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Abstract: A facile, green, and efficient method for the direct oxidative amination of benzoxazoles
using heterocyclic ionic liquid as catalyst has been developed. The reaction proceeded smoothly at
room temperature and gave the desirable 2-aminobenzoxazoles with good to excellent yields (up to
97%). The catalyst 1-butylpyridinium iodide can be easily recycled and reused with similar efficacies
for at least four cycles.
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1. Introduction

Amino-substituted azoles and their derivatives are ubiquitous in functional materials,
pharmaceuticals, and natural products [1–3]. Among them, the 2-aminobenzoxazoles have already
been described as potent 5-HT3-receptor antagonists [4,5], which are promising targets for the
treatment of Alzheimer’s disease and schizophrenia. Furthermore, abundant other drug targets
have been addressed by 2-aminobenzoxazoles, such as α7 nicotinic acetylcholine receptor (nAchR)
agonist, 5-HT6-receptor antagonist, and MK-4305 in clinical trials against insomnia [6,7]. Hence, the
development of effective methods to synthesize these compounds has attracted great attention. In this
regard, direct C–H amination reaction displaying an advantage in atom efficiency has been pioneered
by Cho (Scheme 1a), Monguchi, Wang, Kawano, Miyasaka, Xie and others in the past decade [8–20].
However, most of these methods could be realized only in the presence of copper, silver, manganese,
iron, cobalt. The toxicity and expense of transition metals might limit practical applications.

Recently, metal-free-catalyzed oxidative coupling reactions have undergone rapid advances
in order to solve drawbacks of transition metal catalysis [21–25]. Thus, the discovery of green
and sustainable oxidative C–H amination of benzoxazoles under metal-free conditions will be of
great value. Hypervalent iodine compounds have gained much attention in organic synthesis
as versatile and powerful oxidants [26–29]. For example, Chang and co-workers [30] employed
stoichiometric amounts of PhI(OAc)2, and Bhanage et al. [31]. used 2-iodoxybenzoic acid (IBX) to
get direct oxidative C–H bond amination of benzoxazoles. Moreover, much progress in the direct
oxidative amination of benzoxazoles has been achieved through the use of a combination of an
iodine source and oxidant [32–38]. For instance, a metal-free approach for the oxidative amination
of benzoxazoles using molecular iodine as a catalyst and tert-butyl hydroperoxide (TBHP) as an
oxidant was reported by Lamani and Prabhu [32]. At the same time, another report was presented
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by Nachtsheim’s group on the oxidative C–H amination of benzoxazoles under metal-free conditions
using tetrabutylammonium iodide (TBAI) as catalyst and aqueous solutions of H2O2 or TBHP as
co-oxidant at 80 ◦C (Scheme 1b) [33]. These catalytic systems effectively overcome some drawbacks of
using stoichiometric amounts of hypervalent iodine compounds. Nevertheless, these approaches still
suffer from minor drawbacks, such as high temperature, long reaction time, and low yields. Therefore,
designing a highly mild, efficient, green, and recyclable catalyst system for the oxidative C–H amination
of benzoxazoles under metal-free conditions at room temperature is desperately needed.

Ionic liquids (ILs) have attracted continuing interest from the majority of chemists. ILs were
usually used as green reaction media because of their unique chemical and physical properties,
such as high thermal stabilities, negligible vapor pressures, and nonflammability [39–44]. Recently,
ILs have been employed as solvents in transition-metal-catalyzed C–H activation reactions [45–49].
However, it is important to note that there are few examples of the C–H bond activation
reaction using classical heterocyclic ionic liquids as promoters or catalysts. We recently developed
the first oxidative cross-coupling reaction for C–C bond formation promoted by ionic liquid
1,3-dibutyl-1H-benzo[d][1,2,3]triazol-3-ium bromide [50]. Soon after, the first study using IL-catalyzed
C–H activation reaction for C–N bond formation has been disclosed [51]. Inspired by these works,
we herein report a mild, efficient, and metal-free strategy for C–H oxidative amination of benzoxazoles
by using heterocyclic ionic liquid 1-butylpyridinium iodide ([BPy]I) as catalyst, TBHP as oxidant,
and acetic acid as an additive at room temperature (Scheme 1c).
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when the amount of the [BPy]I was increased from 5 mol% to 15 mol% (Table 1, entries 1, 6), the 
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2. Results and Discussion

The investigation started with the reaction of benzoxazole (1a) and morpholine (2a) as model
substrates (Table 1). In the presence of 5 mol% [BPy]I, 1.5 equiv. of TBHP, and 3 equiv. of acetic acid, the
reaction of 1a and 2a was proceeded at room temperature for 7 h to give 2-morpholinobenzo[d]oxazole
(3a) in 94% yield (Table 1, entry 1). Encouraged by the result, further optimization of the reaction
conditions was carried out. Unfortunately, when other ionic liquids (e.g., 1-butylpyridinium chloride
([BPy]Cl) and 1-butylpyridinium bromide ([BPy]Br)) were in this reaction system or the system was
run in the absence of catalyst, the response almost did not give satisfactory results (Table 1, entries 2–4).
Considering that ionic liquids have the advantage of being reusable, the dosage of the [BPy]I was
studied in an effort to reduce the reaction time. Gratifyingly, when the amount of the [BPy]I was
increased from 5 mol% to 15 mol% (Table 1, entries 1, 6), the reaction time decreased from 7 h to 3.5 h.
However, when the dosage of the [BPy]I was increased to 20 mol% (Table 1, entry 7), the reaction time
did not reduce. Thus, 15 mol% of [BPy]I was an adequate choice of catalyst for the reaction to achieve
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high yields with less reaction time. Furthermore, four kinds of organic solvents were investigated,
and acetonitrile was found to be the optimal solvent (Table 1, entries 6, 8–10). In water and under
solvent-free condition, product 3a was obtained in lower yields of 57% and 51%, respectively (Table 1,
entries 11–12). Other oxidants, such as benzoyl peroxide (BPO), m-chloroperoxybenzoic acid (m-CPBA),
di-tert-butyl peroxide (DTBP), and H2O2 were used instead of TBHP (Table 1, entries 13–16), the effect
of reactions decreased dramatically and TBHP was proven to be the best oxidant.

Table 1. Optimizing the reaction conditions. a
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1 [BPy]I (5) TBHP CH3CN 7 94
2 [BPy]Cl (5) TBHP CH3CN 7 Trace
3 [BPy]Br (5) TBHP CH3CN 7 N.R. d

4 - TBHP CH3CN 7 N.R.
5 [BPy]I (10) TBHP CH3CN 5 91
6 [BPy]I (15) TBHP CH3CN 3.5 94
7 [BPy]I (20) TBHP CH3CN 3.5 94

8 c [BPy]I (15) TBHP CH2Cl2 3.5 88
9 [BPy]I (15) TBHP THF 3.5 85

10 [BPy]I (15) TBHP toluene 3.5 86
11 [BPy]I (15) TBHP H2O 3.5 57
12 [BPy]I (15) TBHP Neat 3.5 51
13 [BPy]I (15) BPO CH3CN 3.5 65
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a Reaction conditions: 1a (0.672 mmol), 2a (1.344 mmol), oxidant (1.008 mmol), acetic acid (2.016 mmol) in 2 mL
solvent at room temperature. b TBHP: tert-butyl hydroperoxide 70% in water, BPO: benzoyl peroxide, m-CPBA:
m-chloroperoxybenzoic acid, DTBP: di-tert-butyl peroxide, H2O2 30% in water, THF: tetrahydrofuran. c Isolated
yield. d Not reaction. The optimized reaction conditions were 15 mol% [BPy]I as catalyst, 1.5 equiv. TBHP as oxidant,
and 3 equiv. acetic acid as additive in 2 mL CH3CN at room temperature for 3.5 h.

Under optimized reaction conditions, benzoxazole (1a) and various cyclic or acyclic secondary
amines (2) were investigated to examine the scope of the process. The results are listed in Scheme 2.
Piperidine, thiomorpholine, 3-methylpiperidine, and 1-methylpiperazine reacted smoothly with
benzoxazole to form the corresponding amination products 3b, 3c, 3d, and 3e in good to excellent yields
(Scheme 2). The introduction of heteroatom and substituent on piperidine had no impact on the reaction
system. Subsequently, it was found that both electron-donating and electron-withdrawing groups on
the piperazine—such as methyl, phenyl, acetyl, ethoxycarbonyl, and tert-butoxycarbonyl—reacted
effectively with benzoxazole (1a) to provide the respective aminobenzoxazoles (Scheme 2, 3e: 90%,
3f: 97%, 3g: 91%, 3h: 82%, 3i: 95%). As is well known, 2-(N-alkylpiperazyl)benzoxazoles of this
type were already described as potent 5-HT3-receptor antagonists [2]. The coupling of benzoxazole
proceeded successfully with 1,2,3,4-tetrahydroisoquinoline to give the desired aminated product 3j in
93% yield (Scheme 2). In addition to cyclic amines, acyclic secondary amines such as diethylamine,
dibenzylamine, and diallylamine reacted well with benzoxazole to produce the desired products
3k–3m in good to excellent yields (Scheme 2). To our delight, oxidations or halogenations of the
methylene units, the aromatic ring, or the double bonds did not occur. It should be mentioned that
N,N-diallylbenzoxazol-2-amine (3m) was regarded as one of the useful organic synthetic intermediates.
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To further study the potential of our method, we turned our attention to the amination reaction
between various benzoxazoles and morpholine. The results are summarized in Scheme 3. Methyl-
and halogen-substituted benzoxazoles could be easily aminated to generate the desired products
4a–4d in up to 97% yield with perfect regioselectivity. To expand the potential of the present synthetic
methodology, a diversity of benzoxazoles including 5-methylbenzoxazole, 6-methylbenzoxazole, and
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To demonstrate the potential industrial utility of our protocol, the [BPy]I-catalyzed scale-up
reaction was performed. The direct oxidative amination of benzoxazole (1a) with morpholine was
easily carried out under the standard reaction conditions to generate the desired product 3a in 93%
isolated yield (Scheme 4).
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Ionic liquids have several advantages compared with other catalysts; for example, they
are recyclable and environmentally friendly. The coupling reaction of 5-methylbenzoxazole and
morpholine was chosen as a model system to study the reusability of the [BPy]I as catalyst under the
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Figure 1. Recycling reactions.

In order to elucidate the reaction mechanism, control experiments were carried out. When
the radical scavenger BHT (2,6-di-tert-butyl-4-methylphenol, 3 equiv.), ethene-1,1-diyldibenzene
(3 equiv.), or TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl, 3 equiv.) were added to the reaction
mixture under the optimal conditions, the yield of 3a was not decreased. Thus, the reaction may not
be a radical reaction. Subsequently, N-iodomorpholine hydroiodide was prepared. Then, the reaction
of benzoxazole (0.672 mmol, 1 equiv.) and N-iodomorpholine hydroiodide (0.672 mmol, 1 equiv.)
with acetic acid (2.016 mmol, 3 equiv.) as an additive in 2 mL CH3CN at room temperature for 3.5 h
afforded the desired product 3a in 25% yield (Table 2, entry 1). When the dosage of N-iodomorpholine
hydroiodide was increased from 1 equiv. to 2 equiv., the desired amination product was obtained in
53% yield (Table 2, entry 2). It is worth noting that the reaction of 1a and 2a underwent smoothly in
the presence of 15 mol% N-iodomorpholine hydroiodide, 1.5 equiv. TBHP, and 3 equiv. acetic acid to
give 2-morpholinobenzo[d]oxazole (3a) in 95% yield (Table 2, entry 3). All of the above results indicate
that the activation of the morpholine (2a) via in situ preparation of a highly reactive N-I bond from
[BPy]I and TBHP seems plausible.
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a Reaction conditions: 1a (0.672 mmol), acetic acid (2.016 mmol), CH3CN (2 mL), room temperature, 3.5 h; b

Isolated yield.

Based on the above results and existing literature [33], a plausible mechanism is proposed as
shown in Scheme 5. Initially, [BPy]I is oxidized by TBHP to form [BPy]+[I(OAc)2]− (A) in the presence
of acetic acid, and then releases acetylhypoiodite B. Subsequently, C is generated by combining
morpholine with highly potent I+ source B. Immediately following, the reaction of C and benzoxazole
affords D. Finally, the desired amination reaction product 3a can be obtained after the elimination of
hydrogen iodide.
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3. Experimental Section

A reaction vessel was charged with acetic acid (2.016 mmol) and TBHP (70% in water, 1.008
mmol) in acetonitrile (2 mL). After the addition of [BPy]I (0.1008 mmol), benzoxazole (0.672 mmol)
and secondary amines (1.344 mmol) were added. Then, the reaction mixture was stirred at room
temperature for 3.5 h. After the reaction finished, the mixture was extracted with dichloromethane
(5 × 10 mL), and the combined organic phases were dried over anhydrous Na2SO4. The solvent was
evaporated under vacuum, and the crude residue was purified by column chromatography on silica
gel. Aqueous phase was dried in a vacuum evaporator to recover the ionic liquid and directly reused
in subsequent runs.

4. Conclusions

In summary, we have found an IL-catalyzed direct oxidative amination of benzoxazoles under
metal-free conditions at room temperature. This mild catalytic system is suitable for the oxidative
amination reactions between a wide range of secondary amines and benzoxazoles. In addition,
the inexpensive and environmentally friendly ionic liquid [BPy]I can be easily recycled and reused for
four runs without any obvious loss of catalytic activity. ILs-catalyzed C–H bond activation is ongoing
in our group.
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