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Abstract: Nanoparticle/metal–organic frameworks (MOF) based composites have recently attracted
significant attention as a new class of catalysts. Such composites possess the unique features of MOFs
(including clearly defined crystal structure, high surface area, single site catalyst, special confined
nanopore, tunable, and uniform pore structure), but avoid some intrinsic weaknesses (like limited
electrical conductivity and lack in the “conventional” catalytically active sites). This review
summarizes the developed strategies for the fabrication of nanoparticle/MOF composites for catalyst
uses, including the strategy using MOFs as host materials to hold and stabilize the guest nanoparticles,
the strategy with subsequent MOF growth/assembly around pre-synthesized nanoparticles and
the strategy mixing the precursors of NPs and MOFs together, followed by self-assembly process
or post-treatment or post-modification. The applications of nanoparticle/MOF composites for
CO oxidation, CO2 conversion, hydrogen production, organic transformations, and degradation
of pollutants have been discussed. Superior catalytic performances in these reactions have been
demonstrated. Challenges and future developments are finally addressed.
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1. Introduction

Metal–organic frameworks (MOFs) are a class of highly porous crystalline materials, which are
assembled by the coordination of metal ions with organic ligands [1–4]. Due to the reversibly
self-correcting kinetic characteristics that are controlled by the moderate coordination bond
energies, MOF materials have exhibited their unique features, such as clearly defined crystal
structures, high surface areas, tunable and uniform pore structures, and special confined
nanopore microenvironments [5,6]. These features make them promising materials for numerous
applications. Nevertheless, a few weaknesses, such as limited electrical conductivity, poor thermal,
and chemical stability, prohibit MOFs from exhibiting their full potential for practical applications.
Therefore, it is urgently needed to further enhance the functional properties of MOF materials.
Recently, the attempts have been made by combining MOFs with various functional materials to
produce new functional composites. These MOF based composite materials can integrate the excellent
properties and mitigate the shortcomings of the individual components. The synergistic effects
of both MOFs and other active components may cause the composites to possess new properties
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and unprecedented performance, which are not attainable by the individual parts. Up to now,
MOF composites have been successfully fabricated with incorporating various active species,
including metal or metal oxides nanoparticles (NPs), carbon materials, polymers, polyoxometalates
(POMs), quantum dots (QDs), ionic liquids (ILs), and so on [7–13]. These MOF composites have
been widely employed in the areas of gas storage, separation, sensing, biomedicine, protection of
bio-macromolecules, and catalysis [14–23].

In term of catalytic application, MOF composites show some superior characteristics because of
the unique features of MOFs mentioned above. For example, high porosity with ordered crystalline
pores and high surface areas contribute to the uniform dispersion and the high density of catalytic
sites, which can improve the catalytic efficiency [5]. The confined pore sizes can limit active species
growth and agglomeration, and selectively transport different substrate molecules for size-selective
catalysis [24,25]. These superior characteristics have made these composite materials promising in
heterogeneous catalysis.

To date, even though MOF composites, as heterogeneous catalysts, are still at a developing stage,
a series of catalytic investigations have been reported. It has been demonstrated that MOF composites
as heterogeneous catalysts have showed notable catalytic behavior, such as high activity, good stability,
and reusability [5,8,12,16–18]. Although some reviews have been published covering some topics on
heterogeneous catalysis of MOF composites, this review aims to summarize the recent advances in
this hot topic, including CO oxidation, CO2 conversion, hydrogen production, organic reaction and
pollutants remediation, and so on, over nanoparticle/MOF composite based catalysts (Scheme 1).
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2. General Synthesis of Nanoparticle/MOF Composites

There are three main established approaches for the immobilization of functional molecules
or nanoscale objects in MOFs, known as “ship in bottle” approach, “bottle around ship” approach,
and one-step synthesis approach.

The “ship in bottle” approach involves the encapsulation of active small molecules components or
NPs precursors in the cavities of MOFs, followed by further treatment leading to the desired functional
structure (Figure 1a). Various techniques, such as solution infiltration, vapor deposition, and solid
grinding have been exploited for introducing the NPs precursors into MOFs [7,26]. It is significantly
challenging to precisely control the location, composition, structure, and morphology of incorporated
guests when using this synthesis strategy. Zhang et al. [27] summarized the recent progresses in the size
and structure control of MOF supported noble metal catalysts. In addition, the possible formation of
the precursors and products on the external surface of MOFs needs to be considered. In order to avoid
NPs aggregation on the external surface of MOFs, a double-solvent method (DSM) was successfully
developed to rationally introduce precursors into MOF pores, followed by further treatment, to produce
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NPs@MOF composites [9,28]. The DSM is based on a hydrophilic and hydrophobic solvent, and the
large cages with hydrophilic environments and high pore volumes in some MOFs. The quantitative
volume (less than the MOF pore volume) of the aqueous precursor solution can be readily incorporated
into the pores of MOF, which was suspended in a large amount of low-boiling-point hydrophobic
solvent, by capillary force and hydrophilic interactions. By using the DSM combined with the reduction
with reducing agents, such as H2 and NaBH4, metallic NPs including Pt, Pd, Rh, Ni NPs, and AuNi,
RuNi, AuCo, and CuCo bimetallic NPs were successfully immobilized inside the pores of MOFs
without aggregation on the external surface of the framework [28–33].
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The “bottle around ship” approach, also known as the template synthesis approach, generally
involves two steps (Figure 1b). Firstly, the functional molecules or NPs are synthesized individually and
often stabilized by capping agents or surfactants. Subsequently, the pre-synthesized nanoscale objects
are added into a synthetic solution containing MOF precursors to assemble the MOF. The nanoscale
objects do not occupy the pore space of the MOF, but instead are surrounded by grown MOF materials.
By using this method, the problems of the aggregation of NPs on the external surface of MOFs are
limited, the size, morphology, and structure of entrapped NPs can be easily controlled because they
are preformed prior to the assembly of MOF framework [26,34]. However, the introduction of NPs
sometimes results in difficulties with the subsequent growth of the MOF because of the high interfacial
energy barrier between the two kinds of materials. In addition, the presence of the capping agents
(for example, polyvinyl pyrrolidone PVP) might be unfavorable for the complete exposure of active
sites, and even alter or degrade the performance of the NPs.

A one-step synthesis approach involves directly mixing the precursors solution of NPs and MOFs
together, followed by the simultaneous growth of NPs and MOF, and assembling both of them into
a nanostructure (Figure 1c). When compared with the above stepwise approaches, this strategy is
straightforward and simple, but it usually needs to balance the rates of the self-nucleation and growth
of the NPs and MOFs. In particular, the choice of the functional groups in organic linkers or solvents
is vital for trapping the NPs precursors and stabilizing the NPs that were formed in situ and for
facilitating the hetero-nucleation of the MOFs on the surface of the NPs [9,35].

The different preparation methods of the catalyst may result in a noticeable difference of
catalytic performance. For example, the uniform Pt NPs were successfully supported on or
encapsulated inside MOF particles to prepare Pt/UiO-66-NH2 and Pt@UiO-66-NH2 catalysts,
through the solution infiltration technique (the “ship in bottle” approach) and “bottle around
ship” approach, respectively [36]. The different methods cause a difference in the Pt location
relative to the MOF, which leads to a very different photocatalytic activity. The internal Pt NPs
in the MOF greatly shortens the path of electron transfer from MOF to Pt NPs than supported Pt.
As a result, Pt@UiO-66-NH2 exhibits much better charge-carrier utilization, and thus significantly
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higher photocatalytic activity towards hydrogen production than Pt/UiO-66-NH2. Furthermore,
Pt@UiO-66-NH2 possesses excellent stability and recyclability as a result of the great confinement for
Pt NPs in the MOF.

3. Catalysis Applications

3.1. Catalytic CO Oxidation

CO oxidation has been extensively investigated in the field of heterogeneous catalysis due to
the fundamental interest and its close relevance in practical applications, such as gas sensors for the
detection of trace amounts of CO, automotive exhaust gas treatment, and polymer electrolyte fuel
cells [37–40]. Herein, we addressed the CO oxidation reaction based on metal or metal oxide NPs/MOF
composites. Table 1 summarizes the catalytic activities for CO oxidation of several MOF-supported NPs
catalysts [28,41–49]. Generally, MOF-supported NPs catalysts have shown good catalytic performance
for CO oxidation at relatively high temperatures.

Table 1. Catalytic activities for CO oxidations on MOF-supported nanoparticles (NPs) catalysts.

Active Species (wt %) MOF T50
a (◦C) T100

b (◦C) Reference

Au (5%) ZIF-8 170 210 [41]
Au (4%) UIO-66 155 225 [43]
Pt (5%) NH2-MIL-101(Al) 170 207 [42]
Pt (5%) MIL-101(Cr) 118 150 [28]
Pt (5%) N-UiO-67 100 120 [45]
Ag (5%) Cu3(BTC)2 100 120 [48]

Pd (2.7%) MIL-53(Al) 100 115 [44]
Pd (2.9%) MIL-101(Cr) 92 107 [47]
Pd (5%) Ce-MOF 77 96 [46]
Co3O4 ZIF-8 58 80 [49]

a Temperature for 50% conversion of CO into CO2; b Temperature for 100% conversion of CO into CO2.

Xu et al. [41] reported a pioneering study that described MOF-supported noble metal NPs as an
efficient catalyst for CO oxidation. The catalytic activity over Au@ZIF-8 for CO oxidation increases
with increasing Au loading from 0.5 to 5 wt %, accompanied by the decrease of the temperature of 50%
conversion of CO from 225 ◦C to 170 ◦C. The 5 wt % Au@ZIF-8 achieves a complete conversion of CO
at approximately 210 ◦C. Afterwards, it was reported that the total conversion of CO was achieved at
around 200 ◦C by the Pt and Au NPs, supported on NH2-MIL-101(Al) and UIO-66, respectively [42,43].
Importantly, the reaction temperature of complete conversion of CO can be further reduced to below
150 ◦C by incorporating Pt, Pd, and Ag NPs with apposite MOF supports [28,44–48]. Wang and
co-workers proposed that both the size of the metal NPs and the nature of the support play an important
role on the catalytic performance of Pt@UIO-67 for CO oxidation through a combination study of
experiment and DFT calculation [45]. EL-Shall et al. [46] reported high CO oxidation activities over
Pd NPs supported on Ce-MOF. The Pd@Ce-MOF catalyst with 5 wt % Pd loading shows surprisingly
high catalytic activity, with a complete conversion at 96 ◦C. The authors proposed that the high activity
was mostly attributed to the interaction of the Pd NPs and the Ce sites within Ce-MOF.

In addition to MOF-supported noble metal NPs, MOF-supported metal oxide NPs as an active
catalyst for CO oxidation was reported. Wang et al. [49] firstly employed ZIF-8 as host to prepare
hexagonal Co3O4 NPs via the thermolysis of cobalt nitrate that is accommodated in the pores of the
MOF host at a low temperature of 200 ◦C. The Co3O4@ZIF-8 composite exhibited excellent catalytic
activity for CO oxidation, which was related to the highly dispersed Co3O4 NPs in the well-retained
MOF networks. Complete conversion of CO was achieved at 80 ◦C by the resulting composite catalyst
with good cycling stability and long-term stability. Furthermore, this synthesis method can be easily
extended to the preparation of other metal oxide NPs.
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3.2. Catalytic CO2 Conversion

Catalytic conversion of CO2 into valuable chemicals, such as CO, CH4, CH3OH, HCOOH,
cyclic carbonates, and so on, has consistently drawn significant attention [16,18,50–53]. The MOF
based composites have been developed as active catalysts for the conversion of CO2.

Recently, metal or metal oxide NPs incorporated in MOFs have been proved to be effective
catalysts for converting CO2 to valuable chemicals, including CO, CH4, CH3OH, and light
olefins [33,53–57]. The Materials of Institute Lavoisior (MIL) and University of Oslo (UiO) families,
and their surface modified MOFs were mainly used as supports due to their high thermal stability
and high chemical stability in water. An efficient catalyst, which was prepared by encapsulating
single Cu nanocrystal (18 nm) into UiO-66, was reported recently for CO2 hydrogenation to methanol.
It shows a steady eight-fold yield over the benchmark Cu/ZnO/Al2O3 catalyst, with a 100% selectivity
to methanol [54]. Interestingly, Wang and co-workers recently extended this approach with the
use of a UiO-bpy MOF, which anchored ultrafine Cu/ZnOx NPs within the pores to restrain the
agglomeration of Cu NPs and phase separation between Cu and ZnOx [55]. As shown in Figure 2,
the resulting Cu/ZnOx@MOF catalysts exhibit remarkably higher activity (space-time yield of
2.59 gMeOH kgCu

−1 h−1), higher selectivity (100%), and higher stability (>100 h) for methanol synthesis
from CO2 hydrogenation, when compared to the commercial Cu/ZnO/Al2O3 catalyst. Similarly,
Lu et al. [33] prepared Ni NPs encapsulated in MIL-101(Cr) composites by double solvent method
(DSM) and multiple impregnation method (IM) for CO2 methanation. The Ni@MIL-101(DSM)
catalyst with Ni loading of 20 wt % exhibited surprisingly higher activity for CO2 methanation
than Ni@MIL-101(IM), giving a CH4 turnover frequency (TOF) value of 1.63 × 10−3·s−1 at 300 ◦C.
The author contributed the higher activity of Ni@MIL-101(DSM) to the more exposed Ni(111)
facet, which was demonstrated by the result of DFT calculations that the Ni(111) plane has
lower potential energy barrier (10.0 kcal/mol) for CO2 dissociation into COads and Oads than
Ni(200) facet (20.3 kcal/mol).
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The utilization of solar energy for the conversion of CO2 into valuable products is one of the best
solutions to reduce carbon emission. Thus far, a range of photocatalysts, including TiO2, CdS, Zn2GeO4,
graphite-like carbon nitride (g-C3N4), and other compounds have been successfully combined with
MOFs to photocatalytically reduce CO2 [58–65]. For example, a metal-free semiconductor-composite
(g-C3N4-ZIF-8) by growing ZIF-8 on the surface of g-C3N4 nanotubes for photocatalytic CO2 conversion
into CH3OH was recently reported [63]. The ZIF-8 on the surface increases CO2 capture capacity,
but impairs the surface charge transfer within the photocatalytic system due to the weaker electrical
conductivity. The optimized ZIF-8 modified tubular g-C3N4 photocatalysts show the superior catalytic
performance, giving a >3-fold yield of CH3OH, relative to the bulk g-C3N4.

The separation efficiency of the photoinduced charge carriers plays an important role in
photocatalysis [18,66]. The introduction of metal atoms into MOF photocatalysts may suppress
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the recombination of photoinduced electrons and holes and significantly increase their photocatalytic
activity. Yaghi et al. [64] reported the construction of Ag⊂Ren-MOF with enhanced photocatalytic
activity for CO2 reduction to form CO, which resulted from the cooperation of the spatially confined
photoactive Re centers and the intensified near-surface electric fields at the surface of Ag nanocubes
(Figure 3a). A fine balance of proximity between photoactive centers is needed for cooperatively
enhanced photocatalytic activity in Ren-MOFs. The optimal Re3-MOF structure with the highest
turnover on silver nanocubes shows a 7-fold enhancement in CO evolution rate over Re3-MOF under
visible light (Figure 3b). Furthermore, Ag⊂Re3-MOF structure exhibits long-term stability of up to
48 h when compared to molecular H2ReTC, and the CO produced from Ag⊂Re3-MOF almost doubles
from that of H2ReTC after 48 h (Figure 3c).
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Besides, catalytic processes that convert CO2 into cyclic carbonates have been widely investigated
due to their high atom efficiency and high value products [67,68]. A growing number of MOFs have
been employed as catalysts for the formation of cyclic organic carbonate. Meanwhile, a strategy
for combining MOFs with functional species, like ILs, together to form heterogeneous catalysts has
been developed to enhance the catalytic activity for conversion of CO2 into cyclic carbonates [69–71].
Shi and co-workers [72] reported two IL functionalized bifunctional catalyst, MIL-101-N(n-Bu)3Br and
MIL-101-P(n-Bu)3Br, as prepared by the covalent post functionalization of MOFs (Figure 4a). Due to the
synergy of two functional sites including Lewis acid sites in the MOF framework and nucleophilic
anion in the ILs, the MIL-101-N(n-Bu)3Br, and MIL-101-P(n-Bu)3Br catalysts showed the highest yield
to propylene carbonate (PC) (>98%) for the cycloaddition reaction of CO2 and propylene oxide (PO),
when compared to other MOFs under mild and co-catalyst free conditions (Figure 4b). Similarly,
the catalytic activity of ILs supported ZIF-90 for the PO-CO2 cycloaddition reaction is remarkably
enhanced as compared to ZIF-90 [73].



Molecules 2017, 22, 2103 7 of 24
Molecules 2017, 22, 2103 7 of 24 

 

 
Figure 4. (a) The structure of the catalysts MIL-101-N(n-Bu)3Br and MIL-101-P(n-Bu)3Br (Cr: green; C: 
gray; O: red; N: blue; Br: amaranth, and R=N or P); (b) The yield of PC from the cycloaddition of PO 
and CO2 catalyzed by different MOF catalysts. Reproduced with permission from Reference [72]. 
Copyright 2015, The Royal Society of Chemistry. 

3.3. Catalytic Hydrogen Production 

3.3.1. Catalytic Hydrogen Generation from Chemical Hydrides 

A number of metal NPs that were immobilized in MOFs with high catalytic activities have been 
investigated for hydrogen generation from liquid chemical hydrides, such as aqueous formic acid 
(HCOOH), ammonia borane (NH3BH3), and hydrazine (N2H4). Due to the high specific surface area 
and tunable pore size, the loading of metal NPs inside MOFs could control the size of NPs in the 
confined cavities and produce monodispersed metal NPs, affording an enhanced catalytic performance. 

In 2011, it was reported firstly that bimetallic Au-Pd NPs immobilized into MIL-101 and 
ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) were efficient catalysts for the hydrogen 
generation from formic acid at a mild temperature [74]. The obtained Au-Pd/ED-MIL-101 catalyst 
(Au-Pd loading: 20.4 wt %; Au:Pd = 2.46) exhibits superior catalytic performance when compared to 
those of other counterparts, giving a TOF of 106 h−1 at 90 °C. The enhanced activity is contributed to 
the smaller particle sizes of the Au-Pd alloy by the introduction of the electron-rich ED into MIL-101 
and the strong synergistic effects between Au and Pd. This study reveals a new approach to 
immobilize metal NPs for hydrogen generation from formic acid. Since then, metal NPs, including 
monometallic NPs, bimetallic NPs, and even trimetallic NPs that were supported on various MOFs 
for hydrogen generation have been widely investigated [28–32,74–91]. Table 2 summarizes the 
catalytic activities of different catalysts for hydrogen production from HCOOH, NH3BH3, and 
hydrazine. Among these MOF-supported metal NPs catalyst, the Au0.28Pd0.47Co0.25/MIL-101-NH2 
catalyst exhibits 100% selectivity to H2 and the drastically high activity for the dehydrogenation of 
formic acid at room temperature with a TOF value of 347 h−1 [86]. Interestingly, Yamashita and 
co-workers [91] recently reported the use of the synergistic catalysis of plasmonic Au@Pd NPs, and 
Ti-doped amine functionalized MOFs for enhancing hydrogen production from formic acid at room 
temperature. As shown in Figure 5, the activity of all supported Au@Pd catalysts is greatly enhanced 
under visible light irradiation, and the Au@Pd/UiO-66(Zr85Ti15) shows better catalytic performance 
under visible light irradiation when compared to those under dark conditions, giving a high TOF of 
200 h−1. The similar cooperative promoting effect from both NPs and photoactive MOF was examined 
on a noble-metal-free catalyst Ni@MIL-101 for hydrogen generation from ammonia borane under 
assistance of visible light irradiation [88]. 

Figure 4. (a) The structure of the catalysts MIL-101-N(n-Bu)3Br and MIL-101-P(n-Bu)3Br (Cr: green;
C: gray; O: red; N: blue; Br: amaranth, and R=N or P); (b) The yield of PC from the cycloaddition of
PO and CO2 catalyzed by different MOF catalysts. Reproduced with permission from Reference [72].
Copyright 2015, The Royal Society of Chemistry.

3.3. Catalytic Hydrogen Production

3.3.1. Catalytic Hydrogen Generation from Chemical Hydrides

A number of metal NPs that were immobilized in MOFs with high catalytic activities have been
investigated for hydrogen generation from liquid chemical hydrides, such as aqueous formic acid
(HCOOH), ammonia borane (NH3BH3), and hydrazine (N2H4). Due to the high specific surface area
and tunable pore size, the loading of metal NPs inside MOFs could control the size of NPs in the
confined cavities and produce monodispersed metal NPs, affording an enhanced catalytic performance.

In 2011, it was reported firstly that bimetallic Au-Pd NPs immobilized into MIL-101 and
ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) were efficient catalysts for the hydrogen
generation from formic acid at a mild temperature [74]. The obtained Au-Pd/ED-MIL-101 catalyst
(Au-Pd loading: 20.4 wt %; Au:Pd = 2.46) exhibits superior catalytic performance when compared to
those of other counterparts, giving a TOF of 106 h−1 at 90 ◦C. The enhanced activity is contributed
to the smaller particle sizes of the Au-Pd alloy by the introduction of the electron-rich ED into
MIL-101 and the strong synergistic effects between Au and Pd. This study reveals a new approach to
immobilize metal NPs for hydrogen generation from formic acid. Since then, metal NPs, including
monometallic NPs, bimetallic NPs, and even trimetallic NPs that were supported on various MOFs for
hydrogen generation have been widely investigated [28–32,74–91]. Table 2 summarizes the catalytic
activities of different catalysts for hydrogen production from HCOOH, NH3BH3, and hydrazine.
Among these MOF-supported metal NPs catalyst, the Au0.28Pd0.47Co0.25/MIL-101-NH2 catalyst
exhibits 100% selectivity to H2 and the drastically high activity for the dehydrogenation of formic acid
at room temperature with a TOF value of 347 h−1 [86]. Interestingly, Yamashita and co-workers [91]
recently reported the use of the synergistic catalysis of plasmonic Au@Pd NPs, and Ti-doped amine
functionalized MOFs for enhancing hydrogen production from formic acid at room temperature.
As shown in Figure 5, the activity of all supported Au@Pd catalysts is greatly enhanced under
visible light irradiation, and the Au@Pd/UiO-66(Zr85Ti15) shows better catalytic performance under
visible light irradiation when compared to those under dark conditions, giving a high TOF of
200 h−1. The similar cooperative promoting effect from both NPs and photoactive MOF was examined
on a noble-metal-free catalyst Ni@MIL-101 for hydrogen generation from ammonia borane under
assistance of visible light irradiation [88].
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Table 2. Catalytic activities of different catalysts for hydrogen generation from chemical hydrides.

Catalyst Chemical Hydrides T (◦C) TOF (h−1) Refernence

AuPd@ED-MIL-101 HCOOH 90 106 [74]
Ag20Pd80@MIL-101 HCOOH 80 848 [79]

Ag18Pd82@ZIF-8 HCOOH 80 580 [82]
Au28Pd47Co25/MIL-101–NH2 HCOOH 25 347 [86]

Ag25Pd75@NH2-UIO-66 HCOOH 25 103 [87]
Au@Pd/NH2-UiO-66(Zr85Ti15) HCOOH 30 200 [91]

Ni@ZIF-8 NH3BH3 25 504 [75]
Ru@MIL-101 NH3BH3 25 10680 [77]
Ni@MIL-101 NH3BH3 25 3238 [88]

Pd@Co@MIL-101 NH3BH3 30 3060 [81]
Au7Ni93 @MIL-101 NH3BH3 25 3972 [29]
Ru30Ni70@MIL-101 NH3BH3 25 16363 [30]
Au6Co94@MIL-101 NH3BH3 25 1410 [31]
Cu30Co70@MIL-101 NH3BH3 25 1176 [32]

CuCo@MIL-101 NH3BH3 25 3102 [90]
FeCo@MIL-101 NH3BH3 25 3048 [90]
NiCo@MIL-101 NH3BH3 25 2658 [90]
Ni80Pt20@ZIF-8 Hydrazine 50 90 [76]
Ni66Rh34@ZIF-8 Hydrazine 50 140 [80]

Ni88Pt12@MIL-101 Hydrazine 50 375 [78]
Ni42Rh58@MIL-101 Hydrazine 50 344 [84]
Ni85Ir15@MIL-101 Hydrazine 50 464 [85]

In order to reduce the deposition of the metal NPs on the outer surface of MOF support,
Xu et al. [28] successfully developed a double solvent approach combined with hydrogen reduction
to immobilize the ultrafine Pt NPs inside the pores of MIL-101. The resulting Pt@MIL-101 composite
with 2 wt % Pt loading is highly active for H2 generation from aqueous ammonia borane at room
temperature. By using a similar approach, AuNi [29], RuNi [30], AuCo [31], and CuCo [32] alloy NPs
are also successfully encapsulated in the pores of MIL-101. The resulting MIL-101 supported bimetallic
NPs catalysts present remarkably high catalytic activity for hydrolytic dehydrogenation of ammonia
borane, giving the highest TOF of 66.2 min−1, 272.7 min−1, 23.5 min−1, and 19.2 min−1, respectively.

The hydrogen generation from the dehydrogenation of hydrous hydrazine has also been
investigated using MOF-supported bimetallic NPs catalysts with high selectivity [76,78,80,84,85].
Highly dispersed bimetallic Ni-Pt NPs are successfully immobilized onto ZIF-8 via a facile liquid
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impregnation method, followed by co-reduction [76]. The activity of the composite catalysts strongly
depended on the Ni-Pt composition, and the catalyst Ni80Pt20/ZIF-8 exhibits the highest activity at
50 ◦C with a 100% hydrogen selectivity and a TOF value of 90 h−1. Following a similar approach,
Luo and his co-workers [78,80,84,85] successfully encapsulated the bimetallic Ni-Pt, Ni-Rh, and Ni–Ir
NPs with different compositions into the cavities of ZIF-8 and MIL-101. The optimal catalysts,
Ni88Pt12@MIL-101 [78], Ni66Rh34@ZIF-8 [80], Ni42Rh58@MIL-101 [84], and Ni85Ir15@MIL-101 [85],
enable the rapid and complete decomposition of hydrazine in an aqueous alkaline solution,
with a 100% H2 selectivity at 50 ◦C, giving the highest TOF value of 375.1 h−1, 140 h−1, 344 h−1,
and 464 h−1, respectively.

3.3.2. Catalytic Hydrogen Production from Water

The photocatalytic water splitting is an ideal method for producing hydrogen. Developing new
hybrid photocatalysts combined with MOFs is considered to improve the charge transfer/separation
efficiency. Some researchers incorporate Pt NPs into MOFs to enhance hydrogen evolution reaction
(HER) activity [36,92,93]. For example, approximately 3 nm Pt NPs are incorporated into or supported
on UiO-66-NH2, to afford Pt@UiO-66-NH2 and Pt/UiO-66-NH2, respectively (Figure 6a) [36]. A high
H2 evolution rate of 257.38 µmol·g−1·h−1, which is approximately 150 and 5 times higher than that
of the parent MOF and the Pt/UiO-66-NH2, respectively, was achieved using a Pt@UiO-66-NH2

photocatalyst with the optimum Pt loading amount (2.87 wt %) (Figure 6b). In addition, as shown in
Figure 6c, the Pt@UiO-66-NH2 shows better catalytic recyclability than that of Pt/UiO-66-NH2 because
Pt@UiO-66-NH2 effectively restrains aggregation or leaching of Pt NPs during the reaction.
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and Pt/UiO-66-NH2; and, (c) Recycling performance comparison between Pt@UiO-66-NH2
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Recently, some functional components, including nickel particles [94], metal sulfides (e.g., MoxSy,
NixSy, CdS) [95–98], reduced graphene oxide (rGO) [99], g-C3N4 [100], and POMs [101] have been
employed to replace precious Pt and improve the photocatalytic activity for HER. Excellent
photocatalytic activity was achieved as well. Interestingly, MoS2 increases the photoactivity for
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the HER and was superior to Pt as a co-catalyst [96]. 1 wt % MoS2/UiO-66-CdS obtained a high H2

evolution rate of 25,770 µmol·g−1·h−1, approximately 2-fold higher than that of 1 wt % Pt/UiO-66-CdS.
Lin et al. [101] reported the successful encapsulation of tetra-nickel-containing Ni4P2 POMs into the
pores of highly stable MOFs. The integration of the photosensitizing MOF framework and the POM
catalyst allows for facile multi-electron transfer to enable an efficient HER, with turnover numbers as
high as 1476.

3.4. Organic Reactions

3.4.1. Oxidation of Alcohols and Hydrocarbons

MOF composites have been employed as efficient catalysts for the selective oxidation of alcohols,
which are commonly considered as the central reactions in organic chemistry. Li et al. [102–104]
investigated the catalytic performance of a series of MOF composites that were fabricated with
different metal NPs (Au, Pd, and Pt) in liquid-phase aerobic oxidation of alcohols. The resulting
Au/MIL-101, Pd/UIO-67, and Pt/DUT-5 composite catalysts exhibit excellent catalytic activities in
a variety of alcohols oxidation reactions under base-free conditions, with exceeding 99% conversions
and up to 100% selectivity to cinnamyl aldehyde. The authors attributed the superior catalytic activity
to the beneficial synergetic effects of the electron donation and nano-confinement that is offered by the
MOF framework.

Other composite systems, including Au NPs, metal nanoclusters, POMs, CdS, and rGO,
also exhibit high catalytic activities for selective oxidation of various alcohol substrates to
aldehydes [105–111]. For example, Zhu et al. [106] recently reported the atomically precise
nanoclusters@MIL-101 composites, prepared by using MOFs as the size-confining templates for
the first time. Highly dispersed Au13Ag12@MOF composites exhibited favorable catalytic activity in
the oxidation of benzyl alcohol toward benzaldehyde, exceeding 75% conversion and 100% selectivity.

Besides, the aerobic oxidation of hydrocarbons catalyzed by MOF based nanohybrid catalysts
has also been explored. Various active species, including Au, AuPd, PtPd alloy NPs, POMs,
and grapheme oxide (GO), combined with several MOFs were proved to be active and selective
in the oxidation hydrocarbons with molecular oxygen [108,112–115]. For example, the AuPd/MIL-101
catalyst exhibited a superior activity and selectivity in the oxidation of cyclohexane to cyclohexanone
and cyclohexanol (KA-oil) when compared with those of their pure metal counterparts and an
Au+Pd physical mixture, which may be correlated to the synergistic alloying effect of bimetallic
AuPd NPs [113]. Cyclohexane conversion exceeding 40% is achieved (TOF = 19,000 h−1) with >80%
selectivity to KA-oil under mild solvent-free conditions. Recently, H3+xPMo12−xVxO40@MIL-100
(Fe) (x = 0, 1, 2) hybrids were prepared by the encapsulation of POMs within a metal–organic
framework using a hydrothermal method [116]. The hybrids show greatly improved catalytic
performance for the allylic oxidation of cyclohexene using H2O2 as green oxidant. In particular,
the hybrid H4PMo11VO40@MIL-100 (Fe) leads to 85% cyclohexene conversion, 91% selectivity for
2-cyclohexene-1-one under optimized conditions, as well as excellent stability and reusability.

3.4.2. Hydrogenation Reaction

Hydrogenation is a key reaction that is extensively employed in industry. The Pd, Pt,
Ru, and Ni NPs, and their bimetallic NPs immobilized by MOFs have been proven to be
active catalysts in the hydrogenation of a wide range of substrates including alkenes [117–120],
alkynes [121,122], aromatics [123], nitro-aromatics [124,125], ketones [126], aldehydes [127,128],
and other compounds [129,130].

When considering the molecular sieving capability of the pore apertures of MOFs,
the encapsulated metal NPs in the internal frameworks of MOFs have been demonstrated
to exhibit interesting size selectivity for the hydrogenation of different alkenes [25,131,132].
For example, Jiang et al. [24] reported the beneficial combination of the photothermal effects of metal
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nanocrystals with the favorable properties of MOFs for efficient and selective catalysis. As shown in
Figure 7a, the Pd nanocubes (NCs)@ZIF-8 composite shows significantly different catalytic activity
for olefins with different molecular sizes. For n-hexene, approximately 100% conversion can be
achieved, while large molecules, such as cyclooctene (5.5 Å), cannot access the ZIF-8 shell with a pore
aperture of (3.4 Å), resulting in negligible conversion. More interestingly, the catalytic performance
of the Pd NCs@ZIF-8 composite in the hydrogenation of n-hexene is significantly improved by light
irradiation (Figure 7b).
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Recently, Zhao and co-workers [128] successfully fabricated a sandwich nanostructured catalyst
with a layer of Pt NPs encapsulated between a core and a shell made of MIL-101 (Figure 8).
The MIL-101(Cr)@Pt@MIL-101(Fe) catalyst, with a shell of thickness 2.9 nm, exhibits excellent selectivity
(95.6%) and almost full conversion (99.8%) for the selective hydrogenation of cinnamaldehyde to
cinnamyl alcohol. Furthermore, the shell thickness in sandwich nanostructures can be used to tune
the activity and selectivity of sandwich-type catalysts. The design of a sandwich nanostructured
catalyst provides a potential strategy for designing selective catalysts for many important, but highly
challenging, reactions.
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3.4.3. Catalytic C-C Coupling

C–C coupling reactions, including Suzuki-Miyaura, Ullmann, Heck, Sonogashira, and Stille
reactions are among the most versatile and important reactions in organic synthesis [20]. Pd is the
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most common catalyst in promoting these coupling reactions, and hence MOF supported Pd NPs have
been developed as C–C coupling catalysts [133–136]. Trzeciak and his co-workers [137] synthesized
the supported Pd NPs on a nanoscale Ni-MOF by using a facile impregnation process with solvent
in situ reduction method, which was confirmed as a highly active heterogeneous catalyst for the
Suzuki-Miyaura coupling reaction between aryl halides and phenylboronic acid. This composite
catalyst gives high yields of different coupling products with good recycle stability, indicating the
excellent performance of the catalyst.

3.5. Catalytic Remediation of Pollutants

Wastewater that is produced in many industrial processes often contains toxic organic compounds
and heavy metals, including organic dyes, phenols, hydrocarbons, pharmaceuticals, hexavalent
chromium (Cr(VI)), and so on. It is necessary to reduce the concentration of pollutants before
discharging the wastewater into the aquatic environment. Otherwise, various environmental and
health issues could be induced. Among the physical, chemical, and biological technologies that are
applied for the removal of pollutants, heterogeneous catalysis, including photocatalysis, has been
demonstrated to be an efficient, economical, and green technique to degrade pollutants into easily
biodegradable or less toxic compounds. Recently, MOF based composites with noble metal NPs,
metal oxide/sulfides, GO, and other compounds have been proved to be a new class of catalysts,
which are usable in the catalytic degradation of organic pollutants and Cr(VI) [138–159].

3.5.1. Catalytic Degradation of Organic Pollutants

Advanced oxidation processes (AOPs) are increasingly adopted for the degradation of organic
pollutants, owing to the in situ generation of highly reactive and nonselective radicals, such as •OH,
•O2

−, •OOH, and •SO4
− [160]. In AOPs, heterogeneous photocatalysis has been developed to be

a green and efficient approach to degrade various organic pollutants. Since the amenability to design
MOFs by controlling the constituent metal ions and organic linkers, MOFs-based photocatalysts with
various morphology and structure have a great potential in the degradation of organic pollutants and
environmental remediation.

Qiu et al. [154] firstly rationally fabricated a new type of core–shell Fe3O4@MIL-100(Fe) composite
with a magnetic core and a designable MOF shell. This magnetic recyclable composite exhibits
photocatalytic activity for methylene blue (MB) degradation under both UV-vis and visible light
irradiation with good recycling stability. Based on a similar process, a yolk-shell Co3O4@MOF was
successfully prepared via the fabrication of a uniform Fe-doped MOF-5 shell around Co3O4 NPs [150].
The degradation rate of 4-chlorophenol in the presence of peroxymonosulfate over 99% within 60 min
was achieved by the Co3O4@MOF composite with satisfactory reusability.

Recently, Yuan et al. [142] reported a novel core–shell In2S3@MIL-125(Ti) photocatalytic adsorbent,
which was prepared by a facile solvothermal method. The integrated composite exhibits excellent
adsorption affinity, as well as superior photocatalytic activity, for the removal of tetracycline (TC).
The photo-degradation efficiency for TC within a 60-min visible light irradiation is 63.3%, which is
much higher than that of bare In2S3 or MIL-125(Ti), indicating the beneficial synergistic effect between
MIL-125(Ti) and In2S3. The core–shell composites also reveal good performance for the removal of TC
from various real wastewaters. Similarly, the CdS/MIL-53(Fe) and CdTe QDs/Eu-MOF composites
show high photocatalytic activity in the degradation of Rhodamine B (RhB) and Rhodamine 6G in
water at room temperature under light irradiation [143,146].

Alternatively, the bismuth oxyhalides (BiOX, X = Cl, Br, I) and MOFs composites are also effective
in improving photocatalytic performance. BiOBr/UIO-66, BiOBr/NH2-MIL125(Ti), BiOBr/CAU-17,
and BiOI/MIL-88B(Fe) nanocomposites have been reported as highly efficient photocatalysts for the
degradation of organic pollutants [147–149,158].

Unlike metal semiconductor photocatalysts, g-C3N4, a metal-free semiconductor, has been
successfully employed as a semiconductor photocatalyst for pollutant degradation [141,144].



Molecules 2017, 22, 2103 13 of 24

Yuan et al. [141] successfully combined g-C3N4 with MIL-125(Ti) by a facile solvothermal method.
The resulting g-C3N4/MIL-125(Ti) composite catalyst exhibits an excellent catalytic performance with
good reusability and stability. The optimal photocatalytic performance is obtained at the g-C3N4

content of 7 wt % for MIL-125(Ti), on which the rate of RhB photodegradation is 0.0624 min−1,
which is about 2.1 and 24 times higher than that of pure g-C3N4 and MIL-125(Ti), respectively.

3.5.2. Catalytic Cr(VI) Reduction

Catalytic reductive transformation of Cr(VI) to Cr(III) is a promising method to perform effective
remediation of Cr(VI), because Cr(III) is much less toxic and can be easily precipitated and removed
due to its lower solubility in water in contrast to highly water-soluble and toxic Cr(VI).

Xu, Yu and Trivedi’s groups reported active MOF-supported noble metal (Pt, Pd) NPs catalysts
for the reduction of Cr(VI) to Cr(III) using formic acid [145,152,157]. The resulting composites exhibit
favorable catalytic performance, as demonstrated by the short time of complete reduction of Cr(VI)
into Cr(III). Importantly, Yu et al. [152] proposed a reasonable mechanism for the catalytic reduction
of Cr(VI) into Cr(III), as evidenced by a series of experiments. Formic acid is first adsorbed on the
surface of metal NPs, and is then is dehydrogenated to produce H2 and CO2, according to Equation (1).
The generated hydrogen, with high reduction capacity, then reduces Cr(VI) into Cr(III), as shown
in Equation (2):

HCOOH→ H2 + CO2 (1)

Cr2O7
2− + 8H+ + 3H2 → 2Cr3+ + 7H2O (2)

Wu et al. [155] firstly reported the simultaneous degradation of different categories of pollutants,
such as Cr(VI) and organic dyes, by using MOF-supported Pd NPs as a dual functional photocatalyst.
As shown in Figure 9a, Pd@UiO-66-NH2 is highly active to almost completely reduce Cr(VI) into Cr(III)
within 90 min under visible light irradiation (λ ≥ 420 nm) at a pH range of 1–5, which is ascribed to
the intimate interfacial contact between Pd and UiO-66-NH2, leading to the efficient charge separation.
More interestingly, the reduction of Cr(VI) is visibly enhanced when the organic dye (MB or methyl
orange (MO)) is added into the reaction system. In the binary systems of Cr(VI)/MO and Cr(VI)/MB,
the reduction ratios of Cr(VI) are 79% and ~100%, respectively, which are obviously higher than
that in the single system (70%) (Figure 9b). Meanwhile, the presence of Cr(VI) also promotes the
photocatalytic degradation of MB and MO, demonstrating the beneficial synergic effect between the
photocatalytic reduction and oxidation process. Wu et al. [138] also reported that the MIL-53(Fe)-rGO
composite exhibits high photocatalytic activity in simultaneous oxidation of organic dyes and the
reduction of Cr(VI).
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Figure 9. (a) Photocatalytic reduction of aqueous hexavalent chromium (Cr(VI)) with different amounts
of H2SO4 solution (0.2 M); and (b) Simultaneous photocatalytic reduction of Cr(VI) and degradation of
dyes (10 ppm) over Pd@UiO-66-NH2 under visible light irradiation (λ ≥ 420 nm). Reproduced with
permission from Reference [155]. Copyright 2013, The Royal Society of Chemistry.
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Moreover, the rGO-UiO-66-NH2 and rGO-MIL-53(Fe) nanocomposites were successfully
assembled by electrostatic attractive force for surface attachment [138,159]. The optimal photocatalytic
performance is obtained at the rGO content of 2% and 0.5% for UiO-66-NH2 and MIL-53(Fe), for which
the reduction ratio of Cr(VI) is even up to 100% under visible light illumination within 100 min and
80 min, respectively.

Recently, Wang et al. [139] employed ZnO colloidal spheres as template and zinc source to
successfully fabricate core-shell ZnO@ZIF-8 composite. The resulting composite exhibits an enhanced
selective photocatalytic reduction of Cr(VI) between Cr(VI) and MB, which is attributed to selective
adsorption and permeation effect of the ZIF-8 shell.

4. Conclusions and Outlook

MOFs have been considered as ideal catalysts with clearly defined and designable crystal
structures, high surface areas, tunable and uniform pore structures, and special confined nanopore
microenvironments [27]. Some intrinsic weaknesses (like the lack in the catalytically active sites and
limited thermal and chemical stability), however, hinder them from implementing the full potential
for catalyst uses. With the improvement of the MOF syntheses, MOFs with enhanced thermal and
chemical stability have been more and more available [9,14,27,35]. To enhance the catalytic properties
of MOFs, MOF based metal and metal oxide NP composites have been prepared and successfully
applied for many reactions. The “ship in bottle” strategy, “bottle around ship” strategy, and one-step
synthesis strategy have been exploited for the syntheses of such composites. Among these strategies,
the “ship in bottle” approach has some limitations in the precise control of the size, morphology,
and composition of incorporated NPs. On the contrary, the size, morphology, and composition of
NPs can be better controlled with the “bottle around ship” approach. The one-step approach is
straightforward, but it usually needs the functional groups in organic linkers or solvents to trap the
NPs precursors and stabilize the NPs that are formed.

The present studies have demonstrated that the MOF based NP composite catalysts exhibit
excellent catalytic performances for CO oxidation, CO2 conversion, hydrogen production, organic
reaction, and pollutant degradation. The high catalytic performances are contributed to the beneficial
synergistic effects of MOFs and active sites of NPs. Significantly increasing applications of MOF based
NP composite catalysts can be expected.

However, MOF composites, as heterogeneous catalysts, are still under its early developing
stage. In the view of structural features, MOF composites consist of active species, metal ions and
organic ligands, which are the potential factors influencing the catalytic performance. The relationship
between the catalytic behavior and the structural features still needs to be investigated further.
Further improvement in the thermal and chemical stability of MOFs is required. The present syntheses
of MOFs are not cheap. Some syntheses are complex and time consuming, with difficulty in the scaling
up. Innovation in the syntheses of MOFs is one of the future developments. Besides the improvement
in the syntheses of MOFs for catalyst uses, the following studies are expected to further lead the
progresses in the MOF composite catalysts:

(1) A principal advantage of MOFs is their designable structure with clear chemistry. When metal or
metal oxide NPs are introduced, not clear chemistry may be caused because of not only various
complex issues of NPs (like defects), but the interaction between MOFs and NPs. This is the most
significant challenge for the future development with opportunities. In order to develop a size,
structure, and location controllable preparation of NP/MOF composites, the interaction between
metal or metal oxide and the MOF support needs to be further investigated. The functionalization
and modification of MOFs needs to be also further investigated. The involvement of organic links
in the catalytic reaction and the formation of intrinsic structure of MOFs with NPs generate many
fundamental thermodynamic and kinetic issues for catalyst investigations. The reported studies
are mostly limited within the experimental exploitation of MOFs for various reactions. Regarding
the difficulty in the catalyst characterization, more theoretical studies are needed [45,161,162].
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(2) For the composites by the pre-synthesized NPs, the polymer capping agent, like PVP, has some
negative effects on the catalytic properties. Alternatives to such agents should be investigated.
In this regard, biomolecules, like peptide, can be a nice candidate [163–165]. Especially,
the peptide metal composite can serve as an excellent nitrogen dopant, which will be good
for the improvement of the electronic properties of the catalysts, especially, for photocatalyst
and electro-photocatalyst.

(3) Since MOFs are now mostly thermal sensitive materials, innovation in the post treatment
or modification of the NP/MOF composites at low temperatures is extremely important.
We attempted to use the room temperature electron reduction [166,167] for the preparation
of noble metal/MOF composite catalyst. The present result shows the NPs cannot disperse well
into the pores of MOFs. Further improvement is required. Other new approaches are also needed.

(4) An important future direction is the preparation of NP/MOF composites, together with gels,
graphene, porous polymers, ionic liquids, and others, especially for the blooming photocatalytic
and photo-electro-catalytic applications [168,169].

(5) The development of MOF based solid acid and solid base will create more opportunities for
NP/MOF composite catalysts [170].

(6) MOF itself has been demonstrated to be an excellent single site catalyst, with which metal nodes
in MOFs mimic homogeneous catalysts not only functionally but also mechanistically [171,172].
It provides a blueprint for the development of advanced heterogeneous catalysts with similar
degrees of tunability to their homogeneous counterparts. It could open new ways for
the investigations of NP/MOF catalysts or MOF supported NP catalysts, which possess
characteristics and advantages of both heterogeneous and homogeneous catalysts.
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