## Supplementary Material: Anti-Hyperglycemic Activity of Major Compounds from *Calea ternifolia*

Sonia Escandón-Rivera, Araceli Pérez-Vásquez, Andrés Navarrete, Mariana Hernández, Edelmira Linares, Robert Bye and Rachel Mata

| Identification Code 172XYZ13 (Solved by: R.A. Toscano) |                                                |  |
|--------------------------------------------------------|------------------------------------------------|--|
| Empirical formula                                      | C21 H26 O8                                     |  |
| Formula weight                                         | 406.42                                         |  |
| Temperature                                            | 298(2) K                                       |  |
| Wavelength                                             | 0.71073 Å                                      |  |
| Crystal system                                         | Orthorhombic                                   |  |
| Space group                                            | P 21 21 21                                     |  |
| Unit cell dimensions                                   | a = 10.1880(3) Å a = 90°                       |  |
|                                                        | b = 12.3924(4) Å b = 90°                       |  |
|                                                        | c = 17.8199(6) Å g = 90°                       |  |
| Volume                                                 | 2249.83(12) Å3                                 |  |
| Z                                                      | 4                                              |  |
| Density (calculated)                                   | 1.200 Mg/m <sup>3</sup>                        |  |
| Absorption coefficient                                 | $0.092 \text{ mm}^{-1}$                        |  |
| F (000)                                                | 864                                            |  |
| Crystal size/colour/shape                              | 0.316 × 0.216 × 0.212 mm/colourless/block      |  |
| Theta Rang                                             | ge for Data Collection 2.00 to 28.28°          |  |
| Index ranges                                           | –13 £ h £ 12, –16 £ k £ 16, –22 £ l £ 23       |  |
| Reflections collected                                  | 22646                                          |  |
| Independent reflections                                | 5585 [R (int) = 0.0524]                        |  |
| Completeness to theta                                  | 28.28° 100.0%                                  |  |
| Measurement device                                     | Bruker Smart Apex CCD diffractometer 01-670-01 |  |
| Absorption correction                                  | Semi-empirical from equivalents                |  |
| Max. and min. transmission                             | 0.7457 and 0.6676                              |  |
| Refinement method                                      | Full-matrix least-squares on F2                |  |
| Data/restraints/parameters                             | 5585/1045/535                                  |  |
| Goodness-of-fit on F2                                  | 1.035                                          |  |
| Final R indices                                        | [I >2s (I )] R 1 = 0.0670, wR 2 = 0.1847       |  |
| R indices (all data)                                   | R 1 = 0.1336, wR 2 = 0.2349                    |  |
| Abs                                                    | solute Structure Parameter?                    |  |
| Largest diff. peak and hole                            | 0.236 and –0.284 e.Å-3                         |  |

Table S1. Crystal data and structure refinement for Calein C.

|          | x                     | у                   | Z                  | U(eq)                 |
|----------|-----------------------|---------------------|--------------------|-----------------------|
| O(1)     | 5732(5)               | 5938(4)             | 5448(3)            | 83(1)                 |
| O(2)     | 3793(5)               | 2461(4)             | 7094(3)            | 75(1)                 |
| O(3)     | 1842(5)               | 4142(5)             | 6939(3)            | 61(1)                 |
| O(4)     | 1218(5)               | 5735(4)             | 6000(4)            | 92(2)                 |
| O(5)     | 3640(8)               | 6914(6)             | 5986(4)            | 90(2)                 |
| O(6)     | 3814(6)               | 2444(5)             | 8308(3)            | 107(2)                |
| O(7)     | 1310(8)               | 5132(6)             | 7968(3)            | 83(2)                 |
| O(8)     | 164(9)                | 4379(7)             | 5346(6)            | 154(4)                |
| C(1)     | 4694(7)               | 5518(5)             | 5268(3)            | 67(1)                 |
| C(2)     | 4627(9)               | 4513(5)             | 4802(4)            | 79(1)                 |
| C(3)     | 5340(8)               | 3622(6)             | 4982(4)            | 80(2)                 |
| C(4)     | 6233(6)               | 3477(5)             | 5630(4)            | 74(1)                 |
| C(5)     | 5587(6)               | 2801(5)             | 6235(4)            | 75(1)                 |
| C(6)     | 4221(6)               | 3178(5)             | 3178(5)            | 63(1)                 |
| C(7)     | 4167(5)               | 4328(4)             | 6813(3)            | 56(1)                 |
| C(8)     | 2854(5)               | 4901(5)             | 6703(3)            | 56(1)                 |
| C(9)     | 2475(5)               | 5229(5)             | 5912(3)            | 65(1)                 |
| C(10)    | 3408(7)               | 6037(5)             | 5502(3)            | 71(1)                 |
| C(11)    | 4395(6)               | 4068(5)             | 7632(3)            | 69(1)                 |
| C(12)    | 3917(6)               | 2949(5)             | 7769(3)            | 80(2)                 |
| C(13)    | 4831(9)               | 4684(7)             | 8164(4)            | 97(3)                 |
| C(14)    | 2735(9)               | 6464(6)             | 4778(4)            | 105(2)                |
| C(15)    | 7531(7)               | 2927(7)             | 5375(6)            | 110(2)                |
| C(16)    | 1125(6)               | 4381(6)             | 7564(3)            | 82(2)                 |
| C(17)    | 59(9)                 | 3563(8)             | 7670(6)            | 109(2)                |
| C(18)    | -802(11)              | 3687(13)            | 8268(8)            | 159(5)                |
| C(19)    | -40(15)               | 2681(10)            | 7176(8)            | 157(4)                |
| C(20)    | 123(7)                | 5156(7)             | 5742(4)            | 128(2)                |
| C(21)    | -1144(8)              | 5669(10)            | 6049(8)            | 170(4)                |
| O(1B)    | 5165(11)              | 6319(10)            | 5229(6)            | 95(3)                 |
| O(2B)    | 4037(11)              | 2453(8)             | 2453(8)            | 78(2)                 |
| O(3B)    | 2038(12)              | 4097(10)            | 7091(7)            | 72(2)                 |
| O(4B)    | 959(8)                | 5523(9)             | 6169(6)            | 88(2)                 |
| O(5B)    | 3389(14)              | 6966(11)            | 6210(8)            | 89(4)                 |
| O(6B)    | 4487(16)              | 2159(9)             | 7950(7)            | 123(4)                |
| O(7B)    | 1037(18)              | 5392(12)            | 7769(9)            | 103(4)                |
| O(8B)    | 503(13)               | 4576(13)            | 5070(8)            | 102(3)                |
| C(1B)    | 4099(12)              | 5881(9)             | 5165(6)            | 74(2)                 |
| C(2B)    | 3873(13)              | 4932(9)             | 4932(9)            | $\frac{71(2)}{81(2)}$ |
| C(3B)    | 4662(14)              | 4044(10)            | 4696(7)            | 85(2)                 |
| C(4B)    | 5810(11)              | 3837(12)            | 5172(7)            | 87(2)                 |
| C(5B)    | 5481(12)              | 3058(10)            | 5172(7)<br>5804(7) | 87(2)                 |
| C(6B)    | 4235(11)              | 3313(9)             | 6237(5)            | 69(2)                 |
| C(7B)    | 4261(9)               | 4370(7)             | 6697(5)            | 60(2)                 |
| C(8B)    | 2002(0)               | 4909(9)             | 6756(6)            | 58(2)                 |
| C(0B)    | 2302(3)               | 4909(9)<br>5262(9)  | 6035(6)            | 50(Z)<br>60(2)        |
| C(10R)   | 2001(0)               | 6265(9)             | 5644(6)            | (∠)<br>72(2)          |
| C(10D)   | 2707 (11)<br>4602(12) | 0200(0)<br>3061(9)  | 5044(0)<br>7447(6) | 74(2)<br>74(2)        |
| C(11D)   | 4073(12)              | 2705(9)             | 7447(0)<br>7407(6) | 20(2)<br>80(2)        |
| C(12D)   | 4040(12)              | 2173(ð)<br>1172(11) | 7020(0)            | 0U(2)                 |
| C(13B)   | 5282(16)              | 44/3(11)            | 7989(8)<br>E120(0) | 84(4)                 |
| C(14B)   | 1952(15)              | 003/(12)            | 5139(9)            | 106(4)                |
| C(15B)   | 6988(13)<br>1052(11)  | 3391(15)            | 4/19(9)            | 124(4)                |
| L ( (6K) | 1052(11)              | 4497(17)            | (5/9(6)            | 86(2)                 |

**Table S2.** Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for calein C (5). U (eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| C(18B) | -1073(17) | 4020(20) | 8109(13) | 121(5) |
|--------|-----------|----------|----------|--------|
| C(19B) | 90(20)    | 2633(16) | 7393(14) | 128(5) |
| C(20B) | 176(10)   | 5231(10) | 5514(7)  | 106(3) |
| C(21B) | -1066(13) | 5893(15) | 5520(12) | 126(5) |

| O(1)-C(1)         | 1.223(7)  | O(1B) -C(1B)         | 1.220(10) |
|-------------------|-----------|----------------------|-----------|
| O(2)-C(12)        | 1.352(7)  | O(2B) -C(12B)        | 1.362(9)  |
| O(2) -C(6)        | 1.480(6)  | O(2B) -C(6B)         | 1.469(9)  |
| O(3) -C(16)       | 1.364(6)  | O(3B) -C(16B)        | 1.363(8)  |
| O(3) -C(8)        | 1.458(5)  | O(3B) -C(8B)         | 1.464(8)  |
| O(4) -C(20)       | 1.404(8)  | O(4B) -C(9B)         | 1.425(9)  |
| O(4) -C(9)        | 1.435(6)  | O(4B) -C(20B)        | 1.460(10) |
| O(5) -C(10)       | 1.406(7)  | O(5B) -C(10B)        | 1.402(9)  |
| O(6) -C(12)       | 1.152(6)  | O(6B) -C(12B)        | 1.137(8)  |
| O(7) -C(16)       | 1.191(6)  | O(7B) -C(16B)        | 1.194(8)  |
| O(8) -C(20)       | 1.195(8)  | O(8B) -C(20B)        | 1.182(10) |
| C(1) -C(2)        | 1.498(8)  | C(1B) -C(2B)         | 1.495(10) |
| C(1) -C(10)       | 1.518(9)  | C(1B) -C(10B)        | 1.519(11) |
| C(2) -C(3)        | 1.360(12) | C(2B) -C(3B)         | 1.364(14) |
| C(3) -C(4)        | 1.481(11) | C(3B) -C(4B)         | 1.467(14) |
| C(4) -C(5)        | 1.516(9)  | C(4B) -C(5B)         | 1.520(12) |
| C(4) - C(15)      | 1.556(8)  | C(4B) -C(15B)        | 1.548(11) |
| C(5) -C(6)        | 1.530(7)  | C(5B) -C(6B)         | 1.519(10) |
| C(6) -C(7)        | 1.547(6)  | C(6B) -C(7B)         | 1.546(8)  |
| C(7) -C(11)       | 1.512(6)  | C(7B) -C(11B)        | 1.496(8)  |
| C(7) -C(8)        | 1.527(5)  | C(7B) -C(8B)         | 1.541(8)  |
| C(8) -C(9)        | 1.517(6)  | C(8B) -C(9B)         | 1.488(8)  |
| C(9) -C(10)       | 1.562(7)  | C(9B) -C(10B)        | 1.573(9)  |
| C(10) -C(14)      | 1.555(8)  | C(10B) -C(14B)       | 1.536(11) |
| C(11) -C(13)      | 1.296(7)  | C(11B) -C(13B)       | 1.302(9)  |
| C(11) -C(12)      | 1.489(8)  | C(11B) -C(12B)       | 1.490(9)  |
| C(16) -C(17)      | 1.498(8)  | C(16B) -C(17B)       | 1.488(9)  |
| C(17) -C(18)      | 1.389(9)  | C(17B) -C(19B)       | 1.401(11) |
| C(17) -C(19)      | 1.407(9)  | C(17B) -C(18B)       | 1.404(11) |
| C(20) -C(21)      | 1.539(10) | C(20B) -C(21B)       | 1.508(11) |
| C(12) -O(2)- C(6) | 111.4(4)  | C(10) -O(5)- H(5)    | 127(5)    |
| C(16) -O(3) -C(8) | 118.3(4)  | O(1) -C(1) -C(2)     | 122.6(7)  |
| C(20) -O(4) -C(9) | 116.7(5)  | O(1) -C(1) -C(10)    | 119.6(5)  |
| C(2) -C(1) -C(10) | 117.8(6)  | C(19) -C(17) -C(16)  | 119.9(6)  |
| C(3) -C(2)- C(1)  | 121.3(7)  | O(8) -C(20) -O(4)    | 125.3(7)  |
| C(2) –C(3) -C(4)  | 127.6(6)  | O(8) -C(20) -C(21)   | 124.9(7)  |
| C(3) -C(4) -C(5)  | 110.8(5)  | O(4) -C(20) -C(21)   | 109.8(6)  |
| C(3) -C(4) -C(15) | 110.3(6)  | C(12B) -O(2B) -C(6B) | 111.3(6)  |
| C(5) -C(4) -C(15) | 109.5(6)  | C(16B) -O(3B) -C(8B) | 115.4(8)  |
| C(4) -C(5) -C(6)  | 115.2(5)  | C(9B) -O(4B) -C(20B) | 109.5(7)  |
| O(2) -C(6) -C(5)  | 107.1(5)  | C(10B) -O(5B) -H(5)  | 114(4)    |
| O(2) -C(6) -C(7)  | 104.8(4)  | O(1B) -C(1B) -C(2B)  | 122.9(9)  |
| C(5) -C(6) -C(7)  | 115.0(4)  | O(1B) -C(1B) -C(10B) | 119.4(8)  |
| C(11) -C(7) -C(8) | 110.9(4)  | C(2B) -C(1B) -C(10B) | 117.6(8)  |
| C(11) -C(7) -C(6) | 99.9(4)   | C(3B) -C(2B) -C(1B)  | 121.2(10) |
| C(8) -C(7) -C(6)  | 114.2(4)  | C(2B) -C(3B) -C(4B)  | 129.5(10) |
| O(3) -C(8) -C(9)  | 105.1(4)  | C(3B) -C(4B) -C(5B)  | 111.3(9)  |
| O(3) -C(8) -C(7)  | 106.4(3)  | C(3B) -C(4B) -C(15B) | 112.3(10) |
| C(9) -C(8) -C(7)  | 117.8(4)  | C(5B) -C(4B) -C(15B) | 109.3(9)  |
| O(4) -C(9) -C(8)  | 104.0(4)  | C(6B) -C(5B) -C(4B)  | 115.4(8)  |
| O(4) -C(9) -C(10) | 108.3(4)  | O(2B) -C(6B) -C(5B)  | 107.9(8)  |

Table S3. Bond lengths [Å] and angles [°] for calein C (5).

| S4 | of | S10 |  |
|----|----|-----|--|
| 54 | or | 510 |  |

| C(8) -C(9) -C(10)     | 116.8(4) | O(2B) -C(6B) -C(7B)   | 105.1(5)  |
|-----------------------|----------|-----------------------|-----------|
| O(5) -C(10) -C(1)     | 110.5(5) | C(5B) -C(6B) -C(7B)   | 115.5(7)  |
| O(5) -C(10) -C(14)    | 108.7(5) | C(11B) -C(7B) -C(8B)  | 110.5(7)  |
| C(1) -C(10) -C(14)    | 107.2(6) | C(11B) -C(7B) -C(6B)  | 101.0(5)  |
| O(5) -C(10) -C(9)     | 108.2(5) | C(8B) -C(7B) -C(6B)   | 112.8(6)  |
| C(1) -C(10) -C(9)     | 112.4(5) | O(3B) -C(8B) -C(9B)   | 107.9(7)  |
| C(14) -C(10) -C(9)    | 109.7(5) | O(3B) -C(8B) -C(7B)   | 105.7(6)  |
| C(13) -C(11) -C(12)   | 122.7(5) | C(9B) -C(8B) -C(7B)   | 116.0(7)  |
| C(13) -C(11) -C(7)    | 129.3(5) | O(4B) -C(9B) -C(8B)   | 108.5(7)  |
| C(12) -C(11) -C(7)    | 107.9(4) | O(4B) -C(9B) -C(10B)  | 107.6(7)  |
| O(6) -C(12) -O(2)     | 119.4(6) | C(8B) -C(9B) -C(10B)  | 116.1(7)  |
| O(6) -C(12) -C(11)    | 132.3(6) | O(5B) -C(10B) -C(1B)  | 110.9(7)  |
| O(2) -C(12) -C(11)    | 107.5(4) | O(5B) -C(10B) -C(14B) | 110.1(8)  |
| O(7) -C(16) -O(3)     | 125.4(5) | C(1B) -C(10B) -C(14B) | 109.0(8)  |
| O(7) -C(16) -C(17)    | 124.5(5) | O(5B) -C(10B) -C(9B)  | 107.7(7)  |
| O(3) -C(16) -C(17)    | 110.1(5) | C(1B) -C(10B) -C(9B)  | 109.1(7)  |
| C(18) -C(17) -C(19)   | 121.4(7) | C(14B) -C(10B) -C(9B) | 109.9(7)  |
| C(18) -C(17) -C(16)   | 118.7(7) | C(13B) -C(11B)-C(12B) | 122.5(8)  |
| C(13B) -C(11B) -C(7B) | 129.3(8) | O(3B) -C(16B) -C(17B) | 112.9(7)  |
| C(12B) -C(11B) -C(7B) | 108.2(5) | C(19B)- C(17B)-C(18B) | 121.8(9)  |
| O(6B) -C(12B) -O(2B)  | 117.8(9) | C(19B) -C(17B)-C(16B) | 121.1(8)  |
| O(6B) -C(12B) -C(11B) | 133.3(9) | C(18B) -C(17B)-C(16B) | 117.1(8)  |
| O(2B) -C(12B) -C(11B) | 107.6(6) | O(8B) -C(20B)- O(4B)  | 123.5(8)  |
| O(7B) -C(16B) -O(3B)  | 123.4(8) | O(8B) -C(20B) -C(21B) | 128.0(10) |
| O(7B) -C(16B) -C(17B) | 123.8(8) | O(4B) -C(20B)-C(21B)  | 108.5(8)  |

**Table S4.** Hydrogen coordinates (×10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for calein C (5).

|        | X        | У        | Z        | (eq) |
|--------|----------|----------|----------|------|
| H(5)   | 4320(70) | 7040(50) | 6240(30) | 135  |
| H(2)   | 4088     | 4499     | 4381     | 95   |
| H(3)   | 5258     | 3035     | 4660     | 96   |
| H(4)   | 6442     | 4188     | 5839     | 89   |
| H(5A)  | 6154     | 2796     | 6672     | 90   |
| H(5B)  | 5521     | 2064     | 6056     | 90   |
| H(6)   | 3609     | 3122     | 6054     | 76   |
| H(7)   | 4887     | 4770     | 6616     | 67   |
| H(8)   | 2823     | 5538     | 7028     | 68   |
| H(9)   | 2375     | 4579     | 5603     | 78   |
| H(13A) | 4855     | 4432     | 8655     | 117  |
| H(13B) | 5120     | 5378     | 8055     | 117  |
| H(14A) | 3373     | 6822     | 4470     | 157  |
| H(14B) | 2053     | 6963     | 4911     | 157  |
| H(14C) | 2363     | 5869     | 4505     | 157  |
| H(15A) | 8088     | 2816     | 5802     | 165  |
| H(15B) | 7971     | 3380     | 5018     | 165  |
| H(15C) | 7335     | 2244     | 5147     | 165  |
| H(18A) | -1461    | 3181     | 8348     | 8348 |
| H(18B) | -720     | 4277     | 8587     | 191  |
| H(19A) | -754     | 2226     | 7329     | 235  |
| H(19B) | 764      | 2276     | 7186     | 235  |
| H(19C) | -196     | 2939     | 6676     | 235  |
| H(21A) | -1776    | 5731     | 5652     | 254  |
| H(21B) | -951     | 6373     | 6245     | 254  |
| H(21C) | -1495    | 5224     | 6441     | 254  |
| H(2B)  | 3181     | 4948     | 4323     | 98   |
| H(3B)  | 4439     | 3488     | 4369     | 102  |
| H(4B)  | 6078     | 4523     | 5398     | 105  |
| H(5C)  | 5401     | 2339     | 5594     | 104  |
| H(5D)  | 6211     | 3048     | 6154     | 104  |
| H(6B)  | 3488     | 3327     | 5890     | 83   |
| H(7B)  | 4908     | 4875     | 6491     | 72   |
| H(8B)  | 2962     | 5530     | 7095     | 70   |
| H(9B)  | 2331     | 4654     | 5684     | 82   |

Molecules 2017, 22, 289; doi:10.3390/molecules22020289

| H(13C) | 5503  | 4110 | 8428 | 101 |
|--------|-------|------|------|-----|
| H(13D) | 5481  | 5202 | 7938 | 101 |
| H(14D) | 2371  | 7424 | 4882 | 159 |
| H(14E) | 1247  | 7111 | 5441 | 159 |
| H(14F) | 1611  | 6334 | 4779 | 159 |
| H(15D) | 7428  | 3975 | 4470 | 186 |
| H(15E) | 6677  | 2884 | 4352 | 186 |
| H(15F) | 7588  | 3037 | 5053 | 186 |
| H(18C) | -1747 | 3545 | 8219 | 145 |
| H(18D) | -1109 | 4729 | 8288 | 145 |
| H(19D) | -672  | 2230 | 7541 | 192 |
| H(19E) | 863   | 2292 | 7591 | 192 |
| H(19F) | 143   | 2655 | 6855 | 192 |
| H(21D) | -1673 | 5591 | 5874 | 189 |
| H(21E) | -1451 | 5888 | 5028 | 189 |
| H(21F) | -863  | 6622 | 5661 | 189 |
|        |       |      |      |     |

**Table S5.** Hydrogen bonds for calein C (5).

| D-HA            | d(D-H)  | d(HA)   | d(DA)    | <(DHA) |
|-----------------|---------|---------|----------|--------|
| O(5)-H(5)O(6)#1 | 0.84(6) | 2.12(7) | 2.956(9) | 170(6) |

Symmetry transformations used to generate equivalent atoms: #1 - x + 1,  $y + \frac{1}{2} - z + \frac{3}{2}$ .

**Table S6.** Effect of calein A (**4**) on blood glucose levels in normoglycemic and NA/STZ mice during an OSTT <sup>a</sup>.

| Blood Glucose Concentration (mg/dL) |              |                |                |                |                |              |  |
|-------------------------------------|--------------|----------------|----------------|----------------|----------------|--------------|--|
| Test Samples<br>(mg/Kg of BW)       | 0 h          | 0.5 h          | 1 h            | 1.5 h          | 2 h            | 3 h          |  |
|                                     |              | No             | ormal Mice     |                |                |              |  |
| Vehicle                             | $121 \pm 2$  | $200 \pm 7$    | $137 \pm 8$    | $140\pm8$      | $124 \pm 6$    | $106 \pm 9$  |  |
| Acarbose (5)                        | $124 \pm 10$ | $148 \pm 5 *$  | $156 \pm 4$    | $136 \pm 10$   | $119\pm5$      | $120 \pm 9$  |  |
| 1 (3.16)                            | $122 \pm 5$  | $152 \pm 5 *$  | $153 \pm 7$    | $154\pm8$      | $160 \pm 7$    | $127 \pm 6$  |  |
| 2 (7)                               | $123 \pm 4$  | $144 \pm 6 *$  | $163 \pm 8$    | $164\pm 6$     | $127 \pm 5$    | $117 \pm 3$  |  |
| 3 (10)                              | $120 \pm 12$ | $133 \pm 17$ * | $130 \pm 22$   | $130\pm14$     | $134 \pm 15$   | $113 \pm 11$ |  |
|                                     |              | NA             | /STZ Mice      |                |                |              |  |
| Vehicle                             | $192 \pm 6$  | $371 \pm 10$   | $312 \pm 11$   | $287 \pm 12$   | $258 \pm 12$   | $213 \pm 11$ |  |
| Acarbose (5)                        | $197\pm10$   | $225 \pm 11$ * | 221 ± 13 *     | $210 \pm 14$ * | $205 \pm 12$ * | $187\pm14$   |  |
| 1 (3.16)                            | $215 \pm 15$ | $250 \pm 19$ * | 223 ± 23 *     | 220 ± 21 *     | $223 \pm 29$   | $188\pm18$   |  |
| 2 (7)                               | $189 \pm 21$ | $189 \pm 13$ * | $187 \pm 13$ * | $197 \pm 18$ * | $202 \pm 23$   | $178\pm12$   |  |
| 3 (10)                              | $202 \pm 22$ | 262 ± 25 *     | $234 \pm 26$ * | 231 ± 24 *     | $229\pm22$     | $217\pm18$   |  |

<sup>a</sup> Each value is the mean  $\pm$  SEM for six mice in each group. \* p < 0.05 significantly different ANOVA followed by Dunnett's t test for comparison with respect to control group.

**Table S7.** Effect of calein C (5) on blood glucose levels in normoglycemic and NA/STZ mice during an OSTT <sup>a</sup>.

| Blood Glucose Concentration (mg/dL) |              |                |              |                |             |              |  |
|-------------------------------------|--------------|----------------|--------------|----------------|-------------|--------------|--|
| Test Samples<br>(mg/Kg of BW)       | 0 h          | 0.5 h          | 1 h          | 1.5 h          | 2 h         | 3 h          |  |
| Normal Mice                         |              |                |              |                |             |              |  |
| Vehicle                             | $121 \pm 2$  | $200 \pm 7$    | $137 \pm 8$  | $140\pm8$      | $124\pm 6$  | $106 \pm 9$  |  |
| Acarbose (5)                        | $124\pm8$    | $148 \pm 5 *$  | $156 \pm 4$  | $136\pm10$     | $119\pm5$   | $120 \pm 9$  |  |
| 1 (3.16)                            | $129 \pm 2$  | $169\pm4$ *    | $148\pm7$    | $146 \pm 7$    | $133 \pm 7$ | $125 \pm 4$  |  |
| 2 (7)                               | $125 \pm 5$  | $171 \pm 8 *$  | $160 \pm 3$  | $158\pm4$      | $144\pm5$   | $129 \pm 5$  |  |
| 3 (10)                              | $118\pm9$    | $149\pm10$ *   | $157 \pm 7$  | $139\pm9$      | $124\pm5$   | $120 \pm 4$  |  |
| NA/STZ Mice                         |              |                |              |                |             |              |  |
| Vehicle                             | $218\pm24$   | $355 \pm 14$   | $292\pm15$   | $274\pm13$     | $250\pm10$  | $215\pm12$   |  |
| Acarbose (5)                        | $197\pm10$   | $225 \pm 11$ * | 221 ± 13 *   | $210 \pm 14$ * | $205\pm12$  | $187\pm14$   |  |
| 1 (3.16)                            | $195 \pm 5$  | $289 \pm 16$ * | $238\pm18$ * | $223 \pm 10$ * | $223\pm15$  | $186\pm12$   |  |
| 2 (7)                               | $229 \pm 18$ | 246 ± 16 *     | 211 ± 17 *   | 187 ± 8 *      | 193 ± 13 *  | $192 \pm 10$ |  |

| 3 (10) 1 | $199 \pm 12$ | 276 ± 20 * | $249\pm14$ | $237\pm12$ | $251\pm24$ | $243\pm20$ |
|----------|--------------|------------|------------|------------|------------|------------|
|----------|--------------|------------|------------|------------|------------|------------|

<sup>a</sup> Each value is the mean  $\pm$  SEM for six mice in each group. \* p < 0.05 significantly different ANOVA followed by Dunnett's t test for comparison with respect to control group.

**Table S8.** Effect of chromene **1** on blood glucose levels in normoglycemic and NA/STZ mice during an OSTT <sup>a</sup>.

|                               | Blood Glucose Concentration (mg/dL) |                |                |                |                |              |  |
|-------------------------------|-------------------------------------|----------------|----------------|----------------|----------------|--------------|--|
| Test Samples<br>(mg/Kg of BW) | 0 h                                 | 0.5 h          | 1 h            | 1.5 h          | 2 h            | 3 h          |  |
| Normal Mice                   |                                     |                |                |                |                |              |  |
| Vehicle                       | $121 \pm 2$                         | $200\pm7$      | $137 \pm 8$    | $140\pm8$      | $124\pm 6$     | $106 \pm 9$  |  |
| Acarbose (5)                  | $124 \pm 8$                         | $148 \pm 5 *$  | $156 \pm 4$    | $136 \pm 10$   | $119\pm5$      | $120 \pm 9$  |  |
| 1 (5.6)                       | $113 \pm 1$                         | $165 \pm 10$ * | $120 \pm 7$    | $115 \pm 5$    | $133 \pm 5$    | $99 \pm 5$   |  |
| 2 (10)                        | $125 \pm 2$                         | 163 ± 9 *      | $123 \pm 5$    | $120 \pm 9$    | $125\pm8$      | $117 \pm 9$  |  |
| 3 (31.6)                      | $123 \pm 3$                         | 176 ± 6 *      | $135 \pm 7$    | $131 \pm 7$    | $119\pm7$      | $112 \pm 7$  |  |
| NA/STZ Mice                   |                                     |                |                |                |                |              |  |
| Vehicle                       | $192 \pm 6$                         | $371 \pm 10$   | $312 \pm 11$   | $287\pm12$     | $258\pm12$     | $213 \pm 11$ |  |
| Acarbose (5)                  | $197\pm10$                          | 225 ± 11 *     | 221 ± 13 *     | $210 \pm 14$ * | $205 \pm 12$ * | $187\pm14$   |  |
| 1 (5.6)                       | $199\pm18$                          | 290 ± 13 *     | $248 \pm 11$ * | $247\pm9$      | $246\pm9$      | $225\pm11$   |  |
| 2 (10)                        | $190\pm18$                          | $259 \pm 18$ * | $247 \pm 14$ * | $245\pm16$     | $256\pm18$     | $226\pm12$   |  |
| 3 (31.6)                      | $174\pm10$                          | $240 \pm 16 *$ | 241 ± 12 *     | $245\pm13$     | $248\pm18$     | $215\pm16$   |  |

<sup>a</sup> Each value is the mean  $\pm$  SEM for six mice in each group. \* *p* < 0.05 significantly different ANOVA followed by Dunnett's t test for comparison with respect to control group.

| Table S9. | . Effect of essential | oil of C. ternifolia | on blood glucos | e levels in normog | glycemic and NA/ST2 | Ζ |
|-----------|-----------------------|----------------------|-----------------|--------------------|---------------------|---|
| mice duri | ing an OSTT ª.        |                      |                 |                    |                     |   |

|                               | Blood Glucose Concentration (mg/dL) |                |                |              |                |                |  |
|-------------------------------|-------------------------------------|----------------|----------------|--------------|----------------|----------------|--|
| Test Samples<br>(mg/Kg of BW) | 0 h                                 | 0.5 h          | 1 h            | 1.5 h        | 2 h            | 3 h            |  |
| Normal Mice                   |                                     |                |                |              |                |                |  |
| Vehicle                       | $127 \pm 6$                         | $200 \pm 7$    | $146 \pm 9$    | $150 \pm 11$ | $140\pm11$     | $118\pm10$     |  |
| Acarbose (5)                  | $141\pm8$                           | $169 \pm 7 *$  | $149\pm7$      | $153 \pm 5$  | $142 \pm 5$    | $118\pm 6$     |  |
| 1 (31.6)                      | $137 \pm 5$                         | $154 \pm 6 *$  | $160 \pm 3$    | $145 \pm 5$  | $130 \pm 6$    | $118\pm5$      |  |
| 2 (100)                       | $137 \pm 5$                         | $159 \pm 10$ * | $151\pm8$      | $136 \pm 9$  | $137 \pm 10$   | $115 \pm 7$    |  |
| 3 (316)                       | $141\pm7$                           | 153 ± 7 *      | $162 \pm 7$    | $147\pm5$    | $133 \pm 5$    | $115 \pm 6$    |  |
| NA/STZ Mice                   |                                     |                |                |              |                |                |  |
| Vehicle                       | $244\pm19$                          | $428\pm14$     | $346 \pm 25$   | $301 \pm 28$ | $269 \pm 27$   | $268 \pm 28$   |  |
| Acarbose (5)                  | $238\pm38$                          | $256 \pm 30 *$ | 229 ± 21 *     | 214 ± 23 *   | $174 \pm 27$ * | $153 \pm 20$ * |  |
| 1 (31.6)                      | $209\pm18$                          | 320 ± 32 *     | 251 ± 33 *     | $224 \pm 33$ | 179 ± 25 *     | 173 ± 22 *     |  |
| 2 (100)                       | $212 \pm 30$                        | 299 ± 27 *     | $244 \pm 30$ * | 216 ± 25 *   | $186 \pm 22$ * | $178 \pm 19$ * |  |
| 3 (316)                       | $221\pm30$                          | $314 \pm 24$ * | 253 ± 31 *     | $241\pm28$   | $190 \pm 25 *$ | $172 \pm 17$ * |  |

<sup>a</sup> Each value is the mean  $\pm$  SEM for six mice in each group. \* *p* < 0.05 significantly different ANOVA followed by Dunnett's t test for comparison with respect to control group.



**Figure S1.** Effect of (a) calein A (4); (b) calein C (5) (c) chromene 1 and (d) Essential oil in normoglycemic mice, after a normal sucrose load (3 g/kg). \* p < 0.05 significantly different ANOVA followed by Dunnett's *t* test for comparison with respect to vehicle.



**Figure S2.** Total ion current chromatogram of the essential oil from *C. ternifolia*. For chromatographic (GC-MS) conditions, see the Experimental Section.



**Figure S3.** HPLC-DAD chromatogram of the chromene-rich fraction (CRF) from *C. ternifolia* aqueous extract; detection wavelength 265 nm. For chromatographic conditions, see the Experimental Section.



**Figure S4.** Hypoglycemic action of A) calein A (**4**), B) calein C (**5**) and C) chromene **1** in normoglycemic mice. AUC: area under the curve, Gly: glibenclamide. Each bar represents the mean  $\pm$  SEM for 6 mice in each group. \* *p* < 0.05, significantly different ANOVA followed by Dunnett *post hoc* test for comparison with respect to vehicle control.



**Figure S5.** Hypoglycemic action of A) calein A (4), B) calein C (5) and C) chromene **1** in NA-STZ-treated mice. AUC: area under the curve  $[(mg/dL) \times min]$ , Gly: glybenclamide. Each bar represents the mean ± SEM for 6 mice in each group. \*p < 0.05, significantly different ANOVA followed by Dunnett *post hoc* test for comparison with respect to vehicle control.