Supplementary Materials: Assignment of Absolute Configuration of a New Hepatoprotective Schiartane-Type Nortriterpenoid Using X-Ray Diffraction

Xiaojuan Wang, Frank R. Fronczek, Jiabao Chen, Jiabao Liu, Daneel Ferreira, Shuai Li and Mark T. Hamann

Figure S2. The IR spectrum of micrandilactone H.

Figure S3. The ECD spectrum of micrandilactone H.

Γ	m/z	lon	Formula	Abundianice	1									
- []	517	280 6 (M -	HH C29 H41 C	1969917.5]									
	Best	Formula (M)	Ion Formula	Score	Cross Score	Mass	Calc Mass	Calc miz	Diff (ppm)	Abs Diff (ppm)	Mass Match	Abund Match	Spacing Match	DBE
	1 IV	C29 H4	O8 C29 H41 C	8 99.79		516,2734	516.2723	517.2796	-2	2	99.85	99.55	99.92	10
	the second secon	and the second	and the second se	and the second sec	And a second sec					the subscription of the second s		And the second sec	the second se	
Γ	miz	lon	Formula	Abundance]									
E	m\2 639	len 2637 (M+	Formula a)+ C29 H40 Na O	Abundan ce 8 876727.8										
E	m/z 539 Best	lon 2637 (M+ Formula (M)	Formula a)+ C29 H40 Na O Ion Formula	Abundanice 8 876727.8 Score	Cress Score	Mass	Celc Mass	Calc m/z	Diff (ppm)	Abs Diff (ppm)	Mass Match	Abund Match	Spacing Match	DBE

Figure S4. The HR-ESI-MS spectrum of micrandilactone H.

Figure S5. The ¹H-NMR spectrum of micrandilactone H.

Figure S9. The NOESY spectrum of micrandilactone H.

Molecules 2017, 22, 65; doi:10.3390/molecules22010065

Figure S10. ORTEP plot of the molecular structure of micrandilactone H. Red = oxygen; grey = carbon; white = hydrogen.

Identification Code	Micrandilactone H.
Empirical formula	$C_{29}H_{40}O_8$
Formula weight	516.61
Temperature	90 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21
	a = 10.8666 (16) Å, α = 90°
Unit cell dimensions	b = 10.3174 (16) Å, β = 113.828(7)°
	c = 12.6133 (19) Å, γ = 90°.
Volume	1293.6 (3) ų
Z	2
Density (calculated)	1.326 mg/m ³
Absorption coefficient, µ	0.10 mm ⁻¹
F(000)	556.0
Crystal size	0.33 × 0.29 × 0.15 mm
Theta range for data collection	1.8° to 36.4°
Index ranges	$-18 \le h \le 16, -17 \le k \le 13, -20 \le l \le 20$
Reflections collected	21,401
Independent reflections	10,252
Completeness to theta = 25.2°	0.999
Absorption correction	Multi-scan
Max. and min. transmission	0.986 and 0.934
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	10252/1/348
Goodness-of-fit on F ²	1.04
Final R [I>2sigma(I)]	0.036
R (all data)	0.041
Absolute structure parameter	0.0(2)
Extinction coefficient	none
Largest diff. peak and hole	0.40, −0.23 eÅ-³

Table S1. Crystal data and structure refinement for micrandilactone H.

Table S2. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for micrandilactone H.

	~	44	~	11. */11
01	0.72526 (8)	$\frac{y}{0.52140(10)}$		0.01275 (17)
	0.72336(6) 0.46412(8)	0.32140(10)	0.44744(7) 0.44877(7)	0.01373(17)
02	0.40412(0)	0.03903(0)	0.44077(7)	0.00996(13)
03	0.34881 (9)	0.69061(9)	0.26348 (8)	0.01523(17)
04	0.32344(9)	0.60775 (10)	0.58935 (8)	0.01314 (16)
H4O	0.2667 (19)	0.583(2)	0.5228 (17)	0.020 *
05	0.32670 (11)	0.77748 (10)	0.75508 (9)	0.01838 (19)
H5O	0.307 (2)	0.721 (2)	0.7022 (18)	0.028*
06	0.11200 (9)	0.66578 (9)	1.04811 (8)	0.01346 (16)
H6O	0.1822 (19)	0.664 (2)	1.1052 (17)	0.020*
07	0.14669 (8)	0.43545 (9)	1.18981 (7)	0.01370 (17)
08	0.17721 (11)	0.47960 (13)	1.37233 (9)	0.0267 (2)
C1	0.59976 (11)	0.46515 (12)	0.43314 (10)	0.0118 (2)
H1	0.6069	0.3695	0.4472	0.014*
C2	0.49446 (12)	0.49921 (13)	0.31467 (10)	0.0130 (2)
H2A	0.5366	0.5176	0.2598	0.016*
H2B	0.4290	0.4277	0.2833	0.016*
C3	0.42705 (11)	0.61851 (12)	0.33498 (10)	0.01077 (19)
C4	0.79711 (11)	0.54304 (13)	0.57031 (10)	0.0128 (2)
C5	0.68697 (11)	0.60346 (12)	0.60447 (10)	0.01039 (18)
H5A	0.6805	0.6973	0.5829	0.012*
C6	0.71704 (11)	0.59738 (13)	0.73337 (10)	0.0129 (2)
H6A	0.7987	0.6494	0.7762	0.015*
H6B	0.7373	0.5064	0.7596	0.015 *
C7	0.60256 (11)	0.64662 (13)	0.76546 (10)	0.0123 (2)
H7A	0.6423	0.6862	0.8436	0.015 *
H7B	0.5523	0.7152	0.7099	0.015 *
C8	0.50358 (11)	0.53999 (11)	0.76490 (9)	0.00924 (18)
H8	0.5609	0.4621	0.7986	0.011 *
C9	0.40725 (11)	0.49866 (12)	0.64283 (9)	0.00970 (18)
C10	0.55634 (10)	0.53822 (11)	0.52012 (9)	0.00915 (18)
C11	0.31924 (13)	0.38596 (13)	0.65300 (11)	0.0154 (2)
H11A	0.2524	0.3625	0.5748	0.018 *
H11B	0.3767	0.3092	0.6860	0.018 *
C12	0.24725 (12)	0.42141 (13)	0.72826 (10)	0.0136 (2)
H12	0.1620	0.3834	0.7126	0.016 *
C13	0.29837 (11)	0.50405 (12)	0.81600 (9)	0.01010 (18)
C14	0.43376 (11)	0.56952 (12)	0.84893 (9)	0.00931 (18)
C15	0.39495 (12)	0.71139 (12)	0.86178 (10)	0.0126 (2)
H15	0.4768	0.7612	0.9117	0.015 *
C16	0.29873 (13)	0.69653 (13)	0.92437 (11)	0.0139 (2)
H16A	0.2343	0.7696	0.9045	0.017 *
H16B	0.3504	0.6950	1.0094	0.017 *
C17	0.22296 (11)	0.56646 (12)	0.88195 (9)	0.01036 (19)
H17	0.1307	0.5882	0.8237	0.012 *
C18	0.53056 (12)	0.52340 (14)	0.97031 (10)	0.0147 (2)
H18A	0.4878	0.5348	1.0248	0.022 *
H18B	0.6136	0.5745	0.9964	0.022 *
H18C	0.5519	0.4316	0.9669	0.022 *
C19	0.48074 (11)	0.44821 (11)	0.56867 (10)	0.01039 (18)

Table	S2.	Cont.	

	x	y	z	$U_{ m iso}$ */ $U_{ m eq}$
H19A	0.5461	0.3822	0.6158	0.012 *
H19B	0.4129	0.4019	0.5018	0.012 *
C20	0.20562 (11)	0.48329 (12)	0.97848 (9)	0.01012 (18)
H20	0.2892	0.4925	1.0510	0.012 *
C21	0.18522 (13)	0.33929 (13)	0.94771 (11)	0.0144 (2)
H21A	0.1836	0.2905	1.0138	0.022 *
H21B	0.2592	0.3079	0.9290	0.022 *
H21C	0.0997	0.3271	0.8806	0.022 *
C22	0.08720 (11)	0.53849 (12)	1.00190 (9)	0.01094 (19)
H22	0.0099	0.5456	0.9246	0.013 *
C23	0.03925 (11)	0.45074 (13)	1.07598 (10)	0.01171 (19)
H23	0.0130	0.3641	1.0380	0.014 *
C24	-0.07391 (12)	0.50547 (14)	1.10001 (11)	0.0148 (2)
H24	-0.1599	0.5266	1.0421	0.018 *
C25	-0.03865 (13)	0.52078 (14)	1.21338 (11)	0.0157 (2)
C26	0.10340 (13)	0.47907 (14)	1.27055 (10)	0.0158 (2)
C27	-0.11622 (17)	0.56715 (18)	1.28035 (14)	0.0271 (3)
H27A	-0.2000	0.6079	1.2274	0.041 *
H27B	-0.0623	0.6305	1.3384	0.041 *
H27C	-0.1372	0.4935	1.3192	0.041 *
C29	0.85235 (13)	0.41378 (14)	0.63016 (12)	0.0169 (2)
H29A	0.7777	0.3590	0.6279	0.025 *
H29B	0.9136	0.4297	0.7110	0.025 *
H29C	0.9012	0.3700	0.5900	0.025 *
C30	0.91182 (12)	0.63674 (14)	0.58623 (11)	0.0168 (2)
H30A	0.9803	0.5926	0.5674	0.025 *
H30B	0.9520	0.6665	0.6669	0.025 *
H30C	0.8769	0.7114	0.5347	0.025 *

Table S3. Bond lengths (Å) and angles (°) for micrandilactone H.

O1-C1	1.4259 (15)	C12-C13	1.3281 (17)
O1-C4	1.4433 (15)	C12-H12	0.9500
O2-C3	1.3426 (14)	C13-C14	1.5164 (16)
O2-C10	1.4767 (14)	C13-C17	1.5261 (16)
O3-C3	1.2125 (15)	C14-C18	1.5414 (16)
O4-C9	1.4334 (15)	C14-C15	1.5498 (18)
O4—H4O	0.85 (2)	C15-C16	1.5514 (17)
O5-C15	1.4212 (16)	C15-H15	1.0000
O5-H5O	0.85 (2)	C16-C17	1.5521 (18)
O6-C22	1.4178 (16)	C16-H16A	0.9900
O6-H6O	0.81 (2)	C16-H16B	0.9900
O7-C26	1.3595 (16)	C17-C20	1.5619 (16)
O7-C23	1.4474 (14)	C17-H17	1.0000
O8-C26	1.2081 (15)	C18-H18A	0.9800
C1-C2	1.5114 (17)	C18-H18B	0.9800
C1-C10	1.5533 (16)	C18-H18C	0.9800
C1-H1	1.0000	C19-H19A	0.9900
C2-C3	1.5062 (17)	C19—H19B	0.9900
C2-H2A	0.9900	C20-C21	1.5289 (19)
C2—H2B	0.9900	C20-C22	1.5410 (16)
C4-C30	1.5253 (19)	C20-H20	1.0000
C4-C29	1.5305 (19)	C21-H21A	0.9800

Table	S3.	Cont.
-------	-----	-------

C4-C5	1.5567 (16)	C21-H21B	0.9800
C5-C6	1.5247 (16)	C21-H21C	0.9800
C5-C10	1.5427 (16)	C22-C23	1.5355 (16)
C5-H5A	1.0000	C22-H22	1.0000
C6-C7	1.5415 (17)	C23-C24	1.4912 (17)
C6-H6A	0.9900	C23-H23	1.0000
C6—H6B	0.9900	C24-C25	1.3320 (18)
C7–C8	1.5367 (17)	C24-H24	0.9500
C7—H7A	0.9900	C25-C26	1.4794 (19)
C7—H7B	0.9900	C25-C27	1.4927 (18)
C8 - C9	1,5317 (15)	C27—H27A	0.9800
C8 - C14	1.5625 (15)	C27—H27B	0.9800
C8—H8	1.0000	C27—H27C	0.9800
C9-C11	1,5435 (17)	C29—H29A	0.9800
C9-C19	1.5451 (15)	C29—H29B	0.9800
C10 - C19	1.5228 (16)	C29—H29C	0.9800
C11 - C12	1.4989 (17)	C_{30} H30A	0.9800
C11—H11A	0.9900	C30—H30B	0.9800
C11—H11B	0.9900	$C_{30} - H_{30}C$	0.9800
C1 - O1 - C4	105.84 (9)	05 - C15 - C14	114.46 (10)
$C_{3}-O_{2}-C_{10}$	111.90 (9)	$O_{5}-C_{15}-C_{16}$	109.15 (10)
C9 - O4 - H4O	107.3 (15)	C14 - C15 - C16	103.16 (10)
C15 - O5 - H5O	106.4 (15)	05-C15-H15	109.9
$C^{22} - O^{6} - H^{6}O$	107.0(15)	C14 - C15 - H15	109.9
$C_{26} = 07 - C_{23}$	108.81 (9)	C16 - C15 - H15	109.9
01 - C1 - C2	109.52(10)	$C_{15} - C_{16} - C_{17}$	106.43 (9)
01 - C1 - C10	105 16 (9)	$C_{15} - C_{16} - H_{16A}$	110.4
$C_{2}-C_{1}-C_{10}$	105.12 (9)	C17 - C16 - H16A	110.1
O1 - C1 - H1	112.2	C15 - C16 - H16B	110.4
$C_{2}-C_{1}-H_{1}$	112.2	C17 - C16 - H16B	110.4
C10 - C1 - H1	112.2	$H_{16A} - C_{16} - H_{16B}$	108.6
$C_{3}-C_{2}-C_{1}$	104.35 (9)	$C_{13} - C_{17} - C_{16}$	103 05 (9)
C3-C2-H2A	110.9	$C_{13} - C_{17} - C_{20}$	116.97(10)
C1 - C2 - H2A	110.9	$C_{16} - C_{17} - C_{20}$	114.87 (9)
$C_3 - C_2 - H_2B$	110.9	C13 - C17 - H17	107.1
C1 - C2 - H2B	110.9	C16 - C17 - H17	107.1
$H^2A - C^2 - H^2B$	108.9	$C_{20} - C_{17} - H_{17}$	107.1
03 - C3 - 02	120.86 (11)	C14 - C18 - H18A	109.5
$O_3 - C_3 - C_2$	128.16 (11)	C14 - C18 - H18B	109.5
$O_2 - C_3 - C_2$	110.98 (10)	H18A-C18-H18B	109.5
O1-C4-C30	107.32 (10)	C14-C18-H18C	109.5
O1 - C4 - C29	109.20 (11)	H18A - C18 - H18C	109.5
$C_{30} - C_{4} - C_{29}$	110.52 (10)	H18B-C18-H18C	109.5
O1-C4-C5	102.53 (9)	C10-C19-C9	122.19 (10)
C30-C4-C5	112.86 (11)	C10-C19-H19A	106.8
C29-C4-C5	113.86 (10)	C9-C19-H19A	106.8
C6-C5-C10	117.30 (9)	C10-C19-H19B	106.8
C6-C5-C4	114.91 (9)	C9-C19-H19B	106.8
C10-C5-C4	103.33 (9)	H19A-C19-H19B	106.6
C6-C5-H5A	106.9	C21-C20-C22	111.17 (10)
C10-C5-H5A	106.9	C21-C20-C17	112.76 (9)
C4-C5-H5A	106.9	C22-C20-C17	108.63 (9)
C5-C6-C7	114.73 (10)	C21-C20-H20	108.0
C5-C6-H6A	108.6	C22-C20-H20	108.0
C7-C6-H6A	108.6	C17-C20-H20	108.0
C5-C6-H6B	108.6	C20-C21-H21A	109.5
C7-C6-H6B	108.6	C20-C21-H21B	109.5

Tal	ole	S3.	Cont.

H6A-C6-H6B	107.6	H21A-C21-H21B	109.5
C8-C7-C6	113.61 (10)	C20-C21-H21C	109.5
C8-C7-H7A	108.8	H21A-C21-H21C	109.5
C6-C7-H7A	108.8	H21B-C21-H21C	109.5
C8-C7-H7B	108.8	O6-C22-C23	110.54 (9)
C6-C7-H7B	108.8	O6-C22-C20	112.73 (9)
H7A - C7 - H7B	107.7	$C_{23} - C_{22} - C_{20}$	114.44 (10)
C9 - C8 - C7	113.37 (9)	O6 - C22 - H22	106.2
C9 - C8 - C14	114 47 (9)	$C_{23} - C_{22} - H_{22}$	106.2
C7 - C8 - C14	112 83 (9)	$C_{20} - C_{22} - H_{22}$	106.2
$C_{9} - C_{8} - H_{8}$	105.0	$07 - C^{23} - C^{24}$	103.92 (9)
C7 - C8 - H8	105.0	$07 - C^{23} - C^{22}$	109.39 (9)
$C_{14} = C_{8} = H_{8}$	105.0	$C_{24} - C_{23} - C_{22}$	107.57(7) 114.25(11)
04 - 09 - 08	107.50 (9)	$O_7 C_{23} H_{23}$	109.7
04 - 09 - 03	107.30(9) 100.48(10)	$C_{24} = C_{23} = H_{23}$	109.7
04 - 09 - 011	109.48 (10)	$C_{24} = C_{23} = H_{23}$	109.7
$C_8 = C_9 = C_{11}$	108.71 (9)	C22-C23-H23	109.7
04 - 09 - 019	111.42 (9)	$C_{25} = C_{24} = C_{23}$	111.10 (11)
(8 - (9 - (19)))	113.07 (9)	C25-C24-H24	124.5
011-09-019	106.60 (9)	C23-C24-H24	124.5
02-C10-C19	109.50 (9)	$C_{24} - C_{25} - C_{26}$	106.24 (11)
O2 - C10 - C5	108.66 (9)	C24 - C25 - C27	131.48 (13)
C19-C10-C5	118.97 (9)	C26 - C25 - C27	122.27 (12)
O2-C10-C1	103.80 (8)	O8-C26-O7	121.02 (12)
C19-C10-C1	110.80 (10)	O8 - C26 - C25	129.10 (13)
C5-C10-C1	103.97 (9)	O7-C26-C25	109.87 (10)
C12-C11-C9	111.61 (10)	C25-C27-H27A	109.5
C12-C11-H11A	109.3	C25-C27-H27B	109.5
C9-C11-H11A	109.3	H27A-C27-H27B	109.5
C12-C11-H11B	109.3	C25-C27-H27C	109.5
C9-C11-H11B	109.3	H27A-C27-H27C	109.5
H11A-C11-H11B	108.0	H27B-C27-H27C	109.5
C13-C12-C11	122.33 (10)	C4-C29-H29A	109.5
C13-C12-H12	118.8	C4-C29-H29B	109.5
C11-C12-H12	118.8	H29A-C29-H29B	109.5
C12-C13-C14	123.17 (10)	C4-C29-H29C	109.5
C12-C13-C17	126.10 (10)	H29A-C29-H29C	109.5
C14 - C13 - C17	109.75 (9)	H29B - C29 - H29C	109.5
C13 - C14 - C18	109.38 (9)	C4-C30-H30A	109.5
C13 - C14 - C15	100.05 (9)	C4-C30-H30B	109.5
C18 - C14 - C15	107.04 (10)	H30A - C30 - H30B	109.5
C13 - C14 - C8	114.24 (9)	C4 - C30 - H30C	109.5
C18 - C14 - C8	106.86 (9)	$H_{30A} - C_{30} - H_{30C}$	109.5
C15 - C14 - C8	118 84 (10)	$H_{30B} = C_{30} = H_{30C}$	109.5
C4 = 01 = C1 = C2	151 82 (10)	$C_{12} = C_{13} = C_{14} = C_8$	4 53 (17)
$C_{4} = 01 - C_{1-} = C_{10}$	30 37 (11)	C12 C13 - C14 - C0	-16/ 78 (0)
01 - 01 - 01 - 01	-94.27(11)	$C_{1} - C_{1} - C_{1} - C_{1} - C_{1}$	23.20(14)
$C_1 = C_1 = C_2 = C_3$	18 16 (12)	$C_{7} = C_{8} = C_{14} = C_{13}$	25.20 (14) 154 85 (10)
$C_{10} = C_1 = C_2 = C_3$	170 10 (12)	$C_{1} = C_{1} = C_{14} = C_{15}$	104.00(10) 1/1/21(10)
$C_{10} = 0_2 = C_3 = 0_3$	(11) (11) (12)	$C_7 = C_9 = C_{14} = C_{10}$	-84.04.(10)
$C_{10} = 0_2 = C_3 = C_2$	-1.70(13)	$C_{1} = C_{0} = C_{14} = C_{15}$	-04.04(12)
C1 - C2 - C3 - O3	10.01 (12)	$C_{7} = C_{8} = C_{14} = C_{15}$	-94.59(12)
C1 - C2 - C3 - O2	-10.91 (13)	$C_{1} - C_{2} - C_{14} - C_{15}$	37.06 (13)
C1 - O1 - C4 - C30	-164.02 (10)	C13 - C14 - C15 - O5	-77.42 (11)
C1-O1-C4-C29	76.16 (11)	C18-C14-C15-O5	168.58 (10)
C1-O1-C4-C5	-44.93 (12)	C8-C14-C15-O5	47.58 (14)
O1-C4-C5-C6	161.03 (10)	C13-C14-C15-C16	41.04 (10)
C30-C4-C5-C6	-83.84 (13)	C18-C14-C15-C16	-72.96 (11)
C29-C4-C5-C6	43.21 (15)	C8-C14-C15-C16	166.04 (9)

1 able 55. Com	Tab	le	S3.	Cont
----------------	-----	----	-----	------

O1-C4-C5-C10	32.01 (11)	O5-C15-C16-C17	89.64 (12)
C30-C4-C5-C10	147.14 (10)	C14-C15-C16-C17	-32.45 (12)
C29-C4-C5-C10	-85.81 (12)	C12-C13-C17-C16	-151.90 (13)
C10-C5-C6-C7	-53.31 (15)	C14-C13-C17-C16	17.02 (12)
C4-C5-C6-C7	-175.02 (10)	C12-C13-C17-C20	81.06 (15)
C5-C6-C7-C8	90.62 (13)	C14-C13-C17-C20	-110.02 (11)
C6-C7-C8-C9	-74.96 (12)	C15-C16-C17-C13	10.00 (12)
C6-C7-C8-C14	152.85 (9)	C15-C16-C17-C20	138.36 (10)
C7-C8-C9-O4	-65.08 (12)	O2-C10-C19-C9	-56.78 (13)
C14-C8-C9-O4	66.31 (12)	C5-C10-C19-C9	68.95 (14)
C7-C8-C9-C11	176.50 (10)	C1-C10-C19-C9	-170.68 (9)
C14-C8-C9-C11	-52.12 (13)	O4-C9-C19-C10	48.78 (14)
C7-C8-C9-C19	58.32 (13)	C8-C9-C19-C10	-72.44 (13)
C14-C8-C9-C19	-170.29 (9)	C11-C9-C19-C10	168.16 (10)
C3-O2-C10-C19	-105.16 (10)	C13-C17-C20-C21	-35.50 (13)
C3-O2-C10-C5	123.40 (10)	C16-C17-C20-C21	-156.51 (10)
C3-O2-C10-C1	13.20 (11)	C13-C17-C20-C22	-159.19 (9)
C6-C5-C10-O2	113.27 (11)	C16-C17-C20-C22	79.80 (12)
C4-C5-C10-O2	-119.19 (9)	C21-C20-C22-O6	170.75 (9)
C6-C5-C10-C19	-12.86 (15)	C17-C20-C22-O6	-64.62 (12)
C4-C5-C10-C19	114.68 (11)	C21-C20-C22-C23	43.29 (12)
C6-C5-C10-C1	-136.65 (11)	C17-C20-C22-C23	167.92 (9)
C4-C5-C10-C1	-9.11 (11)	C26-O7-C23-C24	-1.48 (13)
O1-C1-C10-O2	96.47 (10)	C26-O7-C23-C22	120.92 (11)
C2-C1-C10-O2	-19.11 (11)	O6-C22-C23-O7	-65.49 (12)
O1-C1-C10-C19	-146.09 (9)	C20-C22-C23-O7	63.08 (13)
C2-C1-C10-C19	98.33 (11)	O6-C22-C23-C24	50.51 (12)
O1-C1-C10-C5	-17.15 (11)	C20-C22-C23-C24	179.07 (10)
C2-C1-C10-C5	-132.73 (10)	07-C23-C24-C25	-0.03 (15)
O4-C9-C11-C12	-62.02 (13)	C22-C23-C24-C25	-119.16 (12)
C8-C9-C11-C12	55.15 (13)	C23-C24-C25-C26	1.39 (16)
C19-C9-C11-C12	177.35 (10)	C23-C24-C25-C27	-177.72 (15)
C9-C11-C12-C13	-30.64 (18)	C23-O7-C26-O8	-177.88 (13)
C11-C12-C13-C14	-0.4 (2)	C23-O7-C26-C25	2.39 (14)
C11-C12-C13-C17	167.14 (12)	C24-C25-C26-O8	177.91 (15)
C12-C13-C14-C18	-115.18 (13)	C27-C25-C26-O8	-2.9 (2)
C17-C13-C14-C18	75.52 (12)	C24-C25-C26-O7	-2.38 (15)
C12-C13-C14-C15	132.63 (12)	C27-C25-C26-O7	176.82 (13)
C17-C13-C14-C15	-36.68 (11)		

Table S4. Anisotro	pic displaceme	ent parameters	(Å2)) for micrandilactone H.

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0117 (3)	0.0197 (5)	0.0113 (3)	0.0010 (3)	0.0061 (3)	0.0015 (3)
O2	0.0112 (3)	0.0092 (4)	0.0087 (3)	0.0020 (3)	0.0032 (3)	0.0007 (3)
O3	0.0168 (4)	0.0127 (4)	0.0117 (4)	0.0004 (3)	0.0011 (3)	0.0004 (3)
O4	0.0121 (3)	0.0169 (4)	0.0092 (3)	0.0042 (3)	0.0031 (3)	0.0013 (3)
O5	0.0283 (5)	0.0116 (4)	0.0194 (4)	0.0058 (4)	0.0138 (4)	0.0036 (3)
O6	0.0136 (4)	0.0137 (4)	0.0135 (4)	0.0018 (3)	0.0059 (3)	0.0007 (3)
O7	0.0115 (3)	0.0179 (5)	0.0110 (3)	0.0004 (3)	0.0038 (3)	0.0032 (3)
O8	0.0258 (5)	0.0403 (7)	0.0103 (4)	-0.0099 (5)	0.0037 (4)	0.0006 (4)
C1	0.0129 (4)	0.0124 (5)	0.0117 (4)	0.0027 (4)	0.0065 (4)	0.0002 (4)
C2	0.0155 (5)	0.0133 (5)	0.0106 (4)	0.0012 (4)	0.0057 (4)	-0.0017 (4)
C3	0.0115 (4)	0.0104 (5)	0.0100 (4)	-0.0019 (4)	0.0039 (4)	-0.0012 (4)
C4	0.0105 (4)	0.0166 (6)	0.0117 (4)	0.0027 (4)	0.0049 (4)	0.0030 (4)
C5	0.0084 (4)	0.0121 (5)	0.0107 (4)	0.0002 (4)	0.0039 (3)	0.0006 (4)
C6	0.0092 (4)	0.0193 (6)	0.0096 (4)	-0.0004 (4)	0.0032 (3)	0.0003 (4)
C7	0.0122 (4)	0.0133 (5)	0.0121 (4)	-0.0037 (4)	0.0058 (4)	-0.0037 (4)
C8	0.0095 (4)	0.0094 (5)	0.0092 (4)	-0.0002 (4)	0.0042 (3)	-0.0005 (4)
C9	0.0113 (4)	0.0088 (5)	0.0094 (4)	-0.0008(4)	0.0047 (3)	-0.0011 (4)
C10	0.0096 (4)	0.0087 (4)	0.0093 (4)	0.0021 (3)	0.0040 (3)	0.0014 (3)
C11	0.0206 (5)	0.0140 (6)	0.0159 (5)	-0.0074 (4)	0.0119 (4)	-0.0060 (4)
C12	0.0146 (5)	0.0151 (5)	0.0137 (5)	-0.0063 (4)	0.0083 (4)	-0.0040 (4)
C13	0.0108 (4)	0.0104 (5)	0.0101 (4)	-0.0007 (4)	0.0051 (3)	-0.0001 (4)
C14	0.0101 (4)	0.0096 (5)	0.0082 (4)	-0.0002 (3)	0.0037 (3)	0.0000 (3)
C15	0.0162 (5)	0.0103 (5)	0.0137 (5)	-0.0007 (4)	0.0086 (4)	-0.0018 (4)
C16	0.0184 (5)	0.0115 (5)	0.0167 (5)	-0.0004 (4)	0.0122 (4)	-0.0021 (4)
C17	0.0103 (4)	0.0120 (5)	0.0096 (4)	0.0009 (4)	0.0048 (3)	0.0005 (4)
C18	0.0124 (4)	0.0210 (6)	0.0103 (4)	0.0016 (4)	0.0042 (4)	0.0018 (4)
C19	0.0132 (4)	0.0082 (5)	0.0114 (4)	0.0001 (4)	0.0067 (4)	-0.0007 (4)
C20	0.0091 (4)	0.0124 (5)	0.0090 (4)	0.0015 (4)	0.0038 (3)	0.0013 (4)
C21	0.0176 (5)	0.0127 (5)	0.0149 (5)	0.0022 (4)	0.0087 (4)	0.0027 (4)
C22	0.0092 (4)	0.0142 (5)	0.0095 (4)	0.0002 (4)	0.0039 (3)	0.0002 (4)
C23	0.0098 (4)	0.0157 (5)	0.0091 (4)	-0.0013 (4)	0.0033 (3)	-0.0010 (4)
C24	0.0109 (4)	0.0202 (6)	0.0150 (5)	0.0000 (4)	0.0071 (4)	0.0016 (4)
C25	0.0178 (5)	0.0175 (6)	0.0161 (5)	-0.0017 (4)	0.0113 (4)	-0.0001 (4)
C26	0.0185 (5)	0.0181 (6)	0.0115 (4)	-0.0064 (4)	0.0068 (4)	-0.0006 (4)
C27	0.0359 (8)	0.0304 (8)	0.0267 (7)	0.0028 (6)	0.0247 (6)	0.0001 (6)
C29	0.0144 (5)	0.0182 (6)	0.0193 (5)	0.0058 (4)	0.0082 (4)	0.0045 (5)
C30	0.0115 (5)	0.0223 (6)	0.0172 (5)	0.0009 (4)	0.0063 (4)	0.0054 (5)

Table S5. Hepatoprotective effect of micrandilactone H (10 μ M) against APAP-induced toxicity in HepG2 cell.

Compounds	OD (mean ± SD)	Cell Survival Rate (% of Normal)	
Control	1.286 ± 0.147	100.00	
APAP 8 mM	0.494 ± 0.111 ***	38.40	
Micrandilactone H	0.725 ± 0.042 ##	56.84	
Bicylol	0.678 ± 0.020 ##	53.16	

*** p < 0.001, compared with control; ^{##} p < 0.01, compared with model (APAP)