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Abstract: The electrochemical properties of twenty 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide
derivatives with varying degrees of cytotoxic activity were investigated in dimethylformamide
(DMF) using cyclic voltammetry and first derivative cyclic voltammetry. With one exception, the
first reduction of these compounds was found to be reversible or quasireversible and is attributed to
reduction of the N-oxide moiety to form a radical anion. The second reduction of the diazine ring was
found to be irreversible. Compounds containing a nitro group on the 3-phenyl ring also exhibited
a reduction process that may be attributed to that group. There was good correlation between
molecular structure and reduction potential, with reduction being facilitated by an enhanced net
positive charge at the electroactive site created by electron withdrawing substituents. Additionally,
the reduction potential was calculated using two common basis sets, 6-31g and lanl2dz, for five of the
test molecules. There was a strong correlation between the computational data and the experimental
data, with the exception of the derivative containing the nitro functionality. No relationship between
the experimentally measured reduction potentials and reported cytotoxic activities was evident upon
comparison of the data.

Keywords: quinoxaline-di-N-oxide derivatives; voltammetry; anti-tumor; reduction potential;
experimental and computational

1. Introduction

Quinoxaline 1,4-di-N-oxide derivatives have been the subject of worldwide interest in medicinal
chemistry for a number of years due to their broad range of biological properties [1–3], as a variety of
quinoxaline 1,4-dioxide derivatives have been reported to possess varying degrees of antibacterial [4,5],
antimycobacterial [6], antitrypanocidal [7], antimalarial [8], anti-Chagas [9,10], antifungal [5,11],
antioxidant/anti-inflammatory [12], and anticancer [13–15] activities. As a result, a large number
of new quinoxaline 1,4-dioxides are being synthesized and their biological properties tested each
year. One important feature for their biological activities is the presence of both N-oxide functional
groups in the pyrazine ring of the basic quinoxaline structure. N-oxidation generally enhances the
scope and level of their biological properties [1,2,16], and may be important for bioreduction [10]. It is
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well-known that some quinoxaline 1,4-di-N-oxide derivatives undergo bioreduction under hypoxic
conditions, leading to the formation of a radical capable of cleaving DNA [2,3]. The latter may occur
via direct abstraction of hydrogen atoms from DNA or production of DNA-cleaving hydroxyl radicals,
both mechanisms introducing oxidative stress within the target cells.

Likewise, N-oxidation enhances the ease of reduction of the quinoxaline ring [17]. Previous
studies have shown that there is a relationship in some cases between the ease of reduction for certain
homologous series of quinoxaline 1,4-di-N-oxides and their reported biological activities [10,17–20].

Because their redox properties can influence their biological activities, electrochemical studies of
quinoxaline 1,4-di-N-oxide systems may help in understanding their mechanisms of action, as well
as in the design of new drugs. Recently, a series of 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide
derivatives (Table 1) were synthesized and evaluated for their cytotoxic activities [21]. Many of these
compounds displayed more potent hypoxic cytotoxic activity than 3-aminobenzotriazine-1,4-dioxide
(TPZ) and 3-amino-2-quinoxalinecarbonitrile 1,4-di-N-oxide (TX-402), both of which display promising
anticancer activities. TPZ has been shown to undergo bioreductive activation leading to the formation
of radical species that cause DNA damage [21]. The goal of this present work was to study the general
electrochemical characteristics of these 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives
under nonaqueous conditions and to investigate potential relationships between their redox properties,
structures, and reported biological activities. In addition, we investigated the ability to calculate the
reduction potential for five test molecules (compounds 1a–1e) using standard computational methods
and basis sets. Computational chemistry may provide a way to screen potential future molecules in
order to direct synthesis of new and novel derivatives [22].

Table 1. Structures of the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives [21].
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2. Results and Discussion

2.1. Electrochemical Behavior

The compounds included in this study are 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide
derivatives (Table 1) that have been evaluated for their biological activities as hypoxic selective
anti-tumor agents [21]. The derivatives possess varying substituents in the 3 and 7 positions of the
basic quinoxaline structure. The redox properties of these substances were investigated via cyclic
voltammetry and first derivative cyclic voltammetry in DMF using a platinum disc-working electrode.
The reductions observed for these compounds were found to be diffusion controlled based on current
functions that were relatively independent of scan rate and linearity in the plots of cathodic peak
current versus the square root of scan rate [23,24]. Electrochemical data for scans obtained at 100 mV/s
are summarized in Tables 2 and 3, and representative voltammograms are shown in Figures 1 and 2.
All redox potentials reported in this study are relative to the (Fc/Fc+) redox couple.
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Figure 1. Cyclic voltammetric reduction of compound 1a in DMF at 100 mV/s (E vs. (Ag/AgNO3)/V): 
(a) single scan between −0.4 and −1.6 V; (b) multiple scans between −0.4 and −1.6 V; (c) single scan 
between −0.4 to −2.4 V; (d) multiple scans between −0.4 and −2.4 V; (e) single scan between −0.4 and 
−2.9 V; (f) first derivative cyclic voltammogram between −0.4 and −1.6 V; (g) first derivative cyclic 
voltammogram between −0.4 and −2.4 V; (h) Cyclic voltammogram for the ferrocene redox couple 
used as a reference for reporting peak potentials. 
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Figure 1. Cyclic voltammetric reduction of compound 1a in DMF at 100 mV/s (E vs. (Ag/AgNO3)/V):
(a) single scan between −0.4 and −1.6 V; (b) multiple scans between −0.4 and −1.6 V; (c) single scan
between −0.4 to −2.4 V; (d) multiple scans between −0.4 and −2.4 V; (e) single scan between −0.4 and
−2.9 V; (f) first derivative cyclic voltammogram between −0.4 and −1.6 V; (g) first derivative cyclic
voltammogram between −0.4 and −2.4 V; (h) Cyclic voltammogram for the ferrocene redox couple
used as a reference for reporting peak potentials.
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Figure 2. Cyclic voltammetric reduction of compound 1e in DMF at 100 mV/s (E vs. (Ag/AgNO3)/V): 
(a) single scan between −0.4 and −1.4 V; (b) multiple scans between −0.4 and −1.4 V; (c) single scan 
between −0.4 and −2.5 V; (d) multiple scans between −0.4 and −2.5 V; (e) single scan between −0.4 to 
−1.9 V, (f) multiple scans between −0.4 and −1.9 V. 
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calculated ipa/ipc ratios for derivatives 1a, 1c, 1d, 2a–2d, 3a, 3b, 3d and 4a–4d were close to one at all 
scan rates, indicating that relatively stable reduction products were formed within the time frame of 
the experiment [23]. For compounds 1b, 1e, 2e, 3e and 4e, current ratios were significantly less than 
one, i.e., 0.2 to 0.3, indicating kinetic or other complications [23]. For compound 3c, the first reduction 
process was irreversible with Epc = −1.401 V. Although the first reduction for quinoxaline di-N-oxide 
derivatives is typically reversible or quasireversible in aprotic solvents, examples of irreversibility in 
this process for some quinoxaline di-N-oxides has been noted previously under conditions similar to 
those used in this study, i.e., voltammetry at a platinum working electrode in DMF [17]. 
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Figure 2. Cyclic voltammetric reduction of compound 1e in DMF at 100 mV/s (E vs. (Ag/AgNO3)/V):
(a) single scan between −0.4 and −1.4 V; (b) multiple scans between −0.4 and −1.4 V; (c) single scan
between −0.4 and −2.5 V; (d) multiple scans between −0.4 and −2.5 V; (e) single scan between −0.4 to
−1.9 V, (f) multiple scans between −0.4 and −1.9 V.

The electrochemical characteristics of a number of quinoxaline di-N-oxide derivatives have
been reported previously [10,17–20,25–27]. The first voltammetric wave observed, representing the
reduction of a N-oxide functionality to form a radical anion [27], was reversible or quasireversible
for all derivatives studied, with the exception of 3c. (Figure 3) E1/2 values for this reduction process
ranged from −1.154 V to −1.333 V. Values of ∆Ep and Epc − E1/2 for this wave were typically greater
than the theoretical values of 57 mV and −28.5 mV [23,24], respectively, for a reversible, one electron
reduction. Estimates of the number of electrons involved in this reduction process based on the
observed values for ∆Ep and Epc − E1/2 verify the one electron nature of this reduction. Likewise,
calculated ipa/ipc ratios for derivatives 1a, 1c, 1d, 2a–2d, 3a, 3b, 3d and 4a–4d were close to one at all
scan rates, indicating that relatively stable reduction products were formed within the time frame of
the experiment [23]. For compounds 1b, 1e, 2e, 3e and 4e, current ratios were significantly less than
one, i.e., 0.2 to 0.3, indicating kinetic or other complications [23]. For compound 3c, the first reduction
process was irreversible with Epc = −1.401 V. Although the first reduction for quinoxaline di-N-oxide
derivatives is typically reversible or quasireversible in aprotic solvents, examples of irreversibility in
this process for some quinoxaline di-N-oxides has been noted previously under conditions similar to
those used in this study, i.e., voltammetry at a platinum working electrode in DMF [17].
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Figure 3. One electron reduction of the di-N-oxide structure to a radical anion.

The relationship between quinoxaline structure and reduction potential may be observed via
examination of the data in Tables 2 and 3. Replacement of a H atom in the 3-/4-position of the 3-aryl
group or 7-position of the quinoxaline ring with an electron donating group which increases the
electron density in the conjugated system generally resulted in a negative shift in potential (E1/2 or
Epc), making the reduction more difficult (cf. 1a vs. 1b, 1a vs. 2a, 1a vs. 3a). Replacement of a H
atom in those same positions with an electron withdrawing group which removes electron density
from the conjugated system resulted in a more facile reduction by shifting the potential in the positive
direction (cf. 1a vs. 1c, 1a vs. 1d, 1a vs. 1e, and 1a vs. 4a). Thus, the change in electron density that
occurs with a change in substituent is transmitted through the conjugated system to the electroactive
heterocyclic ring.
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Table 2. Cyclic voltammetric data of the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives a.

1st N-oxide Reduction Nitro Group Reduction 2nd N-oxide Reduction b

Compound E1/2 (V) ∆Ep (V) Epc − E1/2 (V) ipc (µA) ipa/ipc E1/2 (V) ∆Ep (V) Epc − E1/2 (V) ipc (µA) ipa/ipc Epc (V) ipc (µA)

1a −1.296 0.076 −0.038 4.883 0.918 −2.163 3.869
1b −1.309 0.082 −0.041 2.135 0.348 −2.56 (sh) c

1c −1.269 0.070 −0.035 2.846 0.761 −2.097 3.753
1d −1.278 0.069 −0.035 1.177 0.689 −2.06 (sh) c

1e −1.234 0.103 −0.051 3.220 0.297 −1.518 0.088 −0.044 3.826 0.630 −2.306 3.808
2a −1.327 0.097 −0.049 3.488 0.830 −2.310 1.501
2b −1.318 0.103 −0.051 3.375 0.847 −2.377 3.395
2c −1.303 0.089 −0.045 4.119 0.835 −2.125 2.020
2d −1.305 0.099 −0.050 4.411 0.864 −2.326 5.656
2e −1.265 0.083 −0.042 5.261 0.270 −1.539 0.076 −0.038 5.280 0.641 −2.352 7.525
3a −1.331 0.077 −0.039 3.675 0.798 −2.166 2.518
3b −1.333 0.079 −0.039 4.253 0.768 −2.216 3.049
3c −1.401 b 7.460
3d −1.300 0.075 −0.037 4.601 0.767 −1.995 3.303
3e −1.277 0.095 −0.047 3.392 0.239 −1.566 0.096 −0.044 2.546 0.699 −2.372 3.816
4a −1.188 0.076 −0.038 4.237 0.871 −1.973 3.650
4b −1.196 0.093 −0.047 3.753 0.859 −2.115 2.118
4c −1.154 0.129 −0.065 2.899 0.841 −2.080 1.342
4d −1.181 0.107 −0.053 4.103 0.930 −2.132 2.866
4e −1.134 0.072 −0.036 3.071 0.483 −1.514 0.063 −0.031 3.775 0.641 −2.141 3.904

a Substrate, 1.0 mM; TBAP, 0.10 M; DMF; Pt working electrode; Ag/AgNO3 reference electrode; Pt wire counter electrode; 100 mV/s; room temperature; E vs. (Fc/Fc+)/V; currents
reported in µA; voltammograms recorded with a CH Instruments Model 620 Electrochemistry Analyzer. b Irreversible. c Shoulder.
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Table 3. First derivative voltammetric data of the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide
derivatives a,b.

1st N-oxide Reduction Nitro Group Reduction 2nd N-oxide Reduction c

Compound Epc (V) Epa (V) E1/2 (V) Epc (V) Epa (V) E1/2 (V) ∆Ep (V) Epc (V)

1a −1.335 −1.256 −1.296 −2.162
1b −1.350 −1.264 −1.307 −2.368
1c −1.305 −1.232 −1.269 −2.096
1d −1.314 −1.240 −1.277 −2.130
1e −1.287 −1.179 −1.233 −1.574 −1.467 −1.521 0.107 −2.309
2a −1.375 −1.276 −1.326 −2.308
2b −1.369 −1.266 −1.318 −2.366
2c −1.348 −1.258 −1.303 −2.122
2d −1.356 −1.253 −1.305 −2.279
2e −1.308 −1.221 −1.265 −1.577 −1.499 −1.538 0.078 −2.355
3a −1.372 −1.290 −1.331 −2.168
3b −1.374 −1.292 −1.332 −2.216
3c −1.402 −1.402 c −2.466
3d −1.339 −1.26 −1.299 −1.996
3e −1.328 −1.226 −1.277 −1.612 −1.510 −1.562 0.101 −2.371
4a −1.227 −1.148 −1.188 −1.974
4b −1.243 −1.146 −1.195 −2.114
4c −1.219 −1.086 −1.154 −2.082
4d −1.236 −1.126 −1.181 −2.130
4e −1.172 −1.094 −1.133 −1.544 −1.476 −1.510 0.068 −2.142

a Substrate, 1.0 mM; TBAP, 0.10 M; DMF; Pt working electrode; Ag/AgNO3 reference electrode; Pt wire counter
electrode; 100 mV/s; room temperature; E vs. (Fc/Fc+)/V; currents reported in µA; voltammograms recorded with
a CH Instruments Model 620 Electrochemistry Analyzer. b Epc and Epa determined at the point where the derivative
curve crosses the baseline [24]. c Irreversible.

The 20 compounds studied can be broken down into different analogues based on structure, as
evident from Table 1. The reduction potentials for the various derivatives within each analogous series
fit the modified Hammett equation, ∆E1/2 = ρπ,Rσx [28] with correlation coefficients that ranged from
0.92 to 0.99. In this equation, ρπ,R is a measure of the extent to which the electrode reaction is affected by
the polar effects of the substituents, whereas σx is a measure of the electronic effect that a substituent has
on a molecule, and thus the redox potential in this case. The average of the sum of σm−x and σp−x [29],
i.e., (σm−x + σp−x)/2, was used in place of the total polar substituent constant σx in the Hammett plots,
as recommended for the quinoxaline system [30] (Figure 4). The results observed are consistent with
facilitation of reduction by a positive charge at the electroactive site [28], and are in agreement with
previous studies of the electrochemical properties of quinoxaline-di-N-oxides [10,17–19,25,26,28].

A voltammetric wave representing the reduction of the second N-oxide functionality was
observed for all derivatives studied, with the exception of 3c, at potentials between −1.97 and −2.6 V.
This process was irreversible for each of the quinoxaline derivatives. Additional irreversible reduction
waves were observed at more negative potentials for compound 1a at −2.5 (sh), −2.7 (sh), and −2.829 V.
The last reduction observed appeared close to background reduction. The currents for these processes
would indicate one-electron reductions in each case. However, these processes were not studied in
further detail.
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potential (E1/2 vs. Fc/Fc+) for compounds 1d, 2d, 3d, and 4d. Hammett substituent constant values
are taken from reference [29].

Compounds 1e, 2e, 3e and 4e possess a nitro group in the para position of the 3-aryl group.
In each case, a quasireversible reduction process was observed between the two voltammetric waves
representing the reductions of the N-oxide moieties, with half-wave potentials ranging from −1.516
to −1.563 V. ∆Ep and Epc − E1/2 values at 100 mV/s for this wave ranged from 0.063 to 0.096 V and
−0.031 to −0.048 V, respectively. In addition, the ipa/ipc ratios for these derivatives at 100 mV/s were
between 0.6 and 0.7. Comparison of cathodic peak currents for this process to those for the first N-oxide
reduction, as well as using ∆Ep and Epc − E1/2 for estimates, indicates that this process involves one
electron. This wave may be attributed to reduction of the nitro group. Previous investigations into the
electrochemical properties of the nitro group have shown that this functional group undergoes one
electron reduction to form a radical anion in aprotic media [31–34]. It seems reasonable to assume that
a nitro radical anion was formed during the reductions of these derivatives as well.

2.2. Preliminary Computational Study

The computational half-cell potentials for molecules 1a–1e from Table 1 were calculated using
Guassian 09 and are listed in Table 4.

Table 4. The half-cell reaction potentials in volts for the 1st N-oxide, nitro group and 2nd N-oxide
reductions calculated using the lanl2dz and 6-31g basis sets in Gausian 09.

Compound
1st N-oxide Reduction Nitro Group Reduction 2nd N-oxide Reduction

Lanl2dz 6-31g Lanl2dz 6-31g Lanl2dz 6-31g

1a 3.6006 3.2891 2.1763 1.7774
1b 3.5920 3.2807 2.1636 1.7586
1c 3.6516 3.3488 2.1944 1.8146
1d 3.6364 3.3307 2.1910 1.8055
1e 3.8605 3.5518 2.6292 2.2985 2.9601 2.6072

The optimization energy, thermal correction factor, and solvation energy were calculated for the
first wave with the extra electron of the radical anion on both the carbon attached to the benzene ring
and the carbon attached to the cyano group. The energies and thermal correction factors were found to
be identical regardless of which of these carbon atoms the radical was located on (results not shown,
manuscript in preparation). This result seems to indicate that the extra electron isn’t isolated to a single
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carbon, but instead is in some sort of resonance, as shown in Figure 3. Future computational work
will investigate this observation further. For the remainder of this paper, we will only present the
calculations with the radical on the carbon neighboring the cyano group. In Table 5, the computational
half-cell potentials are compared to the ferrocene/ferrocinium (Fc/Fc+) redox couple, firstly with
the standard hydrogen half-cell potential set to zero, and secondly with the ferrocene/ferrocinium
reduction potential set to zero. These half-cell potentials are analyzed relative to ferrocene to provide a
direct comparison to the experimental half wave potentials (E1/2). For derivatives 1a–1d, while the
computational and experimental values do not agree quantitatively, they have a strong qualitative
agreement for the first and second reduction waves. Figure 5a compares the two computational basis
set calculations, lanld2z (black) and 6-31g (red), to the experimental reduction potentials (E1/2) for
wave 1. For both basis sets, there is a strong positive correlation. Figure 5b shows the comparison
of the two computational basis set calculations, lanl2dz (black) and 6-31g (red), compared to the
experimental peak potentials (Epc) for wave 2. While there is still good qualitative agreement, the
correlation between the computational and experimental data decreased compared to wave 1. For the
second wave, the computational values could demonstrate more accurate predictions than those
generated electrochemically since this wave was found to be irreversible for all derivatives.

Table 5. The reduction potentials in volts for the 1st N-oxide, nitro group and 2nd N-oxide reductions
versus ferrocene, calculated using the lanl2dz and 6-31g basis sets in Gausian 09.

1st N-oxide Reduction Nitro Group Reduction 2nd N-oxide Reduction

Hydrogen Half−Cell Reduction Set to Zero

Compound Lanl2dz 6-31g Lanl2dz 6-31g Lanl2dz 6-31g

1a −1.9136 −1.8908 −3.3379 −3.4025
1b −1.9223 −1.8993 −3.3507 −3.4213
1c −1.8626 −1.8312 −3.3199 −3.3654
1d −1.8778 −1.8492 −3.3233 −3.3744
1e −1.6538 −1.6281 −2.8851 −2.8814 −2.5542 −2.5728

Ferrocene Half−Cell Reduction Set to Zero

Compound Lanl2dz 6-31g Lanl2dz 6-31g Lanl2dz 6-31g

1a −1.1936 −1.1708 −2.6179 −2.6825
1b −1.2023 −1.1793 −2.6307 −2.7013
1c −1.1426 −1.1112 −2.5999 −2.6454
1d −1.1578 −1.1292 −2.6033 −2.6544
1e −0.9338 −0.9081 −2.1651 −2.1614 −1.8342 −1.8528
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Figure 5. The computationally derived reduction potentials for (a) wave 1 (1st N-oxide reduction) and
(b) wave 2 (2nd N-oxide reduction) compared to the experimentally measured data demonstrates a
strong correlation. The basis set for lanl2dz, shown in black, can be compared to 6-31g, shown in red.
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Molecule 1e was not included in Figure 5. This nitro group-containing derivative displayed
drastically different calculated potentials from those of derivatives 1a–1d and from the experimental
value. The origin of these differences will be investigated in future computational research.

2.3. Reduction Potentials versus Cytotoxicity

Previous studies of substituted quinoxaline di-N-oxides have demonstrated a link between
reduction potential and certain biological activities, i.e., the compounds with higher activities generally
have less negative reduction potentials and are easier to reduce [10,17–19]. Thus, possible links between
reduction potential and anti-tumor activity were investigated for the current series of compounds.
Comparison of their reported cytotoxicity against cancer cell lines in hypoxia and normoxia [21] versus
their measured E1/2 values as a whole does not show a clear and direct correlation between activity
and reduction potential (Figure 6). Plots of reduction potential versus cytotoxicity as a whole show
no clear patterns. Comparison of smaller subsets within the data also is inconclusive. For example,
derivatives 4a and 4b were shown to possess better hypoxic activity against cancer cell lines than the
un-substituted derivatives 1a and 1b [21]. And the former are also more easily reduced by over 100 mV.
However, derivatives 1e and 2e are more easily reduced than derivatives 1c and 2c, respectively, but
have lower hypoxic activities. In addition, the most potent compound with the highest reported
activities, 2c, was not the most easily reduced derivative. These results do not rule out bioreduction in
the mechanism of action of these compounds against cancer cells. However, they indicate that other
factors besides bioreduction may play a more important role for the in vivo mechanism of action of
these compounds, such as metabolism, stereochemistry, membrane permeability, bioactivation, DNA
binding, and diffusion [35,36].
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Figure 6. The comparison of experimentally measured reduction potentials for wave 1 (1st N-oxide
reduction) to the previously reported IC50 (µM) for five cancer cell lines under (a) hypoxic and
(b) normoxic conditions clearly shows no correlation. Hypoxia = 3% oxygen, Normoxia = 20% oxygen.

3. Materials and Methods

3.1. Chemical Synthesis

The quinoxaline derivatives studied in this paper were prepared and characterized as reported
previously [21]. The structures of these test compounds are shown in Table 1.
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3.2. Electrochemistry

All reagents used in this study were obtained in the highest purity available commercially and
used as received. All solutions were prepared in dimethylformamide (DMF, Fisher Scientific, Waltham,
MA, USA) with tetrabutylammonium perchlorate (TBAP, Aldrich Chemical Company, Milwaukee,
WI, USA) serving as the supporting electrolyte. Test solutions contained 1.0 mM of the corresponding
quinoxaline derivative and 0.1 M TBAP. Ferrocene (Fc, Sigma Aldrich, St. Louis, MO, USA) was added
to each test solution following completion of the electrochemical measurements of the test compound,
and used as an internal reference redox system [37] in order to account for daily variations in the
reference electrode and liquid junction potentials. All potentials in this study are reported versus the
ferrocene/ferrocinium (Fc/Fc+) redox couple:

Epc,SRE − E1/2,Fc/Fc + or E1/2,SRE − E1/2,Fc/Fc
+ (1)

Half-Wave potentials (E1/2) for ferrocene ranged from 0.0155 V to 0.0265 V during the course of this
study. Cyclic voltammetric experiments were carried out at room temperature under an inert dinitrogen
atmosphere (prepurified, Air Gas Mid-America Region, Bowling Green, KY, USA). Test solutions were
deaerated for 15 min prior to obtaining the electrochemical data. A 620 Electrochemistry Analyzer
(CH Instruments, Austin, TX, USA) was used for all electrochemical measurements. Solution resistance
was uncompensated. A standard three electrode cell, consisting of a Pt-disk (1.6 mm diameter) working
electrode, a Pt-wire auxilliary electrode, and a Ag/AgNO3 (0.1 M in acetonitrile) reference electrode,
was used. Scan rates ranged from 0.05 V/s to 1 V/s. Half-Wave potentials were calculated using the
following equation [24]: E1/2 = (Epa + Epc)/2. For the first derivative cyclic voltammograms, Ep values
were measured at the points where the derivative curves crossed the baseline [24]. Peak currents were
measured from the extrapolated baselines for both the cathodic and anodic processes [23].

3.3. Computational Chemistry

Gaussian 9.0 was used to model the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives
1a–1e (Table 1) [38]. For 1a–1d, the neutral molecule, the radical anion and dianion structures were
drawn in GaussView 5 [39]. Figure 7 shows the neutral molecule, two possible radical anions and the
dianion structures used for molecule 1a. For molecule 1e, the neutral molecule, the anion with the
radical on the carbon attached to the cyano group, the dianion with radicals on the carbon attached to
the cyano group and on the nitro group and trianion structures are shown in Figure 8. Each structure
was optimized using two common basis sets, lanl2dz and 6-31g, to determine the lowest energy
conformation. Next, a frequency calculation was performed to correct for thermal artifacts present
in the program. The energy of each structure was found by summing the optimization energy and
the thermal correction factor. The change in Gibbs Free Energy from the addition of an electron was
calculated by subtracting the free energy of the appropriate structures. Lastly, an energy calculation
was used to obtain an energy of each molecule solvated in N,N-dimethylformamide. The change in
Gibbs Free Energy of solvation (∆Gsolv) was found by subtracting the energy of the molecule from the
solvated energy of the molecule [22,40].
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dianion product of wave 2. Figures created in GaussView 5 [39] and optimized in Gaussian 09 [38]. 
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Figure 8. The optimized structures for molecule 1e using the 6-31g basis set: (a) the neutral molecule, (b) 
the anion product of wave 1 with the radical on the carbon attached to the cyano group, (c) the dianion 
product of the NO wave with radicals on the carbon attached to the cyano and on nitro group, and (d) 
the trianion product of wave 2. Figures created in GaussView 5 [39] and optimized in Gaussian 09 [38]. 

Figure 9 shows the thermodynamical cycles used to calculate the change in Gibbs Free Energy 
associated with the reduction of wave 1 and wave 2, ΔGred,wave 1(solv) and ΔGred,wave 2(solv), respectively. 
For wave 1: 

ΔGred,wave 1(solv) = −ΔGsolv,n + ΔGred,wave 1(g) + −ΔGsolv,r (2) 

where ΔGsolv,n is the change in Gibbs Free Energy of solvation of the neutral molecule, ΔGred,wave 1(g) 
is the change in Gibbs Free Energy of the reduction in the gas phase, and ΔGsolv,r is the change in 
Gibbs Free Energy of solvation for the radical anion. 

Figure 7. The optimized structures for molecule 1a using the 6-31g basis set: (a) the neutral molecule,
(b) the anion product from wave 1 with the radical on the carbon attached to the cyano group, (c) the
anion product of wave 1 with the radical on the carbon attached to the benzene ring, and (d) the
dianion product of wave 2. Figures created in GaussView 5 [39] and optimized in Gaussian 09 [38].
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Figure 8. The optimized structures for molecule 1e using the 6-31g basis set: (a) the neutral molecule,
(b) the anion product of wave 1 with the radical on the carbon attached to the cyano group, (c) the
dianion product of the NO wave with radicals on the carbon attached to the cyano and on nitro
group, and (d) the trianion product of wave 2. Figures created in GaussView 5 [39] and optimized in
Gaussian 09 [38].

Figure 9 shows the thermodynamical cycles used to calculate the change in Gibbs Free Energy
associated with the reduction of wave 1 and wave 2, ∆Gred,wave 1(solv) and ∆Gred,wave 2(solv), respectively.
For wave 1:

∆Gred,wave 1(solv) = −∆Gsolv,n + ∆Gred,wave 1(g) + −∆Gsolv,r (2)

where ∆Gsolv,n is the change in Gibbs Free Energy of solvation of the neutral molecule, ∆Gred,wave 1(g)
is the change in Gibbs Free Energy of the reduction in the gas phase, and ∆Gsolv,r is the change in Gibbs
Free Energy of solvation for the radical anion.
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Abbreviations

Dimethylformamide DMF
half-wave potential E1/2
anodic peak potential Epa

cathodic peak potential Epc

difference in peak potentials ∆Ep

anodic peak current ipa

cathodic peak current ipc

ratio of peak currents ipa/ipc

reaction constant ρπ,R

total polar substituent constant σx

substituent constant for meta substituent σm−x

substituent constant for para substituent σp−x
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