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Abstract: DNA–protein interactions appear as pivotal roles in diverse biological procedures and
are paramount for cell metabolism, while identifying them with computational means is a kind of
prudent scenario in depleting in vitro and in vivo experimental charging. A variety of state-of-the-art
investigations have been elucidated to improve the accuracy of the DNA–protein binding sites
prediction. Nevertheless, structure-based approaches are limited under the condition without
3D information, and the predictive validity is still refinable. In this essay, we address a kind
of competitive method called Multi-scale Local Average Blocks (MLAB) algorithm to solve this
issue. Different from structure-based routes, MLAB exploits a strategy that not only extracts local
evolutionary information from primary sequences, but also using predicts solvent accessibility.
Moreover, the construction about predictors of DNA–protein binding sites wields an ensemble
weighted sparse representation model with random under-sampling. To evaluate the performance of
MLAB, we conduct comprehensive experiments of DNA–protein binding sites prediction. MLAB
gives MCC of 0.392, 0.315, 0.439 and 0.245 on PDNA-543, PDNA-41, PDNA-316 and PDNA-52
datasets, respectively. It shows that MLAB gains advantages by comparing with other outstanding
methods. MCC for our method is increased by at least 0.053, 0.015 and 0.064 on PDNA-543, PDNA-41
and PDNA-316 datasets, respectively.

Keywords: DNA–protein binding sites; ensemble classifier; feature extraction; random sub-sampling;
sparse representation model

1. Introduction

DNA–protein interactions exert a crucial influence on diverse biological processes and is primal
for cell metabolism. Contemporary researchers have scrutinized a considerable number of DNA and
protein sequences including DNA-binding proteins. In addition, there is no lack of time-consumption
in silico methods. Furthermore, the experimental determination of binding sites is always difficult
and is not readily feasible all the time. Therefore, forecasting by statistical learning, which had been
riveted by a lot of academics conducting surveys on DNA–protein binding sites, established in the
field of computational and molecular biology, should be taken for granted. Several computational
methods, which had been developed to identify DNA-binding sites in proteins, were generally based
on protein sequence, protein structure or through integrating the aforementioned information. Most of
these investigations are the methods that depended on machine learning techniques.
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The concomitant information of sequence-based tactics [1,2] usually comprises physical and
chemical properties of amino acids, evolutionary and other sequence information, such as BindN [3],
BindN Random Forest (BindN-RF) [4], BindN+ [5], DNABindR [6], DNA Binding Sites Prediction
(DBS-PRED) [7], DNA Binding Sites based on Position Specific Scoring Matrix (DBS-PSSM) [8],
ProteDNA [9], DNA Protein-Binding (DP-Bind) [10], DNA Interaction Sites Identified from Sequence
(DISIS) [11], Meta DNA Binding Site (MetaDBSite) [12], TargetDNA [13], etc.

Concretely, Wang et al. [3] take an amino acid sequence as input and extrapolate potential DNA
or RNA-binding residues with Support Vector Machine (SVM). While the SVM model is constructed
with encoded instances, which come from features w.r.t. three sequences. Specifically, the features
are including side chain pKa value, hydrophobicity index and molecular mass of an amino acid.
Wang et al. engage in knitting another craft [4] that feed the above information plus evolutionary
information into Random Forest (RF) to realize Machine Learning (ML). We need to make another
small point that the evolutionary information is represented by Position Specific Scoring Matrix (PSSM).
Yan et al. [6] used Relative Solvent Accessible Surface area (RASA), sequence entropy, electrostatic
potential and hydrophobicity as an input of Naive Bayes classifier (NB) to forecast binding sites.
Ahmad et al. [8] create an Artificial Neural Networks (ANNs)-based algorithm and apply PSSM of
amino acid sequences to predict DNA-binding sites. Cui et al. [9] handcraft a sequence based predictor,
which was named ProteDNA, in order to taxonomize the residues in a Transcription Factor (TF) that
implicates sequence-specific binding with DNA. The category of input feature originating from PSSM
also contains a method that comes from Hwang et al. [10]. They conceive three kinds of ML methods
including SVM, kernel logistic regression and penalized logistic regression to implement the prediction
about binding sites. Ofran et al. [11] combine physicochemical features of sequence, PSSM, predicted
secondary structure and Predicted Solvent Accessibility (PSA) to train a SVM model for predicting
binding sites. Si et al. [12] consolidate the prediction results from six available online web servers:
DISIS [11], DNABindR [6], BindN [3], BindN-RF [4], DP-Bind [10] and DBS-PRED [7], which only
employ sequence information of proteins. Hu et al. [13] deploy PSSM and PSA to build a multiple
SVMs model with weighted features. Georgiou et al. [14] use metric spaces and fuzzy sets to study
entropy/clarity of genetic sequences. Buenrostro et al. [15] raise ATAC-seq to identify regions of
open chromatin.

Structure-based knacks as a kind of classical methods usually apply structural motifs [16], secondary
structure [17,18], Accessible Surface Area (ASA) [19] and Depth Index (DPX) [20] in DNA-binding
residues identification. While several other kinds of methods collocate sequences with structure
information to refine the performance of prediction [21]. Components like PSSM, ASA and Protein
Backbone Structure(PBS) [22,23] are salient for the erection of forecasting model in these studies [19,24].
SVM [25], RF [26], ANNs or Bayesian Network (BN), clustering, network feature, PCVM [27] and Deep
Learning [28] also play an imperative role in constructing the prognostic paradigm about DNA-binding
residues identification [29,30] and speculation of other kind of bioinformatics data classification such
as drug target interactions [31,32], protein–protein interactions [33,34], RNA-disease association [35],
protein modification sites [36], DNA motif elucidation [37] and other related themes in computational
biology [38–40].

No matter whether they are structure-based or methods of hybrid category, their prediction
accuracies are generally superior to sequence-based tactics, which resulted in part from structure-based
features that reflect DNA-binding or non-binding residues in a spatial point of view rather than
sequence-based features. However, it must be satisfied that both the sequence of a given target protein
and 3D structures are sufficiently available. Consequently, sequence-based computational techniques
for the forecast about DNA-binding sites are more efficacious under practical conditions.

In this paper, a kind of sequence-based approach with ML is depicted. Conspicuously, PSSM
information of protein sequence plays an important role in predicting DNA–protein binding sites
according to the state-of-the-art investigations. Hence, we use PSSM information as the primary
feature. The major difference between DNA-binding and non-DNA-binding proteins is that the
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functional binding sites are occurring in the former, whereas they are absent at the corresponding
local regions of protein space in the latter. Moreover, protein functions incline to be evolutionarily
conserved in these local regions. As a result, it requires that classifiers need to capture the hints of local
functional conservation as fully as possible. Based on this leitmotiv, we devise an algorithm that is called
Multi-scale Local Average Blocks (MLAB) to further extract local information from PSSM. The PSA
information is also utilized to ameliorate the accuracy of prediction. Due to the number of DNA-binding
residues (minority class) being significantly lower than that of non-binding residues (majority class),
sample rescaling as straightforward strategy is adopted to deal with the issue of imbalanced data
classification. To further handle the imbalanced problem, we employ an Ensemble Classifier with
Random Under-Sampling (EC-RUS). Individual predictors of ensemble classifiers are realized by means
of Weighted Sparse Representation based Classifier (WSRC). To evaluate the performance of our method,
it has been validated through PDNA-543, PDNA-41, PDNA-316, PDNA-335 and PDNA-52 datasets.
Our approach achieves MCC of 0.392, 0.315, 0.439 and 0.245 on PDNA-543, PDNA-41, PDNA-316
and PDNA-52, respectively. Experiments show that our method achieves better results than other
outstanding methods. Compared with existing implementations, MCC for our algorithm are increased
by at least 0.053, 0.015 and 0.064 on PDNA-543, PDNA-41 and PDNA-316, respectively.

2. Materials and Methods

For the sake of delving DNA–protein binding residues with computational methods, one of the
major challenges is to fully describe the salient points of knowledge about DNA–protein binding
sites in an adequate and concise way. Prediction of DNA–protein binding residues could be regarded
as a traditional binary classification problem from the view of machine learning. Therefore, how to
effectively extract feature from protein sequences turns out to be the preoccupation. Since the binding
residue is not isolated from each other, we have the convention that 11 vicinal amino acid residues as a
window (w = 11), where the window specifically indicates the target residue and 5 neighbors on either
side of the target residue itself. In light of this definition, an idiosyncratic multi-dimensional coding
vector can be listed seriatim, which derives from the two aforementioned attributes of evolutionary
conservation and predicted relative solvent accessibility. With the above information, the ML scenario
is applied to build a prediction model about identifying DNA–protein binding sites.

2.1. Feature Extraction via Position Specific Scoring Matrix

By referring to the the form of Position Specific Scoring Matrix (PSSM), evolutionary conservation
of protein sequence could be abstracted and generated by the de facto tool PSI-BLAST [41] (BLAST+ [42]
options: -num_iterations 3 -db nr -inclusion_ethresh 0.001). The evolutionary information from PSSM is
stored in a matrix of dimensions L× 20 (L rows and 20 columns), formulated as

PSSM =


p1,1 p1,2 · · · p1,20

p2,1 p2,2 · · · p2,20
...

. . .
...

...
pL,1 pL,2 · · · pL,20


L×20

, (1)

while each element in PSSM is calculated as

pi,j =
20

∑
k=1

γ(i, k)× d(k, j) (i = 1, . . . , L; j = 1, . . . , 20), (2)

where γ(i, k) is the frequency of k-th amino acid type at the position i; d(k, j) is the value of about the
element in Dayhoff’s mutation matrix (substitution matrix), which corresponds to the amino acids
between k-th and j-th type. The substitution matrix, which usually is wielded in DNA or protein
sequence alignment, can describe the rate that certain kinds of characters in a protein sequence change
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to some other kind of character with time elapsing. As a supplementary, small values indicate that there
is less conservatism in the corresponding areas, whereas large values indicate quite conservative zones.

These values are normalized to 0–1 range with min-max normalization. The original PSSM
(see Equation(1)) is normalized as

p′i,j =
pi,j − pmin

pmax − pmin
(i = 1, . . . , L; j = 1, . . . , 20), (3)

where pi,j represents the original score of PSSM. While the normalized PSSM (PSSM′) is represented as

PSSM′ =


p′1,1 p′1,2 · · · p′1,20
p′2,1 p′2,2 · · · p′2,20

...
. . .

...
...

p′L,1 p′L,2 · · · p′L,20


L×20

. (4)

To distinguish DNA-binding and non-DNA-binding proteins, we need to justify the functional
binding sites whether they occur at the corresponding local regions of protein space. As a
further step of parenthetical explanation, protein functions in these local regions are inclined to
be evolutionarily conserved. Considering this, we conceive an algorithm called Multi-scale Local
Average Blocks (MLAB), which is enlightened by the Average Blocks (AB) approach that was proposed
by Jeong et al. [43]. In virtue of extracting local information from normalized PSSM, Jeong et al.
forecast protein function through ways that divide a protein sequence into b blocks and need not
care much about the length of sequence. This idea has also been adopted in other bioinformatical
issues [44]. On the occasion of this paper, each block consists of 20 features which are derived from
20 columns in PSSM. Similar to that, we formalize the value of attributes with a target by means
of a window with 11 residues, and then obtain a vector of normalized PSSM scores whose gross
amount is 11× 20 = 220. However, it is quite imperative that, different from the AB algorithm, fixed
size is changed into multi-scale size in our scheme; thus, the matrix is split in a horizontal manner.
The PSSM-based Multi-scale Local Average Blocks (PSSM-MLAB) features can describe the relationship
between target residue and neighboring residues in different resolutions.

More specifically, we partition the normalized PSSM of the target residues into six segmentations
with varying composition, including global zone (A), bisection (B and C) and trichotomy (D, E and F).
These segments can adequately portray multiple overlapping continuous and discontinuous interaction
patterns that are schematically shown in Figure 1. The mean value of each local block is calculated
with the formula as

LAB(k, j) =
1
Bk

Bk

∑
i=1

Matk(i, j) (i = 1, . . . , Bk; j = 1, . . . , 20; k = 1, . . . , 6), (5)

where LAB(k, j) regards the mean value of k-th block in the column j; Bk stands for the amount of
rows in block k; and Matk(i, j) represents the value of cell in i-th row and j-th column of block k.
Recapitulating the MLAB algorithm, through combining with normalized PSSM and partitioning
manipulation on an entire sequence, we can gain a 6× 20 = 120 dimensional feature vector.
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Figure 1. Schematic diagram of PSSM (Position Specific Scoring Matrix)-MLAB (Multi-scale Local
Average Blocks) feature extraction.

2.2. Predicted Solvent Accessibility

Solvent accessibility has profound significance because it is closely affiliated with not only the
spatial assignment of configuration, but also the swathing attitude about residues during the process of
protein folding. It also coincides with the fact that there is a non-negligible association between solvent
accessibility and DNA–protein interactions. The post hoc actuality has been instantiated, such as
research by Ahmad et al. [45], who has demonstrated the importance of solvent accessibility to amino
acid residues in predicting DNA–protein binding. By uniting the Solvent Accessibility prediction,
which has been implemented with the de facto tool Nearest Neighbor method (SANN) [46], we can
obtain the Predicted Solvent Accessibility (PSA) characteristics of each residue for the corresponding
sequence. With min-max normalization, the PSA feature can also be normalized among a range from
zero to one.

2.3. Weighted Sparse Representation Based Classifier

Sparse representation [47] as a sharp weapon of compressed sensing has aroused lots of scholarly
pursuit for several years. Sparse representation-based classifier(SRC) [48,49] was firstly proposed by
Wright et al. for the purpose about image recognition. In contrast to conventional taxonomization
approaches such as SVM, KNN, RF, etc., SRC is robust for both outliers and noisy situations.
To discriminate the sample corpus, which needs to be verified, SRC demands to create a Sparse
Representation Matrix (SRM) and makes a linear combination on the training set. The reconstructed
residuals of test sample for each kind of classification are measured and calculated through SRM and
linear combination. Ultimately, the corpus of samples will be assigned to the corresponding category,
arbitrated by minimum reconstruction residual. A group of researchers [50,51] have deployed SRC in
solving issues in the area of computational biology.

Suppose there are totally C kind of classifications involved in a sufficient dataset. The assignment
is how to correctly determine the attribution of a newly added sample y when we put it into the
original corpus. SRC picks nc training samples from the c-th classification, which correspond to the
volume of each raw in xc. xc can be expressed as

xc = [xc
1, . . . , xc

nc ]
T (1 ≤ c ≤ C, xc ∈ Rnc×m′), (6)

where m′ is the aggregate feature volume with regard to one sample. Thus, the training sample matrix
can be written as

X = [x1, . . . , xc, . . . , xC]T (X ∈ Rn×m′), (7)
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where n = ∑C
c=1 nc represents the amount of training samples. Then, the known test sample y will

approximately fall in the linear spanning region of the training samples associated with the c-th
classification as

yc = αc
0αc
0αc
0xc. (8)

While under unknown c condition, test sample y will be in line with the representation of whole
training set using linear regression as

y = α0α0α0X , (9)

where coefficient vector is α0α0α0 = [0, · · · ,αc
0αc
0αc
0, · · · , 0]; vector αc

0αc
0αc
0 which is associated with the c-th

classification is non-zero.
α0α0α0 could take on a kind of sparse state, whereas the size of sample about corresponding classification

is huge. The critical step of SRC algorithm is selecting the ααα vector that can both satisfy Equation (9)
and minimize the l0-norm per se with the equations as

α̂0̂α0̂α0 = argmin ‖ααα‖0,

s.t. y = αααX.
(10)

Unfortunately, searching the sparsest solution for equations (10) is NP (Non-deterministic
Polynomial)-hard. Still, as a remedy, by means of solving l1-minimization problem which belongs to
convex optimization, we can eschew the l0-minimization problem since l1-minimization problem can
be viewed as problem that is approximately equivalent to l0-minimization. For the sake of resolving
this occasion in l1, Equation (10) can be transformed into an expression as

α̂1̂α1̂α1 = argmin ‖ααα‖1,

s.t. ŷ = αααX,

‖y− ŷ‖ ≤ ε (ε > 0),

(11)

where ε reflects the tolerance of reconstruction deviation.
The SRC approach allocates the label of test pattern y w.r.t. category c according to equations{

vy = min vc
y,

vc
y = ‖y− α̂c

1α̂c
1̂αc
1X‖2,

(12)

where vc
y denotes the residuals between y and α̂c

1α̂c
1̂αc
1X (category c). Thus, vy = min vc

y means sample y will
be assigned to the category that owns minimal residuals.

To fix the problem about instability of SRC which may be aroused by noise pollution, Lu et al. [52]
have proposed the Weighted Sparse Representation based Classification (WSRC) method, which deals
with the whole training set as a vocabulary, and imposes the locality on the weighted l1 regularization.

α̂1̂α1̂α1 = argmin ‖αααΛ‖1,

s.t. ‖y−αααX‖ ≤ ε,
(13)

where Λ is a diagonal matrix about locality adaptor as

Λ =


λ1,1 0 · · · 0

0 λ2,2 · · · 0
...

. . .
...

...
0 0 · · · λC,C


C×C

. (14)

Moreover, λ denotes to the Euclidean distance from y to xc
i , which is expressed as
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λ = exp(−
‖y− xc

i‖2

2σ2 ), (15)

where i indicates the sample index of training set w.r.t. category c. σ corresponds to the Gaussian
kernel width. y, xc

i represents test sample and training sample, respectively. In addition, the values of
Gaussian distance can be viewed as the weight of each sample in training sets.

Nevertheless, the output of WSRC just meets a straightforward preliminary mapping that each
residual corresponds to a certain kind of classification (without prediction score w.r.t. each category),
since there is a greater possibility for the minimum residue of the corresponding category. For the
convenience of projecting the output about WSRC between [0, 1], there are three types of scores for
binding sites prediction, which are represented as

score1(y) = 2−vbinding(y)/vnon−binding(y) , (16)

score2(y) = 1−
vbinding(y)

vnon−binding(y) + vbinding(y)
, (17)

score3(y) =
1

1+ e−(vnon−binding(y)−vbinding(y))
, (18)

where vbinding(y) and vnon−binding(y) are the deviation of reconstruction about WSRC when assigning
test sample y w.r.t. binding and non-binding site, respectively. The assessment about the performance
with the aforementioned three types of score is shown in the experimental evaluation section.
In practice from our research, v1(y) = vbinding(y) and v2(y) = vnon−binding(y).

The accomplishment of feature extraction implies that no matter the target residue binding sites
or non-binding sites, all of them have been converted to numerical feature vectors that have their own
identical dimension. The feature space for every target residue binding site is comprised of two parts
that are PSSM-MLAB features ( fPSSM−MLAB) and PSA features ( fPSA), respectively. It needs to be
reaffirmed that all of the feature vectors have been normalized by means of min-max normalization.

2.4. Ensemble Classifier and Random Under-Sampling

Imbalanced datasets, which are characterized as a larger ratio size between non-binding examples
(majority category) and binding examples (minority category), always exist in the issue of classification.
Exploiting a schema with ensemble classifier [53,54] is a fashionable way. Consequently, we exploit an
ensemble of m classifiers with bootstrap resampling strategy [53,54]. By performing random sampling
on m subsets, which also be considered with replacement, from the majority category of non-binding
examples, we can make all negative subsets own the same or similar size as the minority category
of binding examples. After this step, every negative subset will group with the set of binding cases
and generate m new training sets. Thus, m classifiers, which are represented as { f (x)i}m

i=1, can be built
according to the m training sets. Finally, the outcome is voted by arithmetic mean value of the results
that come from m sub-classifiers. After calculating about every score as score(y)i, we can get the final
rate of voting P(y) by

P(y) =
1
m

m

∑
i=1

score(y)i , (19)

where P(y) also denotes the probabilistic factor of test sample y, and score(y)i reflects the probability
value of i-th base classifier.

The overview of the proposed ensemble model is shown in Figure 2, Ensemble Classifier with
Random Under-Sampling (EC-RUS) as the scenario to deal with the imbalanced issue.
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Figure 2. Overview of the ensemble classifier.

3. Results

We test our method on several DNA–protein binding sites datasets to evaluate the performance
of our proposed approach, including PDNA-543, PDNA-41 (independent test set of PDNA-543),
PDNA-335, PDNA-52 (independent test set of PDNA-335) and PDNA-316. First, we independently
analyze the performance of binding site representations, such as PSSM, PSSM-MLAB and PSA.
Second, we compare our method with some outstanding methods on the above datasets.

3.1. Datasets of DNA–Protein Binding Sites

PDNA-543 and PDNA-41 are independent test datasets that have been constructed by
Hu et al. [13]. They collect a dataset that contains 7, 186 DNA-binding protein chains and has clear
target annotations in PDB (Protein Data Bank) [55]. After removing redundant sequences by wielding
CD-hit software [56], there are totally 584 non-redundant protein sequences that can be obtained and
no two sequences had more than 30% identity. Then, they divide the non-redundant sequences into
two sections, which are the training dataset (PDNA-543) and the independent test dataset (PDNA-41).

PDNA-335 and PDNA-52 are independent test datasets that have been employed by Yu et al. [57].
In their research, all of the protein sequences are extracted, which are based on BioLip [58] rather
than on PDB [55]. Next, the maximal pairwise sequential identity of the extracted protein sequences
are culled to a 40 percent level by using PISCES software (1.0, Wang, G. and Roland, L. Dunbrack Jr,
Philadelphia, PA, USA) [59]. The remaining sequences constitute the training dataset. Besides that, the
test set is extracted in a similar process. Moreover, if a given sequence in the validation dataset shares
more than 40 percent similarity to a sequence in the training dataset, then remove the sequence from
the validation dataset. Training set and independent validation test sets contain 335 and 52 protein
sequences, respectively.

PDNA-316 is constructed by Si et al. [12]. The dataset embraces 316 DNA-binding protein chains,
5609 binding sites and 67, 109 non-binding sites. The detailed information of PDNA-543, PDNA-41,
PDNA-335, PDNA-52 and PDNA-316 is summarized in Table 1. Related datasets, codes, and figures of
our algorithm are available https://github.com/6gbluewind/PRODNA.

https://github.com/6gbluewind/PRODNA
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Table 1. Four different datasets of DNA–protein binding sites.

Dataset No. of Sequences No. of Binding a No. of Non-Binding b Ratio c

PDNA(Protein and DNA)-543 543 9549 134, 995 14.137
PDNA-41 41 734 14, 021 19.102
PDNA-335 335 6461 71, 320 11.038
PDNA-52 52 973 16, 225 16.675
PDNA-316 316 5609 67, 109 11.964

a: No. of Binding represents the number of positive samples. b: No. of Non-Binding represents the number of
negative samples. c: Ratio = No. of Non-Binding / No. of Binding.

3.2. Evaluation Measurements

To test the robustness, the process of random selection about training and test sets, model-building
and model-evaluating are performed repeatedly, which deals with the manner of ten-fold cross
validation. Seven parameters, including overall prediction accuracy (ACC), sensitivity (SN),
specificity (Spec), positive predictive value (Pre), and Matthew’s correlation coefficient (MCC) are
used in the assessing procedure. These parameters are represented as

ACC =
TP + TN

TP + FP + TN + FN
, (20)

SN =
TP

TP + FN
, (21)

Spec =
TN

TN + FP
, (22)

Pre =
TP

TP + FP
, (23)

MCC =
TP× TN − FP× FN√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
, (24)

where true positive (TP) is the number of true DNA–protein binding sites that are predicted correctly;
false negative (FN) is the number of true DNA–protein binding sites that are predicted to be
non-binding; false positive (FP) is the number of true non-binding sites that are predicted to be binding
sites, and true negative (TN) is the number of true non-binding sites that are predicted correctly.

The Area Under the Receiver Operating Characteristic (AUC) is a common summary statistic that
can measure the goodness of a predictor in a binary classification task. It is equal to the probability that
a predictor will rank a randomly chosen positive instance higher than a randomly chosen negative one.
We would like to emphasize that two WSRC parameters are set to σ = 1.5 and ε = 0.5, respectively.

3.3. Predicted Results on the PDNA-543 Dataset

3.3.1. Selecting Optimal Size of Sliding Window and Number of Base Classifiers

Different sizes of sliding window may lead to different performance. In addition, the number of
base classifiers will also affect the appearance of prediction. In Hu’s work [13], they use two strategies
for selecting Thresholds (T): (1) they selected the threshold that makes Sen ≈ Spec, and (2) they select
the threshold that makes FPR ≈ 5% ( FPR = 1− Spec ). In virtue of that, we adjust window size from
7 to 17 residues and number of base classifiers (m) from 1 to 29, with a step size of 2, on PDNA-543
dataset over a ten-fold cross-validation with above two strategies. Hitherto, we select Equation (16) as
default score function of base classifiers (WSRC, Equation (16)).

We select the optimal size by highest MCC value, and find that 11 and 19 are the best parameters
of window size, whereas number of base classifiers under FPR ≈ 5%. Under the condition that
Sen ≈ Spec, the value of MCC is also high (w = 11, m = 19). The result w.r.t. PDNA-543 is shown
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in Figure 3. As seen from the dotted curves, the MCC increases when size increases from 7 to 11.
However, it slightly declines when size increases from 11 up to 17. The first maximum MCC value
is achieved when m = 19 (under FPR ≈ 5%), and no improvement can be observed with larger
values of m. Recapitulating these results, we set the optimal m as 19 in the investigation. The best
MCC is 0.392, when window size and number of base classifiers are 11 residues and 19 with under
FPR ≈ 5%, respectively.

m

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

M
C

C

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3. The MCC (Matthew Correlation Coefficient) of PSSM (Position Specific Scoring Matrix)-
MLAB (Multi-scale Local Average Blocks) with different sizes of sliding window and numbers of base
classifiers (WSRC (Weighted Sparse Representation based Classifier), Equation(16)).

3.3.2. Performance of Different Features

To analyze the performance of PSSM, PSSM-MLAB and PSA features, we evaluate these features
by EC-RUS on PDNA-543 dateset. Results for PSSM, PSSM + PSA, PSSM-MLAB and PSSM-MLAB
+ PSA are shown in Table 2 and Figure 4. In addition, Equation (16) is also selected as default
score function of base classifiers (WSRC, Equation (16)). The MCC (under FPR ≈ 5%) of PSSM,
PSSM + PSA, PSSM-MLAB and PSSM-MLAB + PSA are 0.364, 0.375, 0.378 and 0.392, respectively.
Obviously, the combinatorial approach of PSSM-MLAB + PSA achieves better performance than PSSM,
PSSM + PSA or PSSM-MLAB. Furthermore, the MCC of PSSM-MLAB (0.378) is higher than PSSM
(0.364) and PSSM + PSA (0.375). Consequently, the MLAB algorithm can reduce the dimension of
PSSM and remove some noise. Because of additional solvent accessibility information, the MCC
(under FPR ≈ 5%) of PSSM-MLAB + PSA (0.392) and PSSM + PSA (0.375) are all higher than single
PSSM-MLAB (0.378) and single PSSM (0.364), respectively. In Figure 4, we can see that the fusion
feature of PSSM-MLAB and PSA has better performance than the other features in the PDNA-543
dataset.
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Table 2. The performance comparison of different features through ten-fold cross-validation by
EC-RUS (Ensemble Classifier with Random Under-Sampling) (WSRC (Weighted Sparse Representation
based Classifier), Equation (16)) on PDNA-543 dataset.

Feature SN Spec ACC Pre MCC AUC

PSSM (Sen ≈ Spec) 0.7738 0.7570 0.7581 0.1844 0.294 0.843
PSSM (FPR ≈ 5%) 0.4377 0.9500 0.9160 0.3832 0.364 0.843

PSSM + PSA (Sen ≈ Spec) 0.7850 0.7590 0.7607 0.1874 0.302 0.851
PSSM + PSA (FPR ≈ 5%) 0.4541 0.9494 0.9166 0.3886 0.375 0.851

PSSM-MLAB (Sen ≈ Spec) 0.7744 0.7599 0.7609 0.1864 0.297 0.848
PSSM-MLAB (FPR ≈ 5%) 0.4516 0.9510 0.9178 0.3955 0.378 0.848

PSSM-MLAB + PSA (Sen ≈ Spec) 0.7894 0.7629 0.7646 0.1907 0.307 0.855
PSSM-MLAB + PSA (FPR ≈ 5%) 0.4762 0.9492 0.9180 0.3991 0.392 0.855
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Figure 4. The AUC (Area Under the Receiver Operating Characteristic) and AUPR (Area Under
the Precision-Recall curve) of PSSM (Position Specific Scoring Matrix), PSSM + PSA (Predicted
Solvent Accessibility), PSSM-MLAB (Multi-scale Local Average Blocks) and PSSM-MLAB + PSA
obtained with EC-RUS (Ensemble Classifier with Random Under-Sampling) (WSRC (Weighted Sparse
Representation based Classifier), Equation (16)) on PDNA (Protein and DNA)-543 dataset over a
ten-fold cross-validation test. (a) receiver operating characteristic curves; (b) precision–recall curves.

3.3.3. Selecting Optimal Score Function of Base WSRC

In order to make a decision w.r.t. score function (WSRC) from Equations (16)–(18), we evaluate the
above functions on PDNA-543 across a ten-fold cross-validation test with PSSM-MLAB + PSA as feature.
The results of different functions on PDNA-543 are shown in Figure 5. Obviously, the performance
of three different score functions are almost identical. However, the type 1 (0.392, under FPR ≈ 5%)
function achieves better performance of MCC than type 2 (0.380, under FPR ≈ 5%) and 3 (0.388,
under FPR ≈ 5%). Thus, we select the Equation (16) as the score function of WSRC.
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Figure 5. Results for different score functions on PDNA-543. Type 1, 2 and 3 represent Equations
(16)–(18), respectively.

3.3.4. Comparison with Existing Predictors on PDNA-543

We also compare the prediction performance of our proposed method with Hu’s work [13] on this
dataset, as shown in Table 3. Our method achieves 0.307 MCC under Sen ≈ Spec. However, Hu’s work
achieves 0.304 MCC under Sen ≈ Spec. Moreover, our method achieves the best MCC of 0.392 under
FPR ≈ 5%. Our method obtains better prediction results than Hu’s work on the PDNA-543 dataset.

Table 3. Comparison with the TargetDNA on PDNA-543 dataset by ten-fold cross-validation.

Methods SN Spec ACC Pre MCC AUC

TargetDNA (Sen ≈ Spec) ∗[13] 0.7698 0.7705 0.7704 0.1918 0.304 0.845
TargetDNA (FPR ≈ 5%) ∗[13] 0.4060 0.9500 0.9140 0.3647 0.339 0.845

Our method (Sen ≈ Spec) 0.7894 0.7629 0.7646 0.1907 0.307 0.855
Our method (FPR ≈ 5%) 0.4762 0.9492 0.9180 0.3991 0.392 0.855

Results excerpted from [13].

3.4. Predicted Results on the Independent Test Set of PDNA-41

In this section, we use the PDNA-543 dataset as the training set and PDNA-41 as the independent
test set. It has been compared with other previous works including BindN [3], ProteDNA [9],
BindN+ [5], MetaDBSite [12], DP-Bind [60], DNABind [20] and TargetDNA [13] with summarizing
results in Table 4. Under FPR ≈ 5%, our method (EC-RUS built with WSRC) achieves 0.9458 accuracy,
0.2725 sensitivity, 0.4292 Pre and 0.315 MCC. Comparing with Sen ≈ Spec, sensitivity declines
(0.3379), specificity, accuracy, Pre and MCC rise together (0.2006, 0.1814, 0.3061 and 0.122, respectively).
Furthermore, our method achieves the best MCC (0.315) under FPR ≈ 5%. Figure 6 shows the trend
(including sensitivity, specificity, accuracy, Pre and MCC) on different threshold T of probability.
While the threshold of probability rises, values of specificity, accuracy, Pre and MCC are synchronously
rising. The trend of sensitivity and rate p/n are opposite.

In addition, we test different types of base classifiers to build an EC-RUS model. The base classifiers
together contain SVM [25,61], RF [26], L1-regularized Logistic Regression (L1-LR) [62] and Sparse
Bayesian Learning (SBL) [63]. Under FPR ≈ 5%, EC-RUS (SVM), EC-RUS (RF), EC-RUS (L1-LR) and
EC-RUS (SBL) achieve MCC of 0.302, 0.261, 0.246 and 0.247, respectively. The MCC (0.315) EC-RUS
(WSRC) is better than the above models. We can see that a sparse representation based classifier is
suitable for the classification with PSSM-MLAB features. The best performance lies in the fact that
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weighted SRC further improves the performance of basic SRC and the easily adjusted parameter of
WSRC can exert its effect fully in our experiments.
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Figure 6. Results for different thresholds of probability on independent test set of PDNA-41. Rate p/n
means the ratio between the predictive number of binding sites and the predictive number of
non-binding sites.

Table 4. Comparison with some state-of-the-art works on the Independent PDNA-41 dataset.

Methods MCC SN Spec ACC Pre

BindN ∗ 0.143 0.4564 0.8090 0.7915 0.1112
ProteDNA ∗ 0.160 0.0477 0.9984 0.9511 0.6030

BindN+ (FPR ≈ 5%) ∗ 0.178 0.2411 0.9511 0.9158 0.2051
BindN+ (Spec ≈ 85%) ∗ 0.213 0.5081 0.8541 0.8369 0.1542

MetaDBSite ∗ 0.221 0.3420 0.9335 0.9041 0.2122
DP-Bind ∗ 0.241 0.6172 0.8243 0.8140 0.1553

DNABind ∗ (structure based) 0.264 0.7016 0.8028 0.7978 0.1570
TargetDNA (Sen ≈ Spec) ∗ 0.269 0.6022 0.8579 0.8452 0.1816
TargetDNA (FPR ≈ 5%) ∗ 0.300 0.4550 0.9327 0.9089 0.2613

EC-RUS (WSRC) (Sen ≈ Spec) a 0.193 0.6104 0.7725 0.7644 0.1231
EC-RUS (WSRC) (FPR ≈ 5%) a 0.315 0.2725 0.9731 0.9458 0.4292
EC-RUS (SVM) (Sen ≈ Spec) a 0.261 0.6975 0.8032 0.7972 0.1567
EC-RUS (SVM) (FPR ≈ 5%) a 0.302 0.3787 0.9577 0.9281 0.3092
EC-RUS (RF) (Sen ≈ Spec) a 0.234 0.6785 0.7818 0.7767 0.1401
EC-RUS (RF) (FPR ≈ 5%) a 0.261 0.3351 0.9524 0.9217 0.2691

EC-RUS (L1-LR) (Sen ≈ Spec) a 0.228 0.6199 0.8084 0.7991 0.1449
EC-RUS (L1-LR) (FPR ≈ 5%) a 0.246 0.3120 0.9541 0.9221 0.2623
EC-RUS (SBL) (Sen ≈ Spec) a 0.219 0.7084 0.7434 0.7416 0.1263
EC-RUS (SBL) (FPR ≈ 5%) a 0.247 0.3202 0.9521 0.9206 0.2591

∗: Results excerpted from [13]. a: The feature is PSSM-MLAB + PSA. In addition, the EC-RUS model is built
with different base classifiers.

3.5. Predicted Results on the PDNA-316 Dataset

In order to highlight the advantage of our method, we also test on the PDNA-316 dataset, which is
described by Si et al. [12]. We compare the prediction performance of our proposed method with
other previous works including DBS-PRED [7], BindN [3], DNABindR [6], DISIS [11], DP-Bind [60],
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BindN-RF [4], MetaDBSite [12] and TargetDNA [13]. In Table 5, we can see that the average prediction
performance of our method, such as sensitivity, specificity, accuracy and MCC are 0.8067, 0.7818, 0.7837
and 0.356 under Sen ≈ Spec, respectively. Although DISIS [11] achieves better values of specificity
and ACC, and ACC, which are 0.9800, 0.9200, the sensitivity (0.1900) and MCC (0.250) are not high.
Furthermore, our method (EC-RUS built with WSRC) achieves the best MCC of 0.439 under FPR ≈ 5%.
It is shown that the MLAB algorithm deeply extracts the evolutional information from PSSM.

Different types of base classifiers are used to construct the EC-RUS model, and EC-RUS (SVM),
EC-RUS (RF), EC-RUS (L1-LR) and EC-RUS (SBL) achieve MCC (under FPR ≈ 5%) of 0.426, 0.394,
0.319 and 0.317, respectively. Extensive experiments in our study have illustrated that WSRC is better
than other classifiers.

Table 5. Comparison of the prediction performance between the proposed method and some
state-of-the-art works on PDNA-316 dataset.

Methods SN Spec ACC MCC

DBS-PRED ∗ (structure based) 0.5300 0.7600 0.7500 0.170
BindN ∗ 0.5400 0.8000 0.7800 0.210

DNABindR ∗ 0.6600 0.7400 0.7300 0.230
DISIS ∗ 0.1900 0.9800 0.9200 0.250

DP-Bind ∗ 0.6900 0.7900 0.7800 0.290
BindN-RF ∗ 0.6700 0.8300 0.8200 0.320

MetaDBSite [12] 0.7700 0.7700 0.7700 0.320
TargetDNA (Sen ≈ Spec) [13] 0.7796 0.7803 0.7802 0.339
TargetDNA (FPR ≈ 5%) [13] 0.4302 0.9500 0.9099 0.375

EC-RUS (WSRC) (Sen ≈ Spec) a 0.8067 0.7818 0.7837 0.356
EC-RUS (WSRC) (FPR ≈ 5%) a 0.5108 0.9499 0.9161 0.439
EC-RUS (SVM) (Sen ≈ Spec) a 0.8011 0.7969 0.7973 0.369
EC-RUS (SVM) (FPR ≈ 5%) a 0.4935 0.9500 0.9150 0.426
EC-RUS (RF) (Sen ≈ Spec) a 0.7989 0.7542 0.7576 0.326
EC-RUS (RF) (FPR ≈ 5%) a 0.4521 0.9502 0.9118 0.394

EC-RUS (L1-LR) (Sen ≈ Spec) a 0.7347 0.7659 0.7635 0.300
EC-RUS (L1-LR) (FPR ≈ 5%) a 0.3523 0.9498 0.9037 0.319
EC-RUS (SBL) (Sen ≈ Spec) a 0.7453 0.7540 0.7533 0.295
EC-RUS (SBL) (FPR ≈ 5%) a 0.3562 0.9480 0.9023 0.317

∗: Results excerpted from [12,13]. a: The feature is PSSM-MLAB + PSA. In addition, EC-RUS model is built
with different base classifiers.

3.6. Predicted Results on PDNA-335 and PDNA-52 Datasets

PDNA-335 and PDNA-52 (independent test set of PDNA-335) are collected by Yu et al. [57].
To further evaluate our model, we employ the PDNA-335 dataset as the training set and PDNA-52 as the
independent test set. Performance comparison about our method with TargetS [57], MetaDBSite [12],
DNABR [64], and alignment-based predictor on the independent validation dataset of PDNA-52 is
listed in Table 6. At the occasion of imbalanced learning, the MCC provides the overall measurement
about the quality of binary prediction. In Yu’s work [57], they implement the evaluation by choosing the
Threshold (T) of probability value, in order to maximize the MCC value of prediction. Thus, we apply
the same evaluation on PDNA-52. Obviously, TargetS achieves the best overall prediction performance
among the nine listed predictors with the highest MCC value of 0.377, which is about 0.13 higher than
that of the second-best (0.245) performer model (EC-RUS built with WSRC). The proposed method
along with TargetS does not perform well on an independent PDNA-52 dataset because TargetS has
equipped the residues’ 3D coordinates contained in the PDB file to spatial clustering before it probes
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binding sites. Results of experiments show that our model is also compatible by comparing with the
rest of the methods on an independent PDNA-52 dataset.

The trends (including sensitivity, specificity, accuracy, Pre and MCC) on different threshold T of
probability are shown in Figure 7. EC-RUS (WSRC) achieves the highest MCC of 0.245 when T = 0.718.
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Figure 7. Results for different thresholds of probability on Independent test set of PDNA-52. Rate p/n
means the ratio between the predictive number of binding sites and the predictive number of
non-binding sites.

Table 6. Comparison with some state-of-the-art works on PDNA-52 dataset under maximizing the
value of MCC.

Methods SN Spec ACC MCC AUC

TargetS [57] ∗ 0.413 0.965 0.933 0.377 0.836
MetaDBSite [12] ∗ 0.580 0.764 0.752 0.192 -

DNABR [64] ∗ 0.407 0.873 0.846 0.185 -
alignment-based ∗ 0.266 0.943 0.905 0.190 -
EC-RUS (WSRC) a 0.467 0.913 0.896 0.245 0.808
EC-RUS (SVM) a 0.528 0.835 0.823 0.185 0.756
EC-RUS (RF) a 0.561 0.773 0.764 0.152 0.741

EC-RUS (L1-LR) a 0.594 0.811 0.803 0.201 0.787
EC-RUS (SBL) a 0.635 0.782 0.776 0.192 0.786

∗: Results excerpted from [57]. a: The feature is PSSM-MLAB + PSA. In addition, EC-RUS model is built with
different base classifiers.

3.7. Significance Analysis

We employ the Wilcoxon rank-sum test to analyze the statistical significance of MCC between
other methods (including MetaDBSite and TargetDNA) and our method on PDNA-543, PDNA-41,
PDNA-316 and PDNA-52 datasets. The significance level is 0.05, and results of tests are shown in
Table 7. The differences between other methods and our method are not significant (MetaDBSite
p-value : 0.2667, TargetDNA p-value : 0.4610). The main reason of this is that most of the above
methods are based on sequence information. Hence, the increment of MCC is small. We would
consider structure information in our further work.
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Table 7. The statistical significance of MCC between other methods (including MetaDBSite and
TargetDNA) and our method.

Methods p-Value

Our method-MetaDBSite 0.2667
Our method-TargetDNA 0.4610

3.8. Case of Prediction

Examples of 4X0PD (PDB ID: 4X0P, Chain: D) and 5BMZCD (PDB ID: 5BMZ, Chain: C and D)
belong to the PDNA-41 dataset. We use the PDNA-543 dataset as the training set to predict two
examples, which are shown in Figure 8. The orange object of the helix is a DNA chain, while the green
object is the protein sequence (containing helix, fold and loop structure). Blue regions and red regions
are the true prediction and false prediction, respectively. In addition, the results of two methods
(our method and DP-Bind [60]) are shown in Table 8. On the 4X0P-D, the FP of our method (34) is
less than DP-Bind (154). Furthermore, the FP and FN of our method (9, 3) are both less than DP-Bind
(16, 7) on 5BMZ-D.

PDB ID: 4X0P Chain: D

PDB ID: 5BMZ Chain: C and D

Our method DP-Bind

Our method DP-Bind

Figure 8. Representative protein-DNA complex: Upper is 4X0P-D (PDB ID: 4X0P, Chain: D), lower is
5BMZ-CD (PDB ID: 5BMZ, Chain: C and D).
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Table 8. Comparison with DP (DNA Protein)-Bind on 4X0P-D and 5BMZ-D.

PDB (Protein Data Bank) ID Method TP TN FP FN

4X0P-D our method 24 559 34 8
DP-Bind 29 439 154 3

5BMZ-D our method 14 110 9 3
DP-Bind 10 103 16 7

3.9. Running Time

The computational complexity and running time of WSRC depend on the number of training
and testing samples. The Gaussian distances of testing and each training sample are calculated
by the WSRC. The running time of other classifiers only depend on the number of training sets.
The sizes of PDNA-543 (Training sets) and PDNA-41 (Testing sets) are 144,544 and 14,755, respectively.
The PDNA-335 (Training sets) and PDNA-52 (Test sets) contain 77,781 and 17,198 samples, respectively.
Although the WSRC is time-consuming, the performance is better than other classifiers on PDNA-41
and PDNA-52. The running times are listed in Table 9.

Table 9. The running time (seconds) of EC-RUS on PDNA-41 and PDNA-52 independent testing sets.

Classifier PDNA-41 PDNA-52

EC-RUS (WSRC) 9227 14,407
EC-RUS (L1-LR) 705 232

EC-RUS (RF) 3778 1632
EC-RUS (SBL) 136,241 40,121
EC-RUS (SVM) 27,210 2043

4. Discussion

Albeit many computational approaches have been proposed to prospect DNA–protein binding
sites, there still have potential enhancing space for refining the state-of-the-art prediction models.
Existing methods always disregard local environments that appear neither reliable nor robust.
Hence, we put forward a kind of multi-scale local average blocks idea to further leach local evolutionary
information from PSSM. Compared with original PSSM, the MCC of PSSM-MLAB rises by 0.014 in a
PDNA-543 dataset.

5. Conclusions

Our algorithm has been extensively validated on several datasets including PDNA-543, PDNA-41,
PDNA-316, PDNA-335 and PDNA-52 datasets. Our method achieves MCC of 0.392, 0.315, 0.439
and 0.245 on PDNA-543, PDNA-41, PDNA-316 and PDNA-52 datasets, respectively. Contrasted
with the state-of-the-art prediction models, MCC (under FPR ≈ 5%) for our method is increased
by at least 0.053, 0.015 and 0.064 on PDNA-543, PDNA-41 and PDNA-316 datasets, respectively.
Our method has reached a desired performance that achieves comparable or even better prediction
results across possessive datasets. Besides that, our method could be a de facto instrument for future
proteomics studies.

In the future, we will ameliorate the forecasting performance of MLAB by refining the feature
representation and classification tactics. For feature representation, we will consider the amino acid
compositions and predicted secondary structures, which have been obtained as local PSSM-based
features. Furthermore, well-established classifier also can be an alternative condition. Powerful
classifiers such as Modified AdaBoost(MAdaBoost) [57] and LibD3C [65,66] can all be integrated into
the clustering and dynamic selecting schema.
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