of other metal cations
except Co2+, we chose the Fe2+ cation arbitrarily among the cations. The absorption and fluorescence
spectra of SP-IQ after 350 nm UV irradiation for 7 min with various concentration of Fe2+ are shown
in Figure 8. Both absorption at 540 nm and fluorescence at 640 nm are weakened with the increased
concentration of Fe2+, in contrast that these are enhanced with the increased concentration of Co2+.
The addition of Fe2+ and other metal cations except Co2+ is presumed to inhibit the photoconversion
from SP-IQ to MC-IQ by UV irradiation.

This result shows that the Co2+ cation can be selectively detected among the cations.
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Figure 8. (a) Absorption and (b) fluorescence spectra of SP-IQ after 350 nm UV irradiation for
7 min with various concentration of Fe2+ (0~100 µM, Different color lines represent different Fe2+

concentrations.). Inset: Plots of (a) absorbance at 540 nm and (b) fluorescence intensity at 640 nm
vs. [Fe2+].

2.4. Selective Sensing of In3+

Absorption and fluorescence spectral changes and visual color and fluorescence of SP-IQ after
being placed in the dark for 7 h with various metal cations are shown in Figure 9.
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Figure 9. (a) Absorption spectra, (b) fluorescence spectra, (c) photograph of visual color change,
(d) photograph of fluorescence change, and (e) relative absorbance and fluorescence intensity of SP-IQ
after placed in the dark for 7 h with the absence and the presence of various metal cations; and (f)
relative absorbance of SP-IQ after being placed in the dark for 7 h with the absence and the presence of
various metal cations (1 × 10−4 M; Ag2+, Cd2+, Co2+, Cu+, Cu2+, Fe2+, Hg2+, In3+, Ni2+, Zn2+) in the
presence of In3+ (1 × 10−4 M).
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New intense absorption at 410 nm and a 6.4-fold increase in fluorescence at 640 nm are observed
only with In3+ (Figure 9a,b,e). In the presence of other metal cations except In3+, no absorption band at
410 nm and extremely weak fluorescence at 640 nm are observed. Figure 9c shows the yellow solution
with the addition of In3+ cation, and the colorless or pale pink solutions in the presence of metal cations
other than the In3+ cation. It was reported that a similar yellow solution of spiropyran derivatives was
observed in the presence of H+ or CN− [14,18]. Figure 9d shows intense pink fluorescence only with
the addition of the In3+ cation, while no fluorescence is observed in the presence of other metal cations
other than In3+. In the dark, upon the addition of the In3+ cation, the colorless solution of SP-IQ
changes slowly to the yellow complex MCb-IQ–In3+ between MCb-IQ and In3+ cation. Figure 9f
shows that the existence of other competing ions does not disturb the selective detection of In3+ cation.
Selective detection of the In3+ cation could be possible with SP-IQ by both absorption and fluorescence
spectroscopy or with the naked eye.

The Job plot indicates the formation of a 1:1 complex between SP-IQ and In3+ cation (Figure 10).
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Figure 11. (a) Absorption and (b) fluorescence spectra of SP-IQ after placed in the dark for 7 h with 
the addition of In3+ (0–100 μM, Different color lines represent different In3+ concentrations.). Inset: 
Plots of (a) absorbance at 410 nm and (b) fluorescence intensity at 640 nm vs. [In3+]. 
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Figure 10. Job plot of SP-IQ and In3+ cation. Absorbance at 410 nm for the mixed solutions of SP-IQ
and In3+ cation after being placed in the dark for 7 h was a function of the plotted as molar ratio
[In3+]/([SP-IQ]+[In3+]). The total concentration for the mixed solutions of SP-IQ and In3+ cation was
1 × 10−5 M.

Figure 11 shows the absorption and fluorescence spectra of SP-IQ after placed in the dark for 7 h
with various concentrations of In3+ cations. As the concentration of In3+ increases, MC-IQ formed in
the dark converts to MCb-IQ–In3+ complex with In3+ cation. Absorption at 540 nm, corresponding to
MC-IQ decreases, and absorption at 410 nm, corresponding to the MCb-IQ–In3+ complex increases
linearly with the increase in concentration of In3+. An isosbestic point at 483 nm is clearly observed.
Fluorescence intensity at 640 nm increases linearly as the concentration of In3+ increases, due to the
formation of MCb-IQ–In3+ complex with higher fluorescence efficiency than MC-IQ.
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Figure 11. (a) Absorption and (b) fluorescence spectra of SP-IQ after placed in the dark for 7 h with 
the addition of In3+ (0–100 μM, Different color lines represent different In3+ concentrations.). Inset: 
Plots of (a) absorbance at 410 nm and (b) fluorescence intensity at 640 nm vs. [In3+]. 
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Figure 11. (a) Absorption and (b) fluorescence spectra of SP-IQ after placed in the dark for 7 h with
the addition of In3+ (0–100 µM, Different color lines represent different In3+ concentrations.). Inset:
Plots of (a) absorbance at 410 nm and (b) fluorescence intensity at 640 nm vs. [In3+].
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The In3+ cation could be detected selectively with UV irradiation of SP-IQ using absorption and
fluorescence spectroscopy in the range of 10–80 µM. The linear detection range of the In3+ cation is
10–80 µM and the detection limit of the In3+ cation is 10 µM.

Chemosensors for the independent detection of Co2+ and In3+ cations have been previously
reported. However, chemosensors for simultaneous detection of Co2+ and In3+ cations have not
been reported until now (see Table 1). To the best of our knowledge, this is the first report of a dual
chemosensor for Co2+ and In3+ cations.

Table 1. Chemosensors for Co2+ and In3+ cations.

Structure Co2+ Sensor In3+ Sensor
Other Metal

Cation Sensor Reference (Year)
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2.5. pH Effect

The effect of pH on the absorption response of the MCa-IQ–Co2+ complex and the MCb-IQ–In3+

complex was investigated in the pH range of 1–11 (Figure 12). The characteristic absorptions of the
MCa-IQ–Co2+ complex and the MCb-IQ–In3+ complex are stable between pH 3 and pH 9. Therefore,
Co2+ and In3+ cations could be detected with the naked eye or UV-Vis absorption measurements using
the SP-IQ chemosensor over a wide pH range of 3–9.
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Figure 12. (a) Absorbance at 540 nm for MCa-IQ–Co2+ complex and (b) absorbance at 410 nm for
MCb-IQ–In3+ complex at different pH (1–11).

3. Materials and Methods

3.1. General

The reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1H- and 13C-NMR
spectra were recorded in CDCl3 at 400 and 101 MHz, respectively, using an Inova 500 spectrometer
(Varian, Palo Alto, CA, USA). UV-Vis absorption spectra were measured using a quartz cuvette in a
UV-2401PC spectrophotometer (Shimadzu, Kyoto, Japan). Fluorescence spectra were measured on an
AMINCO-Bowman Series 2 spectrofluorometer (Silver Spring, MD, USA). Unless otherwise noted,
the concentration of SP-IQ is 1× 10−5 M in CH3CN/H2O (1/1, v/v). For spectrophotometric titrations,
the concentration of Co2+ and In3+ are used in the range of 0~45 µM and 0–100 µM, respectively.

3.2. Synthesis of SP-IQ

SP-IQ, a spiropyran derivative appended with isoquinoline, was prepared by the reaction between
SP-OH and isoquinoline-1-carboxylic acid (Scheme 3). SP-OH was prepared following the reported
procedure [14].
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Scheme 3. Synthesis of SP-IQ.

To the mixture of SP-OH (100 mg, 0.28 mmol) and isoquinoline-1-carboxylic acid
(54 mg, 0.31 mmol) in dichloromethane, dicyclohexylcarbodiimide (58 mg, 0.28 mmol), and
4-dimethylaminopyridine (34 mg, 0.28 mmol) were added at 0 ◦C. The solution temperature was raised
to room temperature and the mixture was stirred for 12 h at room temperature. The reaction mixture
was washed with aqueous sodium carbonate solution. The organic layer was dried over anhydrous
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magnesium sulfate and evaporated. The residual mixture was purified with silica gel chromatography
(eluent: ethyl acetate/hexane = 1/1, v/v). Pure SP-IQ (100 mg, 70% yield) was obtained as a light
yellow solid.

2-(3′,3′-dimethyl-6-nitrospiro[chromene-2,2′-indolin]-1′-yl)ethyl isoquinoline-1-carboxylate (SP-IQ). 1H-NMR
(400 MHz, CDCl3). δ 1.26 (s, 3H, -CH3), 1.27 (s, 3H, -CH3), 3.68 (m, 1H, -NCH2CH2O-), 3.78 (m, 1H,
-NCH2CH2O-), 4.66 (t, 2H, J = 4.0 Hz, -NCH2CH2O-), 5.99 (d, 1H, J = 10.4 Hz, pyran -CH=CHPh-),
6.68 (d, 1H, J = 8.8 Hz, NO2-Ph meta-H), 6.78 (d, 1H, J = 7.6 Hz, phenyl H of indoline), 6.82 (d, 1H,
J = 10.4 Hz, pyran -CH=CHPh-), 6.89 (t, 1H, J = 7.2 Hz, phenyl H of indoline), 7.09 (dd, 1H, J = 1.2 &
7.6 Hz, phenyl H of indoline), 7.19 (dt 1H, J = 1.2 & 7.6 Hz, phenyl H of indoline), 7.64 (dt, 1H, J = 1.2
& 8.4 Hz, phenyl H of isoquinoline), 7.74 (dt, 1H, J = 1.2 & 8.4 Hz, phenyl H of isoquinoline), 7.82 (d,
1H, J = 5.4 Hz, pyridyl meta-H of isoquinoline), 7.84 (s, 1H, NO2-Ph ortho-H), 7.85 (d, 1H, J = 8.8 Hz,
NO2-Ph ortho-H), 7.88 (d, 1H, J = 8.4 Hz, phenyl H of isoquinoline), 8.59 (d, 1H, J = 5.4 Hz, pyridyl
ortho-H of isoquinoline), 8.69 (d, 1H, J = 8.4 Hz, phenyl H of isoquinoline). 13C-NMR (101 MHz, CDCl3).
δ 20.0, 26.0, 42.5, 53.1, 63.6, 106.7, 106.9, 115.6, 118.6, 120.1, 122.0, 122.1, 122.7, 124.5, 125.9, 126.4, 126.9,
127.3, 128.1, 128.6, 128.9, 130.8, 136.0, 137.0, 141.1, 141.7, 146.6, 148.3, 159.5, 165.8.

4. Conclusions

In summary, the results of the photoinduced interaction between SP-IQ and various metal cations
are as follows:

Upon UV irradiation, colorless and non-fluorescent SP-IQ turns to MC-IQ with a pink color,
with absorption at 540 nm and fluorescence at 640 nm. Even in the dark, SP-IQ converts to MC-IQ.
In other words, MC-IQ is formed from SP-IQ by standing in the dark or by UV irradiation. MC-IQ
returns to SP-IQ under room light, i.e., visible light. It is thought that the major isomer under visible
light is SP-IQ, while the major isomer under UV light or in the dark is MC-IQ.

Absorption and fluorescence spectra of SP-IQ show no changes with the addition of various
metal cations. When UV light is irradiated in the presence of various metal cations, colorless SP-IQ
forms a pink MCa-IQ–Co2+ complex only with the Co2+ cation, which has strong absorption at 540 nm
and fluorescence at 640 nm. With other metal cations, absorption at 540 nm and fluorescence at
640 nm are attenuated. In the dark with the addition of various metal cations, SP-IQ shows strong
absorption at 410 nm and strong fluorescence at 640 nm only with In3+ cation, due to the formation
of the MCb-IQ–In3+ complex with a yellow color and strong pink fluorescence. From the changes in
absorption and fluorescence spectra, it could be roughly deduced that a thermal ring-opening reaction
in the ground state favors the zwitterionic structure, which forms the complex with the Co2+ cation,
whereas the photochemical ring-opening reaction in the excited state favors the quinonoid structure,
which forms the complex with the In3+ cation [12,13].

The results show that SP-IQ acts as a dual sensor for both Co2+ and In3+ cations. SP-IQ could
selectively detect Co2+ with UV irradiation and In3+ cations in the dark, by using absorption and
fluorescence spectroscopy or by the naked eye.
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