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Abstract: Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer
therapeutics and their ligands have been developed as molecular probes in oncology. Moreover,
various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited
promising results against numerous human and rodent cancers and are investigated under preclinical
and clinical study trials, indicating a new category of drugs in cancer therapy.
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1. Introduction

Sigma receptors (σRs) have been recently referred in cancer pathophysiology. Initially, they were
identified as opiate receptors and their description was based on the pharmacological evaluation of
(±)-SKF-10,047 (N-allylnormetazocine), morphine and ketazocine in the chronic spinal dog model [1].
Three types of the opiate receptors were suggested and named by the corresponding greek symbol:
µ for morphine, κ for ketazocine, and σ for (±)-SKF-10,047 [2,3]. Nevertheless, σRs have been classified
as a distinct pharmacological receptor class and are unrelated to opioid receptors [1,4,5]. They consist
of a ubiquitously expressed different binding site in the CNS and other peripheral tissues [6–9].
No endogenous ligand was known until the characterization of dimethyltryptamine (DMT) [10,11].
Steroid hormones (particularly progesterone) and sphingolipid-derived amines might also be included
as endogenous ligands [12].

Originally, two types of sigma receptors (σRs) were identified, sigma 1 receptor (σ1R), which was
first cloned in 1996, and sigma 2 receptor (σ2R), which has not been cloned yet [6,13–17]. One more
type has been suggested, sigma 3 (σ3R), but it has not been defined adequately [18]. σ1R and σ2R
have recently been involved in apoptosis (programmed cell death) [4,19–23]. σ1R and σ2R are highly
expressed in cancer cells and up-regulated prior to mitosis [24,25], suggesting important cellular
functions in cancer. σ1R antagonists [26–28] deactivate the receptor activity, which is anti-apoptotic and
neuroprotective [4,16,19,29,30] and σ2R agonists [20–22] stimulate the receptor activity and sensitizes
cancer cells for apoptosis [21,22,31]. Although there is considerable evidence of antiproliferative
and cytotoxic activity for σ1R antagonists, σ2R agonists and mixed σ1R/σ2R ligands [20–23,26],
the mechanism of action is still elusive.

Both σR types are overexpressed in numerous human cancer tissues, such as small- and
non-small-cell lung carcinoma [24,32], large-cell carcinoma (NCI-H1299 and NCI-H838) [33],
renal carcinoma [24], colon carcinoma (HCT-15 and HCT-16) [34], sarcoma [33], brain tumors
(CNS U51) [35], breast cancer (MCF-7. T47D and SKBr3) and breast ductal carcinoma (T47D) [32],
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melanoma (A375) [24], glioblastoma [24], adenocarcinoma (line 66), neuroblastoma (BE(2) and
SK-N-SH) [24], prostate cancer (DU-145, PC3 and LnCap) [24], pancreas (MiaPaca2 and BX-PC3),
liver (SKHep1), ovarian carcinoma (ICROV-1 and OVCAR-5) and leukemia (HL-60) [24]. Consequently,
many pharmaceutical agents acting at the σRs have been used in the treatment of cancer and are
receiving considerable attention.

A functional assay to define the agonist/antagonist behavior of σR ligands does not exist at
the time of writing this review. Many σR ligands with various scaffolds have been evaluated as
cytotoxic in a variety of cancer cell lines by activating caspase-dependent and caspase-independent
apoptosis. This deviation in the mechanism of action can be used to define σR ligands as agonists or
antagonists. More specifically, ligands that induce caspase-3 activation and cytotoxicity are commonly
accepted as σR agonists, whereas compounds that do not cause caspase-3 activation and cytotoxicity
are considered as antagonists [36,37].

2. Sigma Receptors (σRs)

σ1R is a polypeptide of molecular weight (MW) 29 kDa that comprises 223 amino acids
and is not similar to known receptors, except for a 66.4% homology with a yeast C8-C7 sterol
isomerase [6,7,9,38–42]. The σ1Rs are expressed in various tissues, and especially in the cardiac tissue
and the spleen. They are widely located in the endoplasmic reticulum and the plasma membrane [6].
They are important for the modulation of cation channels (K+, Na+ and Ca2+). σ1Rs are intracellular
receptors that can translocate inside cells and act as chaperone proteins [43,44]. Chaperone proteins
are responsible for the correct folding of other proteins, during their synthesis or function [45].
σ1Rs regulate Ca2+ signaling via the inositol triphosphate [IP3] receptor and, in particular, they ensure
the Ca2+ signaling from endoplasmic reticulum (ER) into mitochondrion. Under cell stress conditions,
the Ca2+ homeostasis in the ER is perturbed resulting in resistance to the potential apoptosis. Moreover,
σ1Rs modulate K+ channels in pituitary and brain cells through G protein coupling or protein-protein
interactions [46]. The cell shrinkage, which is necessary for programmed cell death (apoptosis) [47–49],
is mediated through K+ loss. Moreover, σ1R is assumed to be involved in tumor genesis, as the
corresponding receptor gene is a target of the oncogene c-Myc [50]. It has been shown that σ1R
antagonists induce caspase-dependent apoptosis [26,51], whereas σ1R agonists prevent caspase
activation [4,52]. For this reason, σ1R antagonists have antiproliferative and cytotoxic activity and the
σ1R agonists are anti-apoptotic and neuroprotective [16,53].

The σ2 protein was initially characterized as the progesterone receptor membrane component 1
(PGRMC1) [54]. Even if this receptor has not been cloned yet, the corresponding gene is presumed to
encode a protein of MW 21.5 kDa. In contrast to σ1Rs that dynamically translocate, σ2Rs are located
in the lipid raft and are coupled with the PGRMC1 complex, EGFR, mTOR, caspases, and various
ion channels [55]. σ2Rs appear to interfere in cell cycle and apoptosis by regulating the sphingolipid
pathway. In particular, they produce an increase in ceramide, a sphingolipid second messenger in
cell proliferation [56]. Moreover, their activation leads to high intracellular calcium concentrations
that can in turn activate proteases, nucleases and other enzymes that mediate apoptosis. The σ2R is
overexpressed in many tumor cell lines, thus it constitutes an attractive target for cancer diagnosis and
treatment. σ2R could be used as biomarker of the tumor proliferative status, due to its high density in
the proliferating tumor cells [57]. Thus, σ2R ligands could be useful for imaging cancer in vivo, using
techniques such as positron emission tomography (PET) [58] or single-photon emission computerized
tomography (SPECT) [59,60].

σ2R agonists and antagonists produce different effects. σ2R agonists have antiproliferative and
cytotoxic activity in tumor cells in vitro as well as in vivo [61]. They provoke cell death via a multitude
of distinct pathways such as caspase-dependent and -independent mechanisms [62], generation
of reactive oxygen species (ROS) and autophagy [21,63]. More specifically, the caspase-dependent
mechanism triggers caspase 3, 8 and 9. Another potentially exploitable fact is the interaction of
σ2R ligands with p-glycoprotein (P-gp) efflux pump and their ability to decrease P-gp levels [64,65].
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Nearly half of human cancers develop resistance to antineoplastic therapy due to overexpression
of P-gp. Therefore, σ2R agonists can act as single antitumor agents without resistance problems or
can be co-administrated with classic antineoplastic medication to reduce the Multi Drug Resistance
(MDR) effect.

3. Structure Affinity Relationship of Sigma Receptors Modulators

σRs have historically invoked scientific interest due to their accommodation of different structural
ligands. Consequently, a great variety of drug classes can bind to them with high affinity [66,67].
This broad structural diversity among σR ligands can be explained via a multitude of hypothesis,
the most prevalent of whom suggests that the receptors possess dynamic structures, sufficiently flexible
to accommodate all these structurally diverse compounds [68]. In this case, a single pharmacophore
model that defines a specific three-dimensional space for pharmacophore groups may be difficult or
even impossible to exist. Nevertheless, numerous two-dimensional pictorial pharmacophore models
have been proposed for σR ligands.

3.1. σ-1 Selective Ligands

3.1.1. Gilligan Model

Gilligan et al. [69] identified a lead compound selective for σR (Ki = 6 nM). The lead compound
I was analyzed into four sections, corresponding to four pharmacophore moieties, as depicted in
Figure 1.
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for σRs. Appropriate aryl substituents in the phenylethylamine portion of the molecule (including 
fused-ring structures) or decrease of the length of side chain by one or two methylene groups reserve 
high affinity (σKi < 10 nM) [70]. Both secondary and tertiary amines are potent ligands; however, one 
of the tertiary amine substituents could not be much larger than a methyl group [71]. Moreover, the 
phenylpentyl moiety, not a phenylethyl moiety, of 1-type compounds was crucial for binding at σRs. 
The comparison of several phenylpentylamines 2 where (CH2)n was varied from n = 1 to n = 4 (σKi = 
2.0–2.7 nM) showed that variation of Phenyl-A to N chainlength had no significant impact on affinity 
[69,72] (Figure 2). 

Figure 1. Gilligan model: (1) a distal aromatic ring (Region A); (2) a nitrogen heterocycle (Region C);
(3) a space between the heterocycle and the distal aromatic ring (Region B); and (4) a substituent on the
nitrogen heterocycle (Region D).

3.1.2. Glennon/Ablordeppey Model

This model is derived from studies that aimed at identifying a pharmacophore for the binding of
benzomorphan analogs at σRs. It became immediately obvious that an intact benzomorphan moiety
was not required for high-affinity binding. Compound 1 was shown to possess high affinity for σRs.
Appropriate aryl substituents in the phenylethylamine portion of the molecule (including fused-ring
structures) or decrease of the length of side chain by one or two methylene groups reserve high affinity
(σKi < 10 nM) [70]. Both secondary and tertiary amines are potent ligands; however, one of the tertiary
amine substituents could not be much larger than a methyl group [71]. Moreover, the phenylpentyl
moiety, not a phenylethyl moiety, of 1-type compounds was crucial for binding at σRs. The comparison
of several phenylpentylamines 2 where (CH2)n was varied from n = 1 to n = 4 (σKi = 2.0–2.7 nM)
showed that variation of Phenyl-A to N chainlength had no significant impact on affinity [69,72]
(Figure 2).
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of the basic nitrogen atom. 

Another question was the role of the basic nitrogen atom. Several studies had presented that σR 
ligands did not require a basic amine. Steroids, for instance, are σR ligands [79]. An amino group 
was shown to be well tolerated in the phenyl ring of derivative 7 (8, σKi = 38 nM). Subsequently, the 
piperidine amino group was deleted, giving compound 9, which (σKi > 36,000 nM) was >50,000-fold 
less potent than adduct 7. The presence and location of the basic amine proven to be important for 
binding [79,80]. Various and diverse compounds have been demonstrated to be σR ligands. 
However, two major features have been revealed: (1) many bind with affinity only in the micromolar 
or very high nanomolar range; and (2) most display an aryl or hydrophobic ring separated from a 

 

Figure 2. Structural modifications related to σ1R binding affinity.

On the other hand, either or both of the aromatic rings could be replaced by a cyclohexyl
ring proving that the interaction with σRs involves a hydrophobic rather than an aromatic-type
or π–π stacking interaction. Moreover, Phenyl-A could be deleted without impact on affinity;
for example, derivatives 3 (σKi = 2.6 nM) and 4 (σKi = 2.4 nM) remain as potent as compound
2 [73,74]. A phenylpiperidine or phenylpiperazine ring has almost the same dimensions with
a phenylethylamine and it was proven that such derivatives are also potent [75]. It was reasoned
that, if the phenylpentylamine moiety is a significant pharmacophore contributor, it should be
possible to extend the butyrophenone chain of haloperidol to valerophenone. Indeed, valerophenone
5 (σKi = 2.3 nM) was found to have several-fold higher affinity than haloperidol (CTKi = 10 nM).
Removal of polar substituents in the phenyl ring, to afford phenylpentylamine 6, resulted in increase
of affinity (6; CTKi = 0.9 nM) [76]. At the time, compound 6 exhibited the highest σR affinity. The next
set of experiments examined the impact of the N-alkyl substitution. As long as one of the N-alkyl
substituents is a methyl group, the nature of the second substituent has limited impact on affinity,
provided it is at least three carbon atoms in length. This evidence supported the hypothesis of
a hydrophobic binding pocket of limited size, and that, as long as this hydrophobic binding requirement
was met, derivatives presented high affinity. Further bulk substituent was probably accommodated
in an associated region of bulk tolerance, and did not usually increase affinity [77] (Figure 2). All the
above results were used by Glennon and Ablodeppey to propose an initial pharmacophore model for
high affinity σR ligands, which is depicted in Figure 3.
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Figure 3. (a) Initial Glennon/Ablordeppey pharmacophore model [78]; and (b) structural modifications
of the basic nitrogen atom.

Another question was the role of the basic nitrogen atom. Several studies had presented that σR
ligands did not require a basic amine. Steroids, for instance, are σR ligands [79]. An amino group
was shown to be well tolerated in the phenyl ring of derivative 7 (8, σKi = 38 nM). Subsequently,
the piperidine amino group was deleted, giving compound 9, which (σKi > 36,000 nM) was >50,000-fold
less potent than adduct 7. The presence and location of the basic amine proven to be important for
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binding [79,80]. Various and diverse compounds have been demonstrated to be σR ligands. However,
two major features have been revealed: (1) many bind with affinity only in the micromolar or very
high nanomolar range; and (2) most display an aryl or hydrophobic ring separated from a basic tertiary
amine by four to seven atoms. Although a five-atom linker seems optimal, compounds with longer
alkyl chains might simply interact with a hydrophobic binding site on the receptor in a less efficient
manner than phenyl or cyclohexyl groups. Compounds with longer chains might also fold back
somewhat to be accommodated by the receptor. In any case, long chains are well tolerated.

3.2. σ-2 Selective Ligands

The synthesis of selective ligands for the σ2R versus the σ1R has always been a challenge. The fact
that σ2R accommodates very different structures has made it difficult to produce a pharmacophore
model for rational design of σ2R ligands [61,81].

3.2.1. Conformationally Restricted Amine Derivatives

The first class of σ2R selective ligands was the benzomorphan-7-one analogs, as illustrated in
Figure 4 [82].

Molecules 2017, 22, 1408 5 of 18 

 

basic tertiary amine by four to seven atoms. Although a five-atom linker seems optimal, compounds 
with longer alkyl chains might simply interact with a hydrophobic binding site on the receptor in a 
less efficient manner than phenyl or cyclohexyl groups. Compounds with longer chains might also 
fold back somewhat to be accommodated by the receptor. In any case, long chains are well tolerated. 

3.2. σ-2 Selective Ligands 

The synthesis of selective ligands for the σ2R versus the σ1R has always been a challenge. The 
fact that σ2R accommodates very different structures has made it difficult to produce a 
pharmacophore model for rational design of σ2R ligands [61,81]. 

3.2.1. Conformationally Restricted Amine Derivatives 

The first class of σ2R selective ligands was the benzomorphan-7-one analogs, as illustrated in 
Figure 4 [82]. 

 
(a) 

 
(b) 

Figure 4. Conformationally restricted amine selective σ2R derivatives: (a) Benzomorphan-7-one 
analogs; and (b) Granatane analogs. 

The most selective σ2R ligands were (+)-1R,5R-(E)-8-benzylidene-5-(3-hydroxyphenyl)-2- 
methyl-morphan-7-one (CB-64D, σ2Ki = 16.5 nM, σ1/σ2Ki = 185) and (+)-1R,5R-(E)-8-(3,4- 
dichlorobenzylidene)-5-(3-hydroxyphenyl)-2-methylmorphan-7-one (CB-184, σ2Ki = 13.4 nM, 
σ1/σ2Ki = 555). These benzomorphans displayed affinity for the μ opioid and σ2 receptors, because 
the aforementioned receptors share the same enantioselectivity. The (+)-isomers are selective for the 
σ2R, while the (−)-isomers have a higher binding affinity for the σ1R. This chemical category of 
derivatives is merged with granatane- or tropane-related bicyclo-analogs. The 9-N atom of the 
granatane ring can accommodate bulky substitutions without a significant loss of σ2R affinity and 
selectivity. A N-substitution with an additional nitrogen atom that is four or more carbon atoms 
apart enhances σ2R binding affinity. A N-aromatic substitution can also be accommodated, but is 
not crucial for σ2R affinity or selectivity [83–85]. 

3.2.2. Siramesine-Related Indole Analogs 

Siramesine (Lu 28-179) was designed as a low-efficacy serotonin 5-HT1A agonist for treating 
depression and anxiety disorders [86], but it was later revealed that siramesine displayed a 
subnanomolar affinity for σ2R and a 140-fold selectivity for σ2R versus σ1R. This remark led to the 
development of a new series of siramesine analogs (σ2Ki = 0.12 nM, σ1/σ2Ki = 140) (Figure 5) [86,87]. 
N-small alkyl substitution decrease sigma affinity, while n-propyl, n-butyl groups lead to an increase 
of sigma binding affinity with a corresponding shift towards σ2R selectivity. The introduction of a 
fluorine atom or a trifluoromethyl group at the spiropiperidine benzene ring reduces σ2R affinity or 
selectivity. In addition, when the geometry of spiro-system changes, the affinity and selectivity 
towards σ2R decrease [86,87] (Figure 5). 

Figure 4. Conformationally restricted amine selective σ2R derivatives: (a) Benzomorphan-7-one
analogs; and (b) Granatane analogs.

The most selective σ2R ligands were (+)-1R,5R-(E)-8-benzylidene-5-(3-hydroxyphenyl)-2-
methyl-morphan-7-one (CB-64D, σ2Ki = 16.5 nM, σ1/σ2Ki = 185) and (+)-1R,5R-(E)-8-(3,4-
dichlorobenzylidene)-5-(3-hydroxyphenyl)-2-methylmorphan-7-one (CB-184, σ2Ki = 13.4 nM,
σ1/σ2Ki = 555). These benzomorphans displayed affinity for the µ opioid and σ2 receptors, because
the aforementioned receptors share the same enantioselectivity. The (+)-isomers are selective for
the σ2R, while the (−)-isomers have a higher binding affinity for the σ1R. This chemical category
of derivatives is merged with granatane- or tropane-related bicyclo-analogs. The 9-N atom of the
granatane ring can accommodate bulky substitutions without a significant loss of σ2R affinity and
selectivity. A N-substitution with an additional nitrogen atom that is four or more carbon atoms apart
enhances σ2R binding affinity. A N-aromatic substitution can also be accommodated, but is not crucial
for σ2R affinity or selectivity [83–85].

3.2.2. Siramesine-Related Indole Analogs

Siramesine (Lu 28-179) was designed as a low-efficacy serotonin 5-HT1A agonist for treating
depression and anxiety disorders [86], but it was later revealed that siramesine displayed
a subnanomolar affinity for σ2R and a 140-fold selectivity for σ2R versus σ1R. This remark led to the
development of a new series of siramesine analogs (σ2Ki = 0.12 nM, σ1/σ2Ki = 140) (Figure 5) [86,87].
N-small alkyl substitution decrease sigma affinity, while n-propyl, n-butyl groups lead to an increase
of sigma binding affinity with a corresponding shift towards σ2R selectivity. The introduction of
a fluorine atom or a trifluoromethyl group at the spiropiperidine benzene ring reduces σ2R affinity
or selectivity. In addition, when the geometry of spiro-system changes, the affinity and selectivity
towards σ2R decrease [86,87] (Figure 5).
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3.2.3. Conformationally Flexible Amine Derivatives

Benzamide highly selective σ2R derivatives are illustrated in Figure 6. These compounds were
initially designed as dopamine D3 selective antagonists and partial agonists, but the structural
modifications to improve the “drug-like” properties generated the aforementioned σ2R selective
ligands [88,89]. The dimethoxy groups of the 6,7-dimethoxytetrahydroisoquinolines are important
for maintaining a high affinity for the σ2R binding [89]. A restricted amine structure is beneficial
for σ2R binding [90]. The aromatic substitution of the benzamide can tolerate large alkyl chains and
an intramolecular hydrogen bond may be formed between the oxygen of the ortho-methoxy group
(vide R1, Figure 6) on the benzamide and the amide NH. This bond could be important for σ2R
binding [65,91,92].
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Cyclohexylpiperazines and cyclohexylpiperdines have been studied for both sigma receptors, since
these compounds are highly potent and nonselective σ1/2R ligands (Figure 7). The Structure–Activity
Relationship of this category of compounds supported the hypothesis that the lipophilicity is correlated
to the antiproliferative activity mediated by the σ2R [93]. The higher lipophilicity indulges higher affinity
and efficacy.
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In the above-mentioned model in Figure 7, N-cyclohexylpiperazine moiety proves to be an optimal
substituent of this category of derivatives. Quaternary amines are also capable of binding to σ2R with
moderate affinity and selectivity over σ1R. When a carbazole moiety replaced the 5-methoxytetraline
resulted a significant decrease in σ1R binding affinity and a 273-fold selectivity for σ2R [93,94].

4. σ-Receptor (σR) Ligands in Cancer Research

σR are expressed in large quantities in the majority of cancer cell lines, suggesting that σR ligands
can be used as potential tools in the treatment or diagnosis of various types of cancer [12,35,94,95].

As far as diagnosis is concerned, σR ligands can be used for diagnostic imaging using
PET or SPECT. Their use as diagnostic tools is based on the aforementioned overexpression
of σR in different types of cancer and as on the ability of σRs to internalize their ligands,
as well. Moreover, several σR ligands contain an iodine or fluoride atom in their chemical
structure, which can be easily substituted with the corresponding radioisotope [59,96–99]. Several
preclinical studies evaluated the potential use of radiolabeled sigma-ligands as imaging agents
in melanoma [100], breast cancer [101,102], prostate cancer [101], and lung cancer [100].
Everaert et al. highlighted that malignant melanomas can be detected in patients with 87%
accuracy and 64% sensitivity at the lesion site, using a radiolabeled benzamide σ1R ligand
123I-IDAB (123I-N-(2-diethylaminoethyl)-4-iodobenzamide) [100,102]. A preliminary clinical study
showed that the σ1R ligand 123I-IMBA (123I-N-[2-(1′-piperidinyl)-ethyl]-3-iodo-4-methoxybenzamide),
is accumulated in most breast tumors in vivo due to uptake by or a high density of σRs in cancer cells,
in comparison to normal tissue [102].

Leaf Huang et al. have been using selective σ1R ligands for delivering drugs to human cancer
cells. Their group designed the benzamide derivative 125I-IPAB (125I-(2-piperidinylaminoethyl)-
4-iodobenzamide) [103,104] and incorporated it into liposomes containing doxorubicin to specifically
deliver the drug to a prostate cancer cell line (DU-145) [105]. The benzamide-conjugated
liposomal doxorubicin exhibited significantly higher antiproliferative activity against DU-145 cells
than against non-targeted liposomal doxorubicin in vitro, and better accumulation within the
tumor in vivo in a xenograft animal tumor model. Moreover, intravenous administration of the
targeted liposomal doxorubicin displayed significant growth inhibition of established DU-145
tumors in nude mice, while simultaneously reducing the drug toxicity [105]. This technique
was later followed by nanoparticles containing the σR ligand 123I-IDAB to target the delivery
of antisense oligodeoxynucleotide and siRNA to lung cancer cells in vitro and in vivo, as well
as to the B16F10 mouse melanoma lung metastasis model [106,107]. A phase II clinical trial
proved that 123I-BZA (123I-N-(2-diethylaminoethyl)-4-iodobenzamide) was useful as scintigram
in diagnosis of ocular melanoma [108]. Another isomer benzamide adduct of this series of
radiolabeled derivatives, which is used in the identification of melanoma metastases is 123I-BZA2
(123I-N-(2-diethylaminoethyl)-2-iodobenzamide). 123I-BZA2 was studied in a multicenter Phase III
clinical trial and might lead to a new treatment strategy of metastatic melanoma patients harboring
melanin-positive metastases [109] (Figure 8).

Recently, various σ1R ligands have been examined for cancer chemotherapy either in conjunction
with other anticancer treatments or as monotherapy. It was first shown that σ1R ligand 4-IBP
(4-(N-benzylpiperidin-4-yl)-4-iodobenzamide), increased the antitumor effects of temozolomide and
irinotecan in vivo, a process that appears to involve the Rho guanine nucleotide dissociation inhibitor
(RhoGDI) and glucosyl-ceramide synthase (GCS) [110]. It has also been demonstrated that various σ1R
ligands, including current antipsychotic drugs, display antiproliferative activity with mitotic arrest
in highly diffusive and migrant glioblastoma (GBM) cells in vitro. Moreover, it was observed that
donepezil could provide the same additive benefit to temozolomide treatment as 4-IBP in vivo [111].
Rimcazole, a σ1R ligand for the treatment of schizophrenia, was recently found to kill selectively tumor
cells by a process involving HIF-1a, and has now been re-profiled for cancer chemotherapy. Donezepil,
another σ1R ligand for the treatment of Alzheimer’s disease, is being used in chemotherapy for small
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cell lung cancer and as adjunctive therapy in brain tumors [112]. Haloperidol, known antipsychotic
drug and σ1R antagonist, promotes ferroptosis in hepatocellular carcinoma cells [113].
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σ2R ligands have been used for more than 20 years as radiolabeled and fluorescent probes
to provide structural information of the correspondent receptor and highlight solid tumors as
biomarkers [37,114–116]. [3H]DTG is one of the most known radioligand in the study of σ2R [114].
[3H]azido-DTG was an important analog in the characterization of the molecular weight of σ1R and
σ2R [66,114]. Various conformationally flexible benzamides (e.g., vide Figure 9, compounds 10 and 11)
are selective radiotracers for imaging the proliferative status of tumors in vivo with PET [85,115,116].
The 2-methoxy group of the previous derivatives facilitates the preparation of 11C-labeladed derivatives
due to alkylation of the corresponding 2-hydroxy precursors. In the next generation of radiotracers,
the 2-methoxy group was replaced by the 2-fluoroethoxy moiety, because the 18F-labeled tracers allow
imaging studies to be conducted in due course after the radiotracer injection [117]. MicroPET imaging
studies use [18F]ISO-1 in a rodent model of breast cancer and [18F]RHM-4 in a rat model of brain
cancer [118]. The former is in clinical Phase I study for imaging solid tumors with PET. Different
clinical trials are completed or still going on in various cancer types (primary and metastatic breast
cancer, head and neck cancer, and diffuse large B-cell lymphoma) [119].
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Several reports describe the antiproliferative and anticancer activity of σ2R ligands in variable
cell lines and tumors [32,120,121] (Table 1). The last years, it has become obvious that σ2R ligands
have significant role in anticancer therapy, as they provoke cancer cell death [32,121]. Siramesine
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was active against all cancer cell lines tested. Recent experiments of SV-119 and its congeners have
been conducted in a pancreas tumor model with significant results, even though the mechanism of
reaction is still elusive [122,123]. SR31747A, a mixed σ1/2R and human sterol isomerase binding
affinity, has been tested for its anticancer activity, due to its efficacy at σRs. The significant in vitro
pharmacological evaluation made SR31747A enter clinical trials for the treatment of androgen prostate
cancer [124].

Table 1. σ2R ligands and their targets.

Origin Species Cell Line σ2R Ligand

breast cancer
human T47 D [3H]DTG
human MCF7 [3H]DTG
mouse EMT-6 [3H]DTG,WC-26,SV-119

colon cancer human primary tumor [3H]DTG

leukemia human Th-P1 [3H]DTG

lung human NCI-H727 [3H]DTG

melanoma
human A375 [3H]DTG
human MDA MB-435 WC-26,SV-119

neurologic

human U-138MG [3H]DTG
human primary tumor [3H]DTG
mouse NB41A3 [3H]DTG
mouse N1E-115 [3H]DTG

rat C6 [3H]DTG

pancreas cancer

mouse Panc-02 SV-119
human Panc-01 SV-119
human AsPc-1 SV-119
human CFPAC SV-119

prostate human LNCaP [3H]DTG

sarcoma human primary tumor [3H]DTG

Non-selective σR ligands, described as mixed σ1/2R ligands, are used in cancer diagnosis and
therapy. Even though σ1R and σ2R are structurally different proteins, σ1R has been characterized
as a chaperone protein [43,44] and σ2R seems to belong to a progesterone receptor complex
(PGRMC1) [54], both of them share common ligands. Various publications refer to σR ligands
that do not present receptor selectivity [31,125]. Cyclohexylpiperazine adducts have already
been reported in the current context as non-selective σR ligands. Benzylpiperazines with σ1/2R
affinity exhibit high antiproliferative activity against a wide panel of cancer cell lines [31]. Recent
publications presented 1,4-benzodioxane- and 1,3-dioxolane-coupled benzylpiperazines as mixed
σ1/2R ligands [126]. Moreover, the defect in binding selectivity becomes an advantage in tumor
signaling. The overexpression of both σ1R and σ2R in prostate tumor and neuroblastoma [12,23,99]
suggests that a dual σR radioligand might present an enhanced tumor targeting compared to a selective
radioligand for a single σR subtype [127]. Another study confirms the same conclusion in radiolabeled
pulmonary σR assigment [128].

5. Adamantane Derivatives with σR Binding Affinity, Antiproliferative and Anticancer Activity

Adamantane skeleton, usually characterized as “lipohilic bullet” [129], is the structural backbone
of many drugs in clinical practice [130]. Various adamantane derivatives present σR binding affinity not
related to antiproliferative or anticancer activity [125,131–135]. However, the following adamantane
phenylalkylamines VIII, IX and X, as illustrated in Figure 10, exhibit σR binding affinity in combination
with antiproliferative and anticancer activity [136–140].
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anticancer activity.

The aforementioned adamantane adducts present the structural requirements for σR binding
affinity (Figure 10). In the first adamantane scaffold VIII, benzene ring A is attached to the first
piperazine nitrogen via a chain of three atoms (N, 2C) and in template IX, the benzene rings are linked
to an amine nitrogen atom via a spacer of one, two and three methylene carbons. The substitution of
the adamantane moiety has changed in 1-(2-aryl-2-adamantyl)piperazine derivatives X. All the above
adamantane derivatives have a significant binding affinity for the σ1R and σ2R at a low nanomolecular
range. Their antiproliferative activity against numerous cancer cell lines (colon, prostate, breast,
ovarian, central nervous system, leukemia, pancreas, liver) was significant. These results in conjunction
with their affinity for site 2 of the Na+ channels imply that the adamantane phenylalkylamines VIII,
IX and X have the pharmacological profile of mixed σ1/σ2R ligands [136–139].

1-Methyl-4-{3-[4-[α-(1-adamantyl)phenyl]phenyl]propyl}piperazine (13) presented an acceptable
toxicological profile associated with an interesting antiangiogenic activity against tumors and
was particularly prominent in (BxPC-3) pancreas, (DU-145 and PC3) prostate, (OVCAR-5)
ovarian and (HL-60) leukemia xenografts on SCID mice [136]. 1-Methyl-4-{4-[α-(1-adamantyl)
phenylmethyl]phenyl}piperazine (12) (σ1Ki = 3.2 nM, σ2Ki = 32 nM, σ1/σ2Ki = 11.8) was prominent
in pancreas [137]. 4-[4,4-Diphenyl-4-(1-adamantyl)butyl]-1-methylpiperazine (14) (σ1Ki = 15 nM,
σ2Ki = 60 nM, σ1/σ2Ki = 4) displays selective action against ovarian cancer on mice
(IGROV-1) and presented as potent as cisplatin [138]. The above adamantane adducts were
also tested with a prototypical study (formaline test) of their effect in putative neuropathic
pain induced by anticancer drug Paclitaxel [28–30] and proved to be putative analgesic agents.
1-[2-(4-Fluorophenyl)-2-adamantyl]-4-(1-piperidineacetyl)piperazine (15) had also notable antitumor
activity [139] (Figure 11).
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Finally, the following phenylalkylamines analogs with general type XI [141], XII [142] and
XIII [143] have been reported for their antiproliferative activity and due to the similarities of their
scaffold with compounds VIII and IX, it can be assumed that they act as σR ligands, although their
binding affinities have not been investigated yet (Figure 11).

6. Conclusions

The reports described in our current review induce a new category of drugs against cancer.
σRs are still poorly understood, but it has become increasingly apparent that these receptors have
a significant role in cancer pathophysiology. σ1R Antagonists, σ2R agonists and mixed σ1R/σ2R
ligands have antiproliferative and cytotoxic activity, even though their mechanism of action is under
investigation. The fact that many σR ligands are in preclinical and clinical phase trials is a testimony of
this improvement in cancer therapy.
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