Supplementary Materials: Solvation Dynamics of CO₂(g) by Monoethanolamine at the Gas–Liquid Interface: A Molecular Mechanics Approach

I-Shou Huang, Jia-Jen Li and Ming-Kang Tsai

Figure S1. MP2/aug-cc-pVTZ optimized monomeric MEA geometries using PCM model in EtOH. The distance between N of NH₂ group to H of OH group is labeled.

Figure S2. History of intramolecular NNH2-HOH distance in Å of (**a**) 2 ns (MEA)₁₂₈ bulk simulation at 400 K and (**b**) (CO₂)₄₄ in (MEA)₈₀₄ simulations at 400 K. The sampled potential energy surface of simulation (**a**) is shown in Figure S3. Ten MEA molecules are randomly selected and N-H distance is recorded per 10 ps for (**a**). The 10 MEA molecules positioning closest to (CO₂)₄₄ at t = 0 ps are chosen and N-H distance is recorded per 1 ps for (**b**).

Figure S3. The 3 ns history of the sampled potential energy for bulk MEA at 400 K and the last 2 ns trajectory is used for intramolecular HB analysis.

Table S1. The energetics of various stable geometries calculated at MP2/aug-cc-pVTZ using PCM model and MM level in vacuum.

kcal/mol (AU)	Е рсм (MP2)	GPCM(MP2)	ΔU(MM)
trans-MEA	0.00 (-210.02476)	0.00 (-209.95389)	0.00
cis-MEA (NH2…OH)	-1.01 (-210.02636)	-0.91 (-209.95534)	-0.02
cis-MEA (OH…NH2)	-2.55 (-210.02881)	-1.83 (-209.95682)	0.18

Table S2. Cartesian coordinates at BLYP-D2/aug-cc-pVTZ level for the OHO and NHN.

OHO				NHN			
Ν	3.023	-0.080	-1.310	Ν	-1.655	1.716	0.176
Н	2.112	-0.453	-1.585	Н	-1.684	2.590	-0.348
Н	3.719	-0.524	-1.910	Н	-1.883	1.944	1.146
С	3.263	-0.433	0.107	С	-2.645	0.753	-0.369
Н	4.225	-0.001	0.419	С	-2.431	-0.613	0.288
Н	3.304	-1.523	0.291	Н	-2.473	0.661	-1.449
С	2.156	0.153	0.985	Н	-3.695	1.059	-0.219
Н	2.397	-0.028	2.045	Н	-1.435	-0.997	0.027
Н	2.090	1.237	0.811	Н	-2.489	-0.504	1.387
0	0.893	-0.480	0.674	0	-3.478	-1.493	-0.187
Н	0.249	0.221	0.436	Н	-3.227	-2.402	0.038
0	-0.970	1.548	-0.015	Н	0.165	0.525	-0.201
Н	-1.265	1.978	0.806	Ν	1.010	-0.028	-0.375
Ν	-3.638	-1.087	-0.274	Н	1.420	0.303	-1.250
Н	-3.265	-1.653	-1.038	С	1.982	0.188	0.713
Н	-4.065	-1.735	0.388	С	3.270	-0.580	0.445
С	-2.542	-0.335	0.379	Н	1.548	-0.190	1.651
Н	-1.664	-0.946	0.646	Н	2.244	1.252	0.872
Н	-2.940	0.103	1.306	Н	3.941	-0.508	1.318
С	-2.095	0.797	-0.558	Н	3.032	-1.637	0.249
Н	-1.729	0.385	-1.506	0	3.903	0.016	-0.722
Н	-2.939	1.468	-0.772	Н	4.603	-0.584	-1.024

parameter set for CO2 + MEA parameterized by MKT (2016)

atom 1 C "CSP3 ALKANE" 6 12.000 4
atom 5 H "EXCEPT ON N,O,S" 1 1.008 1
atom 3 C "C of CO2" 6 12.000 2
atom 7 O "O of CO2" 8 15.999 1
atom 6 O "C-O-H, C-O-C, O-O" 8 15.995 2
atom 21 H "-OH ALCOHOL" 1 1.008 1
atom 8 N "NSP3" 7 14.003 3
atom 23 H "NH AMINE/IMINE" 1 1.008 1
bond 1 5 4.86 1.0969
bond 6 21 7.57 0.9718
bond 8 23 6.42 1.0222
bond 1 8 5.30 1.4811
bond 1 6 5.70 1.4478
bond 1 1 4.49 1.5297
bond 3 7 14.50 1.1739
angle 7 3 7 0.70 180.00
angle 5 1 5 0.51 109.44
angle 21 6 21 0.66 104.56
angle 23 8 23 0.45 106.78
angle 5 1 8 0.82 109.30
angle 1 8 23 0.60 110.20
angle 1 6 21 0.75 108.00
angle 1 1 5 0.59 109.80
angle 1 1 6 0.83 107.50
angle 1 1 8 0.78 109.47
angle 5 1 6 0.82 110.00
torsion 5 1 1 8 0.000 0.0 1 0.000 180.0 2 0.374 0.0 3
torsion 6 1 1 8 0.000 0.0 1 -1.050 180.0 2 1.850 0.0 3
torsion 5 1 1 5 0.000 0.0 1 0.000 180.0 2 0.238 0.0 3
torsion 5 1 1 6 0.000 0.0 1 0.000 180.0 2 0.300 0.0 3
torsion 1 1 6 21 0.400 0.0 1 0.000 180.0 2 0.100 0.0 3
torsion 5 1 6 21 0.000 0.0 1 0.000 180.0 2 0.200 0.0 3
torsion 1 1 8 23 0.073 0.0 1 -0.422 180.0 2 0.327 0.0 3
torsion 5 1 8 23 0.121 0.0 1 -0.648 180.0 2 0.199 0.0 3
vdw 6 1.820 0.059
vdw 8 1.930 0.043
vdw 1 2.040 0.800
vdw 3 1.412 0.030
vdw 7 1.513 0.100
dipole 1 8 1.65 0.5
dipole 1 6 1.94 0.5
dipole 3 7 1.80 0.5
dipole 6 21 -1.94 0.5
dipole 8 23 -1.65 0.5