Supplementary Materials: Optimized Conditions for Passerini-Smiles Reactions and Applications to Benzoxazinone Syntheses

Elodie Martinand-Lurin, Aurélie Dos Santos, Emmanuelle Robineau, Pascal Retailleau, Philippe Dauban, Laurence Grimaud and Laurent El Kaïm

Table of Contents

1. General Notes	S2
2. Products	S2
3. ¹ H- and ¹³ C-NMR spectra	S25
4. X-ray Crystallography	S134
5. Kinetic studies	S138

1. General Notes

Melting points, measured in capillary tubes on a Büchi B-540 apparatus, are uncorrected. IR spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer (Villebon-sur-Yvette, France).

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on Bruker spectrometers (Wissembourg, France): Avance 300 MHz (QNP-¹³C, ³¹P, ¹⁹F-probe or Dual ¹³C probe) and Avance 500 MHz (BB0-ATM probe or BBI-ATM probe). Chemical shifts (δ) are reported in parts per million (ppm) with reference to CDCl₃ (¹H: 7.26; ¹³C: 77.13) or CD₂Cl₂ (¹H: 5.32; ¹³C: 53.80). The following abbreviations are used for the proton spectra multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, quint.: quintuplet, sept.: septuplet, m: multiplet, br: broad. Coupling constants (*J*) are reported in Hertz (Hz). The multiplicity of carbons was given using 2D spectra (HMQC and HMBC). Some quaternary carbons were determined using HMBC couplings.

UPLC-MS analyses were run using a Acquity Waters UPLC equipped with a Waters LCT Premier XE (ESI ionization) (Guyancourt, France) and a Waters Acquity PDA detector, using a column BEH C₁₈ 1.7 μ m, 2.1 mm × 50 mm. Gradients were run using water and acetonitrile (1:1) with 0.1% of acetic acid. Temperature: 40 °C. UV detection from 210 to 410 nm. ESI⁺ detection in the 80–1500 *m*/*z* range.

Thin-layer chromatography was performed on silica gel 60 F₂₅₄ on aluminum plates (Merck, Fontenay-sous-Bois, France) and visualized under a UVP Mineralight UVLS-28 lamp (254 nm). Flash chromatography was performed on silica gel 60 (230–400 mesh).

All reagents were obtained from commercial suppliers (Sigma-Aldrich (Saint Quentin Fallavier, France) and Acros Organics (Geel, Belgium)) and were used as received.

2. Products

2.1. General Procedure E for Passerini-Double-Smiles Reaction (One-pot)

To 1.0 equiv of phenol were added successively 1.0 equiv of DABCO (only for aldehydes), 2.0 equiv of aldehyde (1.0 equiv of ketone) and 1.0 equiv of isocyanide under inert atmosphere. The resulting mixture was stirred neat at 55 °C (or 80 °C for 2-fluoro-4-nitrophenol derivatives) during 12 h for aldehyde (3 days for ketone). Then, DMF (0.2 M) and 1.5 equiv (aldehyde) or 2.0 equiv (ketone) of potassium *tert*-butoxide were added. The resulting mixture was stirred for 1 h at 100 °C. The resulting mixture was diluted CH₂Cl₂ then washed with H₂O and HCl 1 M. The aqueous layer was extracted three times with CH₂Cl₂. Organic layers were combined, washed with water, dried over MgSO₄ and concentrated. The crude product was purified by flash chromatography on silica gel.

1-(4-*Chloro-2-nitrophenoxy*)-*N*-*cyclohexylcyclobutanecarboxamide* (**1b**). Compound **1b** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 100/0 to 90/10) as eluent gave the desired product (350 mg, 50%) as a yellow solid. R_f = 0.8 (petroleum ether/ethyl acetate 70/30); mp 127–128 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 7.78 (d, 1H, *J* = 2.7 Hz), 7.37 (dd, 1H, *J* = 9.0, 2.7 Hz), 6.67 (d, 1H, *J* = 9.0 Hz), 6.16 (br d, 1H, *J* = 8.4 Hz), 3.81–3.62 (m, 1H), 2.83–2.71 (m, 2H), 2.48–2.33 (m, 2H), 2.08–1.86 (m, 2H), 1.76–1.64 (m, 2H), 1.64–1.47 (m, 3H), 1.38–1.19 (m, 2H), 1.19–0.90 (m, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 170.2, 147.3, 140.8, 133.7, 126.6, 125.5, 117.8, 83.3, 48.2, 32.7, 32.0, 25.4, 24.6, 13.8; IR (Neat): *ν* = 3264, 2938, 2852, 1640, 1606, 1533, 1481, 1359, 1281, 1255, 1226, 1160, 1129, 1077 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₂₁ClN₂O₄ 353.1246, found 353.1244.

N-(4-*Methoxybenzyl*)-1-(2-*nitrophenoxy*)*cyclobutanecarboxamide* (1c). Compound 1c was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (223 mg, 63%) as a yellow oil. $R_f = 0.4$ (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.75$ (dd, 1H, J = 7.9, 1.7 Hz), 7.39 (td, 1H, J = 7.9, 1.7 Hz), 7.05 (td, 1H, J = 7.9, 1.3 Hz), 6.92 (d, 2H, J = 8.6 Hz), 6.75-6.68 (m, 3H), 6.64 (br t, 1H, J = 5.9 Hz), 4.33 (d, 1H, J = 5.9 Hz), 3.76 (s, 3H), 2.86–2.77 (m, 2H),

2.51–2.40 (m, 2H), 2.10–1.91 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 171.5, 158.9, 148.5, 140.6, 133.9, 130.0, 128.7, 125.6, 121.5, 116.7, 114.0, 82.9, 55.3, 42.8, 32.1, 13.8; IR (Neat): ν = 3328, 2947, 2836, 1664, 1605, 1584, 1510, 1479, 1350, 1303, 1275, 1243, 1174, 1154, 1128, 1078, 1032 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₉H₂₀N₂O₅ 357.1450, found 357.1447.

1-(4-Bromo-2-nitrophenoxy)-N-(3,4-dimethoxyphenethyl)cyclobutanecarboxamide (1d). Compound 1d was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 70/30) as eluent gave the desired product (277 mg, 58%) as a yellow oil. R_f = 0.3 (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.89 (d, 1H, *J* = 2.4 Hz), 7.44 (dd, 1H, *J* = 8.9, 2.4 Hz), 6.66 (d, 1H, *J* = 8.9 Hz), 6.59 (d, 1H, *J* = 1.8 Hz), 6.50–6.42 (d, 2H, *J* = 8.9 Hz), 6.23 (br t, 1H, *J* = 5.6 Hz), 3.85 (s, 3H), 3.82 (s, 3H), 3.50 (q, 2H, *J* = 6.5 Hz), 2.77–2.69 (m, 2H), 2.66 (t, 2H, *J* = 6.9 Hz), 2.41–2.32 (m, 2H), 2.05–1.88 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 171.3, 149.0, 147.7, 147.5, 140.7, 136.5, 130.4, 128.4, 120.4, 117.9, 113.1, 111.4, 111.1, 83.1, 55.9, 55.8, 40.3, 34.8, 31.9, 13.8; IR (Neat): ν = 3358, 2940, 1664, 1602, 1513, 1473, 1417, 1346, 1259, 1235, 1155, 1127, 1103, 1077, 1026. HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C₂₁H₂₃BrN₂O₆ 479.0818, found 479.0822.

N-Cyclohexyl-3,3,3-trifluoro-2-methyl-2-(2-nitrophenoxy)propanamide (1e). Compound 1e was prepared according to the general procedure A (add 2 equiv. of ketone instead of one). Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (565 mg, 78%) as an off-white solid. $R_f = 0.7$ (petroleum ether/ethyl acetate 70/30); mp 91–92 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.81$ (dd, 1H, J = 8.1, 1.7 Hz), 7.54 (ddd, 1H, J = 8.3, 7.6, 1.7 Hz), 7.28 (ddd, 1H, J = 7.6, 8.1, 1.1 Hz), 7.22 (dd, 1H, J = 8.3, 1.1 Hz), 6.76 (br d, 1H, J = 7.7 Hz), 3.91–3.75 (m, 1H), 1.97–1.83 (m, 2H), 1.77–1.55 (m, 3H), 1.66 (s, 3H), 1.45–1.28 (m, 2H), 1.28–1.09 (m, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 164.0$, 146.1, 144.0, 133.6, 125.5, 125.0, 123.3 (q, $J_{CF} = 287.6$ Hz), 122.9, 84.2 (q, $J_{C-F} = 28.8$ Hz), 49.1, 32.6, 32.5, 25.5, 24.8, 15.4; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -78.0$; IR (Neat): $\nu = 3307$, 2940, 2859, 1664, 1605, 1536, 1481, 1449, 1379, 1360, 1295, 1267, 1240, 1198, 1178, 1134, 1106 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₁₉F₃N₂O₄ 361.1375, found 361.1365.

N-*Cyclohexyl-3-methoxy-2-methyl-2-(2-nitrophenoxy)propanamide* (**1f**). Compound **1f** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in heptane (from 90/10 to 70/30) as eluent gave the desired product (438 mg, 65%) as a yellow oil. $R_i = 0.2$ (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.84$ (dd, 1H, J = 8.1, 1.8 Hz), 7.51 (ddd, 1H, J = 8.5, 7.4, 1.8 Hz), 7.31 (dd, 1H, J = 8.3, 1.3 Hz), 7.32–7.24 (m, 1H), 7.18 (ddd, 1H, J = 8.1, 7.4, 1.3 Hz), 3.83–3.71 (m, 1H), 3.71 (d, 1H, J = 10.8 Hz), 3.50 (d, 1H, J = 10.8 Hz), 3.22 (s, 3H), 1.98–1.87 (m, 2H), 1.78–1.66 (m, 2H), 1.64–1.55 (m, 1H), 1.47 (s, 3H), 1.42-1.10 (m, 5H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 170.1$, 148.0, 144.0, 133.6, 125.7, 123.6, 123.5, 86.8, 75.0, 59.2, 48.4, 32.7, 25.5, 24.8, 19.6; IR (Neat): v = 3399, 2930, 2854, 1671, 1602, 1582, 1521, 1478, 1450, 1353, 1239, 1199, 1107 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₂₄N₂O₅ 337.1763, found 337.1752.

2-(4-*Chloro-2-nitrophenoxy*)-3-*methoxy-2-methyl-N-phenethylpropanamide* (**1g**). Compound **1g** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (466 mg, 59%) as an orange oil. R_f = 0.2 (petroleum ether/ethyl acetate 80/20); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.83 (d, 1H, *J* = 2.7 Hz), 7.43 (dd, 1H, *J* = 8.9, 2.7 Hz), 7.33–7.20 (m, 7H), 3.69 (d, 1H, *J* = 10.8 Hz), 3.67–3.54 (m, 2H), 3.49 (d, 1H, *J* = 10.8 Hz), 3.24 (s, 3H), 2.91 (dt, 1H, *J* = 15.5, 7.2 Hz), 2.88 (dt, 1H, *J* = 15.5, 7.2 Hz), 1.45 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 171.0, 146.6, 144.2, 138.8, 133.6, 128.9, 128.6, 126.5, 125.6, 124.8, 87.2, 75.1, 59.3, 41.0, 35.6, 19.7; IR (Neat): *ν* = 3412, 2930, 1670, 1603, 1527, 1497, 1475, 1454, 1353, 1240, 1198, 1150, 1104 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₉H₂₁ClN₂O₅ 393.1217, found 393.1206.

N-Cyclohexyl-2-(2-nitrophenoxy)butanamide (**2a**). Compound **2a** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 60/40) as eluent gave the desired product (269 mg, 88%) as an off-white solid. $R_f = 0.2$ (petroleum ether/ethyl acetate 70/30); mp 107–108 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.91$ (dd, 1H, J = 8.3, 1.7 Hz), 7.54 (ddd, 1H, J = 7.5, 8.4, 1.7 Hz), 7.15-7.02 (m, 3H), 4.84 (t, 1H, J = 5.0 Hz), 3.77 (m, 1H), 2.11-1.99 (m, 2H), 1.98-1.87 (m, 1H), 1.79-1.50 (m, 4H), 1.44-1.04 (m, 5H), 0.98 (t, 3H, J = 7.5 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.8$, 150.8, 139.9, 134.9, 126.5, 121.5, 115.1, 80.3, 48.1, 33.1, 32.8, 25.6, 25.4, 24.8, 8.7; IR (Neat): $\nu = 3259$, 2934, 2854, 1652, 1608, 1583, 1557, 1520, 1484, 1445, 1349, 1276, 1245, 1233, 1165, 1153, 1089, 1047, 1026 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₂₂N₂O₄ 307.1658, found 307.1652.

N-Cyclohexyl-3-methyl-2-(2-nitrophenoxy)butanamide (**2b**). Compound **2b** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (291 mg, 91%) as a yellow solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 70/30); mp 121–122 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.86$ (dd, 1H, J = 8.2, 1.8 Hz), 7.52 (ddd, 1H, J = 8.6, 7.5, 1.8 Hz), 7.11–7.04 (m, 2H), 6.93 (br d, 1H, J = 8.2 Hz), 4.68 (d, 1H, J = 3.8 Hz), 3.83–3.68 (m, 1H), 2.36 (sept d, 1H, J = 6.9, 3.8 Hz), 1.98–1.87 (m, 1H), 1.76–1.50 (m, 5H), 1.43–0.90 (m, 4H), 1.06 (d, 6H, J = 6.9 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.4$, 151.0, 140.0, 134.6, 126.0, 121.4, 115.0, 84.0, 47.9, 33.0, 32.6, 31.5, 25.4, 24.7, 24.6, 18.8, 17.0; IR (Neat): $\nu = 3261$, 3080, 2937, 2856, 1649, 1607, 1584, 1557, 1521, 1484, 1449, 1388, 1351, 1309, 1276, 1259, 1248, 1233, 1165, 1154, 1091, 1048, 1036 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₂₄N₂O₄ 321.1814, found 321.1812.

N-Cyclohexyl-3,3-dimethyl-2-(2-nitrophenoxy)butanamide (**2c**). Compound **2c** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (283 mg, 85%) as a white solid. $R_f = 0.2$ (petroleum ether/ethyl acetate 80/20); mp 126–127 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.83$ (dd, 1H, J = 8.1, 1.6 Hz), 7.50 (ddd, 1H, J = 8.5, 7.5, 1.6 Hz), 7.10 (d, 1H, J = 8.5 Hz), 7.07 (ddd, 1H, J = 8.1, 7.5, 1.0 Hz), 6.64 (br d, 1H, J = 8.5 Hz), 4.46 (s, 1H), 3.73-3.67 (m, 1H), 1.93-1.86 (m, 1H), 1.72-1.63 (m, 1H), 1.54–1.45 (m, 3H), 1.39–1.07 (m, 4H), 1.11 (s, 9H), 0.94–0.84 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 167.4$, 150.8, 140.1, 134.5, 125.8, 121.4, 114.9, 87.0, 47.8, 34.7, 33.1, 32.5, 26.3, 25.4, 24.7, 24.6; IR (Neat): v = 3259, 2926, 2853, 1646, 1607, 1584, 1568, 1522, 1479, 1449, 1365, 1344, 1309, 1279, 1248, 1197, 1167, 1151, 1099, 1060, 1019 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₈H₂₆N₂O₄ 335.1971, found 335.197.

N-Cyclohexyl-2-(2-nitrophenoxy)-4-phenylbutanamide (**2d**). Compound **2d** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (647 mg, 85%) as a yellow solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 70/30); mp 97–98 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.91$ (dd, 1H, J = 8.1, 1.7 Hz), 7.50 (ddd, 1H, J = 8.6, 7.5, 1.7 Hz), 7.28–7.22 (m, 2H), 7.20–7.14 (m, 3H), 7.13–7.05 (m, 2H), 6.94 (d, 1H, J = 8.6 Hz), 4.84 (t, 1H, J = 5.4 Hz), 3.83–3.72 (m, 1H), 2.86–2.71 (m, 2H), 2.32 (dt, 2H, J = 5.4, 7.9 Hz), 1.97–1.90 (m, 1H), 1.78–1.68 (m, 2H), 1.67–1.58 (m, 2H), 1.43–1.05 (m, 5H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.7, 150.4, 140.5, 139.8, 134.7, 128.6, 128.5, 126.2, 121.5, 114.9, 78.6, 48.0, 33.9, 32.9, 32.7, 30.6, 25.4, 24.7, 24.6; IR (Neat): <math>\nu = 3263, 3028, 2930, 2853, 1651, 1607, 1582, 1518, 1496, 1482, 1449, 1345, 1307, 1271, 1246, 1165, 1152, 1084, 1047, 1028 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂):$ *m/z*calculated for C₂₂H₂₆N₂O₄ 383.1971, found 383.1972.

N-Cyclohexyl-2-(3-fluorophenyl)-2-(2-nitrophenoxy)acetamide (**2e**). Compound **2e** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (186 mg, 50%) as an off-white solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 70/30); mp 145–146 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.04$ (dd, 1H, J = 8.4, 1.5 Hz), 7.47 (ddd, 1H, J = 8.4, 7.3, 1.5 Hz), 7.42–7.30 (m, 3H), 7.23 (dt, 1H, J = 9.2, 2.2 Hz), 7.10 (br t, 1H, J = 7.8 Hz), 7.07–7.00 (m, 1H), 6.91 (d, 1H, J = 8.4 Hz), 5.63

(s, 1H), 3.81–3.71 (m, 1H), 1.93–1.83 (m, 2H), 1.77–1.69 (m, 2H), 1.64–1.58 (m, 1H), 1.41–1.19 (m, 5H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 166.7, 163.1 (d, *J*_{C-F} = 246.1 Hz), 150.3, 139.4, 137.9 (d, *J*_{C-F} = 7.6 Hz), 135.2, 130.7 (d, *J*_{C-F} = 8.3 Hz), 126.8, 122.3 (d, *J*_{C-F} = 3.0 Hz), 122.0, 116.1 (d, *J*_{C-F} = 21.1 Hz), 115.9, 113.7 (d, *J*_{C-F} = 23.0 Hz), 80.3, 48.3, 32.79, 32.77, 25.5, 24.71, 24.69; ; ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = –111.6; IR (Neat): ν = 3259, 3077, 2921, 2853, 1655, 1610, 1585, 1559, 1525, 1487, 1445, 1372, 1342, 1281, 1266, 1246, 1227, 1171, 1151, 1139, 1103, 1054 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₀H₂₂FN₂O₄ 373.1564, found 373.1561.

2-(4-*Chlorophenyl*)-*N*-*cyclohexyl*-2-(2-*nitrophenoxy*)*acetamide* (**2f**). Compound **2f** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 70/30) as eluent gave the desired product (452 mg, 58%) as a yellow solid. *R*_f = 0.5 (petroleum ether/ethyl acetate 70/30); mp 147–148 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 8.03 (dd, 1H, *J* = 8.2, 1.8 Hz), 7.50–7.31 (m, 6H), 7.09 (ddd, 1H, *J* = 8.2, 7.4, 1.1 Hz), 6.89 (dd, 1H, *J* = 8.5, 1.1 Hz), 5.62 (s, 1H), 3.75 (m, 1H), 1.95-1.79 (m, 2H), 1.77–1.50 (m, 3H), 1.44–1.17 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 166.8, 150.2, 139.3, 135.2, 135.1, 134.0, 129.3, 127.9, 126.8, 121.9, 115.9, 80.2, 48.3, 32.8, 25.5, 24.7; IR (Neat): *ν* = 3265, 3081, 2918, 2852, 1653, 1609, 1560, 1524, 1490, 1357, 1289, 1244, 1090 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C₂₀H₂₂ClN₂O₄ 389.1268, found 389.1285.

N-(*4*-*Methoxybenzyl*)-3,3-*dimethyl*-2-(*4*-*methyl*-2-*nitrophenoxy*)*hex*-5-*enamide* (**2g**). Compound **2g** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (344 mg, 83%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 80/20); mp 64–65 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.56 (d, 1H, *J* = 2.3 Hz), 7.26 (dd, 1H, *J* = 8.4, 2.3 Hz), 7.07 (br t, 1H, *J* = 5.8 Hz), 6.95 (d, 2H, *J* = 8.5 Hz), 6.92 (d, 1H, *J* = 8.4 Hz), 6.70 (d, 2H, *J* = 8.5 Hz), 5.87–5.76 (m, 1H), 5.04 (dd, 1H, *J* = 10.1, 1.4 Hz), 4.96 (dd, 1H, *J* = 17.0, 1.4 Hz), 4.55 (s, 1H), 4.35 (dd, 1H, *J* = 14.5, 6.0 Hz), 4.28 (dd, 1H, *J* = 14.5, 6.0 Hz), 3.75 (s, 3H), 2.33 (s, 3H), 2.26 (dd, 1H, *J* = 13.7, 7.8 Hz), 2.11 (dd, 1H, *J* = 13.7, 6.8 Hz), 1.08 (s, 3H), 1.06 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 168.7, 158.9, 148.5, 139.5, 135.1, 134.1, 131.6, 130.1, 128.9, 126.0, 118.7, 114.7, 114.0, 85.1, 55.3, 43.7, 42.6, 37.8, 23.5, 23.4, 20.3; IR (Neat): v = 3381, 2967, 2932, 2837, 1666, 1613, 1575, 1527, 1512, 1465, 1440, 1390, 1349, 1320, 1301, 1277, 1245, 1174, 1158, 1111, 1086, 1034, 1001 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C₂₃H₂₈N₂O₅ 413.2076, found 413.2081.

N-(4-*Chlorobenzyl*)-4-*methyl*-2-(4-*methyl*-2-*nitrophenoxy*)*pentanamide* (**2h**). Compound **2h** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 99/1 to 95/5) as eluent gave the desired product (291 mg, 72%) as a yellow solid. R_f =0.2 (petroleum ether/ethyl acetate 80/20); mp 102–103 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.60 (d, 1H, *J* = 2.2 Hz), 7.45 (br t, 1H, *J* = 6.7 Hz), 7.31 (dd, 1H, *J* = 8.6, 2.2 Hz), 7.19 (d, 2H, *J* = 8.4 Hz), 7.05 (d, 2H, *J* = 8.4 Hz), 6.96 (d, 1H, *J* = 8.6 Hz), 4.87 (dd, 1H, *J* = 8.1, 4.0 Hz), 4.43 (dd, 1H, *J* = 14.9, 6.4 Hz), 4.34 (dd, 1H, *J* = 14.9, 6.4 Hz), 2.35 (s, 3H), 1.94–1.77 (m, 3H), 0.96 (d, 3H, *J* = 6.2 Hz), 0.93 (d, 3H, *J* = 6.2 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 171.0, 148.3, 139.7, 136.5, 135.2, 133.3, 131.9, 129.0, 128.8, 126.2, 114.7, 78.7, 42.5, 41.7, 24.7, 23.2, 22.1, 20.3; IR (Neat): v = 3262, 3062, 2956, 2870, 1651, 1566, 1528, 1490, 1467, 1350, 1282, 1257, 1163, 1088, 1014 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₀H₂₃ClN₂O₄ 391.1425, found 391.1410.

N-*Cyclohexyl*-2-(4-*methoxyphenyl*)-2-(4-*methyl*-2-*nitrophenoxy*)*acetamide* (2i). Compound 2i was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (317 mg, 40%) as an off-white solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 60/40); mp 133–134 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.80 (d, 1H, *J* = 2.1 Hz), 7.44–7.35 (m, 1H), 7.40 (d, 2H, *J* = 8.8 Hz), 7.23 (dd, 1H, *J* = 8.5, 2.1 Hz), 6.90–6.86 (m, 2H), 6.84 (d, 1H, *J* = 8.5 Hz), 5.56 (s, 1H), 3.81–3.73 (m, 1H), 3.78 (s, 3H), 2.32 (s, 3H), 1.93–1.84 (m, 2H), 1.76–1.69 (m, 2H), 1.63–1.58 (m, 1H), 1.40–1.22 (m, 5H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 167.7, 160.1, 148.4, 139.0, 135.7, 131.6, 128.0, 127.7, 126.6, 116.1,

114.4, 80.6, 55.4, 48.1, 32.8, 25.6, 24.7, 24.6, 20.3; IR (Neat): ν = 3258, 3080, 2921, 2853, 1651, 1625, 1614, 1531, 1512, 1463, 1445, 1346, 1293, 1266, 1244, 1196, 1175, 1152, 1094, 1054, 1030 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₂H₂₇N₂O₅ 399.1920, found 399.1913.

2-(4-*Methoxy*-2-*nitrophenoxy*)-3,3-*dimethyl*-*N*-*phenethylbutanamide* (**2j**). Compound **2j** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (301 mg, 78%) as a yellow solid. R_f = 0.4 (petroleum ether/ethyl acetate 70/30); mp 88–89 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.32 (d, 1H, *J* = 3.1 Hz), 7.20–7.10 (m, 3H), 7.05–6.99 (m, 3H), 6.93 (d, 1H, *J* = 9.3 Hz), 6.75 (br t, 1H, *J* = 5.7 Hz), 4.34 (s, 1H), 3.82 (s, 3H), 3.57 (dq, 1H, *J* = 13.5, 6.6 Hz), 3.47 (ddt, 1H, *J* = 13.6, 5.4, 7.2 Hz), 2.73 (dt, 1H, *J* = 16.6, 7.1 Hz), 2.70 (dt, 1H, *J* = 16.6, 7.1 Hz), 1.04 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 168.9, 153.4, 145.0, 139.5, 138.3, 128.5, 126.5, 121.0, 115.6, 110.5, 87.2, 56.2, 40.0, 35.4, 34.9, 26.3; IR (Neat): ν = 3026, 2959, 1660, 1520, 1492, 1442, 1346, 1289, 1277, 1256, 1219, 1164, 1092, 1082, 1051, 1035, 1004 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₁H₂₆N₂O₅ 387.1920, found 387.1929.

2-(2-*Allyl-6-nitrophenoxy*)-*N*-*cyclohexyl-3-methylbutanamide* (**2k**). Compound **2k** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 100/0 to 98/2) as eluent gave the desired product (213 mg, 59%) as a white solid. $R_f = 0.5$ (petroleum ether/ethyl acetate 90/10); mp 90–91 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.63$ (dd, 1H, J = 7.8, 1.8 Hz), 7.49 (dd, 1H, J = 7.8, 1.8 Hz), 7.14 (t, 1H, J = 7.8 Hz), 6.51 (br d, 1H, J = 8.2 Hz), 5.93 (ddt, 1H, J = 17.1, 10.2, 6.3 Hz), 5.18 (dq, 1H, J = 10.2, 1.4 Hz), 5.10 (dq, 1H, J = 17.1, 1.4 Hz), 4.24 (d, 1H, J = 3.9 Hz), 3.88–3.73 (m, 1H), 3.59–3.41 (m, 2H), 2.11 (sept d, 1H, J = 6.9, 3.9 Hz), 1.95–1.80 (m, 2H), 1.77–1.53 (m, 3H), 1.45–1.26 (m, 2H), 1.26–1.08 (m, 3H), 1.06 (d, 3H, J = 6.9 Hz), 0.91 (d, 3H, J = 6.9 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.9$, 149.0, 144.0, 135.5, 135.2, 135.1, 123.7, 117.7, 89.2, 48.0, 34.6, 33.2, 32.8, 31.9, 25.6, 24.9, 18.2, 17.4; IR (Neat): $\nu = 3285$, 3078, 2960, 2927, 2855, 1650, 1600, 1553, 1526, 1449, 1346, 1284, 1249, 1233, 1219, 1180, 1152, 1106, 1087, 1010 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₀H₂₉N₂O4 361.2127, found 361.2123.

N-*Cyclohexyl*-2-(4-*methoxy*-2-*nitrophenoxy*)-3-*methylbutanamide* (**2l**). Compound **2l** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 70/30) as eluent gave the desired product (238 mg, 68%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 70/30); mp 120–121 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.37$ (d, 1H, J = 3.0 Hz), 7.07 (dd, 1H, J = 9.3, 3.0 Hz), 6.99 (d, 1H, J = 9.3 Hz), 6.94 (br d, 1H, J = 8.5 Hz), 4.58 (d, 1H, J = 3.9 Hz), 3.81 (s, 3H), 3.80–3.67 (m, 1H), 2.39–2.26 (m, 1H), 1.97–1.85 (m, 1H), 1.73–1.50 (m, 4H), 1.43–0.94 (m, 5H), 1.05 (d, 3H, J = 6.9 Hz), 1.04 (d, 3H, J = 6.9 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.7$, 153.5, 145.2, 139.8, 121.2, 116.3, 110.2, 84.5, 56.2, 48.0, 33.1, 32.7, 31.5, 25.5, 24.8, 24.7, 18.9, 17.0; IR (Neat): $\nu = 3262$, 2924, 2852, 1651, 1526, 1495, 1469, 1440, 1354, 1308, 1265, 1245, 1224, 1186, 1154, 1094, 1040, 1027 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₈H₂₇N₂O₅ 351.1920, found 351.1903.

N-*Cyclohexyl*-2-(4-*methoxy*-2-*nitrophenoxy*)-3,3-*dimethylbutanamide* (**2m**). Compound **2m** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (247 mg, 68%) as a yellow solid. $R_f = 0.7$ (petroleum ether/ethyl acetate 60/40); mp 140–141 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.97-7.92$ (d, 1H, J = 9.8 Hz), 6.80 (br d, 1H, J = 8.1 Hz), 6.57–6.52 (m, 2H), 4.44 (s, 1H), 3.85 (s, 3H), 3.77–3.66 (m, 1H), 1.96–1.85 (m, 1H), 1.72–1.64 (m, 1H), 1.57–1.49 (m, 3H), 1.40–1.08 (m, 4H), 1.12 (s, 9H), 0.98–0.88 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 167.4$, 165.0, 153.5, 133.2, 128.3, 106.8, 100.5, 87.2, 56.1, 47.9, 34.8, 33.1, 32.6, 26.3, 25.4, 24.7, 24.6; IR (Neat): $\nu = 3315$, 2930, 2855, 1646, 1591, 1540, 1512, 1480, 1466, 1446, 1397, 1367, 1345, 1312, 1287, 1264, 1249, 1228, 1207, 1172, 1090, 1058, 1030, 1018 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₉H₂₉N₂O₅ 365.2076, found 365.2079.

2-(4-Bromo-2-nitrophenoxy)-3,3-dimethyl-N-phenethylbutanamide (**2n**). Compound **2n** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (338 mg, 78%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 80/20); mp 62–63 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.89$ (d, 1H, J = 2.5 Hz), 7.54 (dd, 1H, J = 9.1, 2.5 Hz), 7.20–7.12 (m, 3H), 7.01–6.97 (m, 2H), 6.86 (d, 1H, J = 9.1 Hz), 6.58–6.50 (m, 1H), 4.35 (s, 1H), 3.62 (dq, 1H, J = 13.6, 6.7 Hz), 3.47 (dtd, 1H, J = 13.6, 6.9, 5.2 Hz), 2.73 (t, 2H, J = 6.9 Hz), 1.03 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.2$, 149.9, 140.0, 138.0, 137.3, 128.8, 128.6, 128.4, 126.5, 116.1, 113.0, 87.3, 39.8, 35.2, 34.8, 26.2; IR (Neat): $\nu = 2959$, 1663, 1603, 1522, 1477, 1396, 1338, 1262, 1246, 1163, 1095, 1048 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): m/z calculated for C₂₀H₂₃BrN₂O₄ 435.0919, found 435.0904.

2-(4-Bromo-2-nitrophenoxy)-N-(3,4-dimethoxyphenethyl)-3-methylbutanamide (**2o**). Compound **2o** was prepared according to the general procedure A. Purification on a column of silica gel with ethyl acetate in petroleum ether (70/30) as eluent gave the desired product (462 mg, 96%) as a yellow oil. $R_i = 0.4$ (petroleum ether/ethyl acetate 50/50); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.95$ (d, 1H, J = 2.4 Hz), 7.57 (dd, 1H, J = 9.0, 2.4 Hz), 6.86 (d, 1H, J = 9.0 Hz), 6.79 (br t, 1H, J = 5.4 Hz), 6.68 (d, 1H, J = 8.1 Hz), 6.63 (d, 1H, J = 1.6 Hz), 6.56 (dd, 1H, J = 8.1, 1.6 Hz), 4.56 (d, 1H, J = 4.0 Hz), 3.85 (s, 3H), 3.82 (s, 3H), 3.60–3.48 (m, 2H), 2.74 (dt, 1H, J = 14.0, 7.0 Hz), 2.71 (dt, 1H, J = 14.0, 7.0 Hz), 2.34–2.25 (m, 1H), 1.01 (d, 3H, J = 7.5 Hz), 0.99 (d, 3H, J = 7.5 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 169.1$, 150.1, 149.1, 147.8, 140.2, 137.3, 130.7, 128.8, 120.6, 116.4, 113.2, 111.7, 111.3, 84.6, 56.0, 55.9, 40.1, 35.0, 31.6, 18.8, 17.0; IR (Neat): $\nu = 3387$, 2966, 1666, 1602, 1514, 1465, 1418, 1345, 1261, 1235, 1156, 1140, 1100, 1026, 1000 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): m/z calculated for C₂₁H₂₅BrN₂O₆ 481.0974, found 481.0969.

N-(*Tert-butyl*)-2-(4-chloro-2-nitrophenoxy)butanamide (**2p**). Compound **2p** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (500 mg, 79%) as an off-white solid. $R_f = 0.5$ (petroleum ether/ethyl acetate 80/20); mp 107–108 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.92$ (d, 1H, J = 2.5 Hz), 7.51 (dd, 1H, J = 9.1, 2.5 Hz), 7.02 (d, 1H, J = 9.1 Hz), 6.88 (br s, 1H), 4.70 (t, 1H, J = 4.8 Hz), 2.12–1.93 (m, 2H), 1.36 (s, 9H), 0.97 (t, 3H, J = 7.5 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.4$, 149.3, 139.8, 134.6, 126.4, 126.2, 116.3, 80.8, 51.5, 28.7, 25.1, 8.4; IR (Neat): v = 3308, 2973, 1655, 1606, 1555, 1527, 1481, 1461, 1393, 1349, 1270, 1249, 1221, 1163, 1120, 1107, 1057 cm⁻¹; HRMS (ESI+; MeCN/CH₂Cl₂): m/z calculated for C₁₄H₁₉ClN₂O₄ 315.1112, found 315.1106.

N-(*Tert-butyl*)-2-(4-chloro-2-nitrophenoxy)-3-methylbutanamide (**2q**). Compound **2q** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (224 mg, 68%) as an off-white solid. $R_f = 0.6$ (petroleum ether/ethyl acetate 80/20); mp 111–112 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.87$ (d, 1H, J = 2.7 Hz), 7.50 (dd, 1H, J = 9.0, 2.7 Hz), 7.03 (d, 1H, J = 9.0 Hz), 6.68 (br s, 1H), 4.51 (d, 1H, J = 4.1 Hz), 2.32 (sept d, 1H, J = 6.9, 4.1 Hz), 1.31 (s, 9H), 1.06 (d, 3H, J = 6.9 Hz), 1.04 (d, 3H, J = 6.9 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.2$, 149.7, 140.0, 134.4, 126.5, 125.9, 116.2, 84.7, 51.5, 31.5, 28.6, 18.7, 17.2; IR (Neat): v = 3275, 3082, 2972, 1649, 1605, 1531, 1483, 1470, 1391, 1361, 1277, 1250, 1223, 1162, 1119, 1031, 1010 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): m/z calculated for C₁₅H₂₁ClN₂O₄ 329.1268, found 329.1271.

2-(4-*Chloro-2-nitrophenoxy*)-*N*-(4-*chlorobenzyl*)-3,3-*dimethylbutanamide* (**2r**). Compound **2r** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (352 mg, 86%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 80/20); mp 130–131 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.77$ (d, 1H, J = 2.6 Hz), 7.44 (dd, 1H, J = 9.0, 2.6 Hz), 7.18 (m, 2H), 7.03–6.97 (m, 4H), 4.48 (s, 1H), 4.40 (dd, 1H, J = 14.6, 6.6 Hz), 4.30 (dd, 1H, J = 14.6, 5.6 Hz), 1.09 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.3$, 149.4, 140.0, 136.4, 134.4, 133.5, 129.1, 128.8, 126.9, 125.8, 116.2, 87.7, 42.6, 35.0, 26.3; IR (Neat): v = 2959, 2873, 1669, 1610, 1517, 1494, 1480, 1434, 1399, 1348, 1313,

1271, 1248, 1163, 1118, 1090, 1077, 1052, 1001 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₉H₂₀Cl₂N₂O₄ 411.0878, found 411.0865.

2-(4-*Chloro-2-nitrophenoxy*)-*N*-(4-*methoxybenzyl*)*butanamide* (**2s**). Compound **2s** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (631 mg, 83%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 70/30); mp 103–104 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.85$ (d, 1H, J = 2.7 Hz), 7.48 (dd, 1H, J = 9.1, 2.7 Hz), 7.27 (br t, 1H, J = 5.7 Hz), 7.11 (m, 2H), 7.01 (d, 1H, J = 9.1 Hz), 6.80 (m, 2H), 4.82 (t, 1H, J = 5.2 Hz), 4.42 (dd, 1H, J = 14.6, 6.1 Hz), 4.37 (dd, 1H, J = 14.6, 6.1 Hz), 3.78 (s, 3H), 2.11–1.98 (m, 2H), 0.99 (t, 3H, J = 7.4 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 169.4$, 159.1, 149.3, 139.9, 134.6, 129.9, 129.0, 126.7, 126.1, 116.4, 114.1, 81.0, 55.4, 42.8, 25.5, 8.8; IR (Neat): $\nu = 3274$, 3066, 2932, 1643, 1611, 1526, 1513, 1483, 1459, 1437, 1353, 1301, 1272, 1248, 1229, 1181, 1162, 1138, 1121, 1105, 1060, 1029, 1000 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₈H₂₀ClN₂O₅ 379.1061, found 379.1063.

2-(4-*Cyano-2-nitrophenoxy*)-*N*-(3,4-dimethoxyphenethyl)-4-methylpentanamide (**2t**). Compound **2t** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 50/50) as eluent gave the desired product (327 mg, 74%) as a yellow oil. $R_f = 0.4$ (petroleum ether/ethyl acetate 50/50); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.11$ (d, 1H, J = 2.0 Hz), 7.74 (dd, 1H, J = 8.9, 2.0 Hz), 7.06 (d, 1H, J = 8.9 Hz), 6.67 (d, 1H, J = 8.2 Hz), 6.62 (br t, 1H, J = 5.3 Hz), 6.60 (d, 1H, J = 1.9 Hz), 6.55 (dd, 1H, J = 8.2, 1.9 Hz), 4.81 (dd, 1H, J = 8.4, 3.9 Hz), 3.86 (s, 3H), 3.82 (s, 3H), 3.58 (dq, 1H, J = 13.5, 6.8 Hz), 3.51 (dtd, 1H, J = 13.5, 6.9, 5.3 Hz), 2.75 (dd, 1H, J = 14.1, 6.8 Hz), 2.71 (dd, 1H, J = 14.1, 6.8 Hz), 1.90–1.81 (m, 1H), 1.81–1.72 (m, 2H), 0.94 (d, 3H, J = 6.3 Hz), 0.89 (d, 3H, J = 6.3 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 169.5$, 153.5, 149.0, 147.7, 139.6, 137.9, 130.3, 130.0, 120.5, 116.4, 115.6, 111.6, 111.2, 105.6, 79.5, 56.0, 55.9, 41.4, 40.0, 34.7, 24.6, 23.0, 21.9; IR (Neat): $\nu = 3396$, 2959, 2235, 1671, 1615, 1536, 1515, 1493, 1465, 1418, 1355, 1260, 1235, 1157, 1141, 1085, 1027 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C₂₃H₂₈N₃O₆ 442.1978, found 442.1982.

2-(4-*Cyano-2-nitrophenoxy*)-*N*-(4-*methoxybenzy*])*butanamide* (**2u**). Compound **2u** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 60/40) as eluent gave the desired product (226 mg, 61%) as a yellow oil. $R_f = 0.2$ (petroleum ether/ethyl acetate 70/30); ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.17$ (d, 1H, J = 2.1 Hz), 7.80 (dd, 1H, J = 8.7, 2.1 Hz), 7.17 (d, 1H, J = 8.7 Hz), 7.19–7.00 (m, 3H), 6.81 (m, 2H), 4.92 (t, 1H, J = 5.2 Hz), 4.40 (d, 2H, J = 5.9 Hz), 3.78 (s, 3H), 2.18–2.00 (m, 2H), 1.00 (t, 3H, J = 7.4 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.6$, 159.2, 153.6, 139.8, 138.1, 130.3, 129.6, 129.1, 116.4, 116.1, 114.2, 105.7, 81.4, 55.4, 42.9, 25.4, 8.8; IR (Neat): v = 3262, 3073, 2973, 2938, 2234, 1647, 1615, 1533, 1514, 1496, 1460, 1441, 1357, 1283, 1250, 1175, 1136, 1103, 1087, 1061, 1028 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₉H₁₉N₃O₅ 370.1403, found 370.1404.

4-*Methyl*-2-(2-*nitro*-4-(*trifluoromethyl*)*phenoxy*)-*N*-*phenethylpentanamide* (**2v**). Compound **2v** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (286 mg, 67%) as a yellow solid. $R_f = 0.6$ (petroleum ether/ethyl acetate 70/30); mp 79–80 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.07$ (d, 1H, J = 2.0 Hz), 7.73 (dd, 1H, J = 9.0, 2.0 Hz), 7.17-7.12 (m, 3H), 7.08 (d, 1H, J = 9.0 Hz), 7.01 (dd, 2H, J = 7.7, 1.9 Hz), 6.71 (br t, 1H, J = 6.8 Hz), 4.82 (dd, 1H, J = 8.4, 3.9 Hz), 3.64 (dq, 1H, J = 13.5, 6.8 Hz), 3.50 (dq, 1H, J = 13.5, 6.8 Hz), 2.78 (t, 2H, J = 6.8 Hz), 1.89–1.72 (m, 3H), 0.94 (d, 3H, J = 6.2 Hz), 0.89 (d, 3H, J = 6.2 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 170.0$, 152.8, 139.5, 138.1, 131.4 (q, $J_{CF} = 3.4$ Hz), 128.6, 128.5, 126.6, 124.1 (q, $J_{CF} = 34.4$ Hz), 123.8 (q, $J_{CF} = 3.7$ Hz), 122.9 (q, $J_{CF} = 273.1$ Hz), 115.1, 79.3, 41.6, 40.0, 35.3, 24.7, 23.1, 21.9; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -62.2$; IR (Neat): $\nu = 3250$, 3086, 2957, 2873, 1654, 1627, 1540, 1506, 1468, 1455, 1368, 1326, 1297, 1275, 1234, 1189, 1163, 1129, 1100, 1073 cm⁻¹; HRMS (ESI+; MeCN/CH₂Cl₂): *m*/z calculated for C₂₁H₂₄F₃N₂O₄ 425.1688, found 425.1690.

N-(3,4-Dimethoxyphenethyl)-4,8-dimethyl-2-(2-nitro-4-(trifluoromethyl)phenoxy)non-7-enamide (2w). Compound 2w was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (908 mg, 82%) as a 1:1 mixture of unseparable diastereomers (yellow oil). $R_f = 0.3$ (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 8.12 (d, 0.5H, J = 2.0 Hz), 8.11 (d, 0.5H, J = 2.0 Hz), 7.75 (dd, 0.5H, J = 8.4, 2.0 Hz), 7.74 (dd, 0.5H, J = 8.4, 2.0 Hz), 7.11 (d, 0.5H, J = 8.4 Hz), 7.10 (d, 0.5H, J = 8.4 Hz), 6.78 (br t, 0.5H, J = 5.7 Hz), 6.78 (br t, 0.5H, J = 5.7 Hz), 6.67 (d, 0.5H, J = 5.7 Hz), 6.67 (d, 0.5H, J = 5.7 Hz), 6.67 (d, 0.5H, J = 5.7 Hz), 6.68 (d, 0.5H, J = 5.7 Hz), 6.78 (d, 0.5H *J* = 8.0 Hz), 6.66 (d, 0.5H, *J* = 8.0 Hz), 6.64 (d, 0.5H, *J* = 1.9 Hz), 6.63 (d, 0.5H, *J* = 1.9 Hz), 6.56 (dd, 0.5H, *J* = 8.0, 2.0 Hz), 6.54 (dd, 0.5H, *J* = 8.0, 2.0 Hz), 5.05 (t, 0.5H, *J* = 7.1 Hz), 4.99 (t, 0.5H, *J* = 7.1 Hz), 4.88– 4.82 (m, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.62–3.45 (m, 2H), 2.73 (br t, 2H, J = 6.6 Hz), 2.05–1.57 (m, 5H), 1.66 (s, 1.5H), 1.61 (s, 1.5H), 1.58 (s, 1.5H), 1.54 (s, 1.5H), 1.39–1.11 (m, 2H), 0.94 (d, 1.5H, J = 6.5 Hz), 0.89 (d, 1.5H, *J* = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 170.0, 169.9, 152.9, 152.8, 149.1, 147.8, 139.5, 139.4, 131.8, 131.7, 131.4 (q, *J*_{C-F} = 3.3 Hz), 130.6, 130.5, 124.5, 124.4, 124.2, 124.1, 123.7 (q, *J*_{C-F} = 3.9 Hz), 122.9 (q, JCF = 272.2 Hz), 120.6, 115.2, 115.1, 111.8, 111.7, 111.3, 111.2, 79.3, 79.2, 55.9, 55.8, 40.3, 40.2, 40.0, 39.9, 37.4, 36.4, 35.0, 34.9, 29.0, 28.8, 25.7, 25.6, 25.3, 25.1, 19.9, 19.1, 17.7, 17.6; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): δ = -62.2; IR (Neat): ν = 3393, 2932, 1671, 1627, 1590, 1539, 1515, 1453, 1419, 1357, 1324, 1261, 1236, 1157, 1128, 1093, 1027 cm⁻¹; HRMS (ESI+; MeCN/CH2Cl2): *m*/*z* calculated for C₂₈H₃₅F₃N₂O₆ 553.2525, found 553.2526.

N-Cyclohexyl-2-((2-nitropyridin-3-yl)oxy)butanamide (**2xa**). Compound **2xa** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 60/40) as eluent gave the desired product (226 mg, 74%) as an off-white solid. $R_f = 0.2$ (petroleum ether/ethyl acetate 60/40); mp 122–123 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.17$ (dd, 1H, J = 4.3, 1.3 Hz), 7.56 (dd, 1H, J = 8.4, 4.3 Hz), 7.52 (dd, 1H, J = 8.4, 1,3 Hz), 6.76 (br d, 1H, J = 7.5 Hz), 4.79 (t, 1H, J = 5.3 Hz), 3.81–3.71 (m, 1H), 2.13–1.97 (m, 2H), 1.95–1.87 (m, 1H), 1.76–1.67 (m, 2H), 1.67–1.53 (m, 2H), 1.44–1.04 (m, 5H), 1.00 (t, 3H, J = 7.4 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.1$, 148.8, 145.9, 140.5, 129.2, 124.3, 80.9, 48.2, 32.9, 32.7, 25.6, 25.4, 24.7, 24.6, 8.8; IR (Neat): $\nu = 3260$, 3088, 2925, 2853, 1650, 1602, 1561, 1535, 1460, 1427, 1370, 1277, 1245, 1233, 1141, 1113, 1086, 1052, 1025 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₅H₂₂N₃O₄ 308.1610, found 308.1607.

N-Cyclohexyl-3-methyl-2-((2-nitropyridin-3-yl)oxy)butanamide (**2xb**). Compound **2xb** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 70/30) as eluent gave the desired product (246 mg, 77%) as an off-white solid. R_f = 0.2 (petroleum ether/ethyl acetate 70/30); mp 132–133 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 8.15 (dd, 1H, *J* = 3.7, 2.1 Hz), 7.57–7.50 (m, 2H), 6.63 (br d, 1H, *J* = 7.9 Hz), 4.62 (d, 1H, *J* = 4.3 Hz), 3.80–3.68 (m, 1H), 2.34 (sept d, 1H, *J* = 6.7, 4.3 Hz), 1.95–1.87 (m, 1H), 1.77–1.52 (m, 4H), 1.42–1.00 (m, 5H), 1.06 (d, 3H, *J* = 6.7 Hz), 1.05 (d, 3H, *J* = 6.7 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 167.7, 148.9, 146.1, 140.4, 129.1, 124.3, 84.6, 48.1, 33.0, 32.6, 31.5, 25.4, 24.7, 24.6, 18.7, 17.0; IR (Neat): ν = 3283, 3071, 2969, 2930, 2853, 1651, 1600, 1569, 1537, 1519, 1458, 1435, 1376, 1349, 1299, 1269, 1244, 1232, 1152, 1130, 1114, 1089, 1034 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₂₄N₃O₄ 322.1767, found 322.1769.

N-Cyclohexyl-2-((3-nitropyridin-2-yl)oxy)butanamide (**2ya**). Compound **2ya** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (132 mg, 43%) as an off-white solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 70/30); mp 142–143 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.40$ (dd, 1H, J = 4.8, 1.9 Hz), 8.34 (dd, 1H, J = 8.0, 1.9 Hz), 7.11 (dd, 1H, J = 8.0, 4.8 Hz), 7.04 (br d, 1H, J = 7.8 Hz), 5.77 (t, 1H, J = 4.9 Hz), 3.87–3.77 (m, 1H), 2.14–2.06 (m, 2H), 2.00–1.92 (m, 1H), 1.86–1.78 (m, 1H), 1.78–1.54 (m, 3H), 1.45–1.13 (m, 5H,), 0.95 (t, 3H, J = 7.4 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 169.0$, 154.9, 152.3, 135.7, 133.9, 117.7, 77.9, 47.9, 33.1, 32.8, 25.6, 25.0, 24.7, 8.4; IR (Neat): v = 3283, 3070, 2969, 2930, 2854, 1652, 1600, 1570, 1552, 1517, 1456, 1439, 1376, 1348, 1301, 1268,

1242, 1233, 1149, 1130, 1091 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₅H₂₂N₃O₄ 308.1610, found 308.1615.

N-Cyclohexyl-3-methyl-2-((3-nitropyridin-2-yl)oxy)butanamide (**2yb**). Compound **2yb** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (184 mg, 57%) as an off-white solid. R_f = 0.5 (petroleum ether/ethyl acetate 70/30); mp 131–132 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 8.38 (dd, 1H, *J* = 4.8, 1.8 Hz), 8.30 (dd, 1H, *J* = 8.0, 1.8 Hz), 7.10 (dd, 1H, *J* = 8.0, 4.8 Hz), 6.91 (br d, 1H, *J* = 8.2 Hz), 5.78 (d, 1H, *J* = 3.4 Hz), 3.85–3.71 (m, 1H), 2.44 (sept d, 1H, *J* = 6.9, 3.4 Hz), 2.00–1.88 (m, 1H), 1.78–1.49 (m, 4H), 1.45–1.06 (m, 5H), 1.03 (s, 3H, *J* = 6.9 Hz), 1.00 (d, 3H, *J* = 6.9 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 168.6, 155.1, 152.0, 135.4, 133.9, 117.6, 80.7, 47.7, 33.0, 32.7, 31.0, 25.4, 24.6, 18.7, 16.7; IR (Neat): ν = 3275, 3096, 2933, 2854, 1651, 1604, 1570, 1520, 1441, 1386, 1345, 1318, 1300, 1266, 1243, 1152, 1093, 1020 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₂₄N₃O₄ 322.1767, found 322.1757.

N-Cyclohexyl-3-methyl-2-(4-nitrophenoxy)butanamide (**2z**). Compound **2z** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (256 mg, 40%) as a yellow solid. $R_f = 0.6$ (petroleum ether/ethyl acetate 70/30); mp 155–156 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.20$ (d, 1H, J = 9.3 Hz), 6.99 (d, 1H, J = 9.3 Hz), 5.91 (br d, 1H, J = 8.7 Hz), 4.39 (d, 1H, J = 4.5 Hz), 3.88–3.69 (m, 1H), 2.39–2.23 (m, 1H), 1.97–1.82 (m, 1H), 1.75–1.62 (m, 3H), 1.62–1.50 (m, 1H), 1.45–1.20 (m, 2H), 1.20–0.79 (m, 3H), 1.06 (d, 3H, J = 6.8 Hz), 1.02 (d, 3H, J = 6.8 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.6$, 162.9, 142.5, 126.2, 115.5, 84.7, 48.0, 33.2, 32.9, 31.8, 25.4, 24.8, 24.7, 18.9, 17.2; IR (Neat): v = 3265, 3091, 2964, 2926, 2876, 2853, 1647, 1608, 1592, 1558, 1506, 1496, 1469, 1448, 1422, 1390, 1372, 1345, 1330, 1314, 1300, 1254, 1244, 1232, 1173, 1154, 1113, 1091, 1042 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): m/z calculated for C₁₇H₂₅N₂O₄ 321.1814, found 321.1808.

N-Cyclohexyl-2-(1-(2-nitrophenoxy)propoxy)butanamide (**3a**). The product **3a** was isolated during the first step of the reaction as a mixture of two diastereomers, and one of them cannot be separated from the Passerini-Smiles adduct.

Diastereomer 1 (contaminated by Passerini-Smiles adduct)

*R*_{*i*} = 0.4 (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CD₂Cl₂, 25 °C): δ = 7.75 (dd, , 1H *J* = 8.0, 2.0 Hz), 7.51 (td, 1H, *J* = 8.0, 2.0 Hz), 7.18 (d, 1H, *J* = 8.0 Hz), 7.09 (t, 1H, *J* = 8.0 Hz), 6.12 (br d, 1H, *J* = 7.7 Hz), 5.30 (t, 1H, *J* = 5.3 Hz), 4.06 (t, 1H, *J* = 5.5 Hz), 3.72–3.61 (m, 1H), 1.97–1.62 (m, 8H), 1.61–1.54 (m, 1H), 1.38–1.24 (m, 2H), 1.21–1.01 (m, 3H), 1.03 (t, 3H, *J* = 7.5 Hz), 0.86 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (125 MHz, CD₂Cl₂, 25 °C): δ = 170.5, 149.9, 141.9, 134.0, 125.7, 122.1, 117.9, 105.1, 79.1, 48.1, 33.4, 33.3, 27.6, 26.8, 25.9, 25.22, 25.17, 8.9, 8.8.

Diastereomer 2

*R*_{*i*} = 0.2 (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CD₂Cl₂, 25 °C): δ = 7.76 (dd, 1H, *J* = 8.0, 1.7 Hz), 7.52 (td, 1H, *J* = 8.0, 1.7 Hz), 7.19 (d, 1H, *J* = 8.0 Hz), 7.10 (t, 1H, *J* = 8.0 Hz), 6.42 (br d, 1H, *J* = 7.1 Hz), 5.39 (t, 1H, *J* = 5.3 Hz), 4.07 (t, 1H, *J* = 5.1 Hz), 3.72–3.62 (m, 1H), 1.98–1.64 (m, 8H), 1.64–1.58 (m, 1H), 1.39–1.29 (m, 2H), 1.23–1.08 (m, 3H), 1.03 (t, 3H, *J* = 7.5 Hz), 0.86 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (125 MHz, CD₂Cl₂, 25 °C): δ = 170.4, 149.9, 141.7, 134.1, 125.7, 122.2, 118.0, 105.5, 79.4, 48.2, 33.4, 33.0, 27.6, 26.1, 26.0, 25.3, 8.7, 8.5; IR (Neat): *ν* = 3301, 2931, 2855, 1654, 1605, 1583, 1524, 1484, 1451, 1350, 1313, 1276, 1249, 1150, 1110, 1087, 1024 cm⁻¹; HRMS (ESI⁻; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₉H₂₈N₂O₅ 409.1975, found 409.1990.

N-Cyclohexyl-2-(2-fluoro-4-nitrophenoxy)-3-methylbutanamide (4a). Compound 4a was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl

acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (275 mg, 81%) as a white solid. $R_f = 0.5$ (petroleum ether/ethyl acetate 80/20); mp 157–158 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.06-7.98$ (m, 2H), 7.03 (t, 1H, J = 8.6 Hz), 6.09 (br d, 1H, J = 8.5 Hz), 4.44 (d, 1H, J = 4.5 Hz), 3.87–3.72 (m, 1H), 2.35 (sept d, 1H, J = 6.9, 4.5 Hz), 1.97–1.86 (m, 1H), 1.77–1.54 (m, 4H), 1.44–0.90 (m, 5H), 1.08 (d, 6H, J = 6.9 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.2$, 151.8 (d, $J_{C-F} = 251.6$ Hz), 151.7 (d, $J_{C-F} = 10.9$ Hz), 142.0 (d, $J_{C-F} = 7.3$ Hz), 121.0 (d, $J_{C-F} = 3.7$ Hz), 115.3, 112.9 (d, $J_{C-F} = 23.1$ Hz), 86.2, 48.1, 33.2, 32.9, 31.9, 25.5, 24.8, 24.7, 18.8, 17.2; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -129.3$; IR (Neat): $\nu = 3268$, 3085, 2930, 2854, 1648, 1603, 1562, 1519, 1504, 1471, 1446, 1389, 1349, 1334, 1296, 1275, 1247, 1215, 1154, 1138, 1088, 1077, 1037 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): m/z calculated for C₁₇H₂₄FN₂O₄ 339.1720, found 339.1719.

2-(2-*Chloro-4-nitrophenoxy*)-*N*-*cyclohexy*]-3-*methylbutanamide* (**4b**). Compound **4b** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 70/30) as eluent gave the desired product (486 mg, 68%) as a yellow solid. $R_f = 0.7$ (petroleum ether/ethyl acetate 70/30); mp 174–175 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.31$ (d, 1H, J = 2.7 Hz), 8.12 (dd, 1H, J = 9.1, 2.7 Hz), 6.97 (d, 1H, J = 9.1 Hz), 6.12 (br d, 1H, J = 8.4 Hz), 4.51 (d, 1H, J = 4.2 Hz), 3.86–3.71 (m, 1H), 2.43–2.29 (m, 1H), 1.97–1.85 (m, 1H), 1.78–1.51 (m, 4H), 1.44–0.81 (m, 5H), 1.10 (d, 3H, J = 6.3 Hz), 1.08 (d, 3H, J = 6.3 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.0$, 158.4, 142.1, 126.3, 124.2, 124.0, 113.7, 85.6, 48.1, 33.1, 32.8, 31.8, 25.4, 24.7, 24.6, 18.9, 17.1; IR (Neat): $\nu = 3261$, 3094, 2930, 2855, 1648, 1585, 1563, 1510, 1486, 1470, 1446, 1346, 1319, 1293, 1270, 1245, 1233, 1155, 1123, 1091, 1053, 1027 cm⁻¹; HRMS (ESI+; MeCN/CH₂Cl₂): *m*/z calculated for C₁₇H₂₄ClN₂O₄ 355.1425, found 355.1428.

N-Cyclohexyl-2-(2,4-dinitrophenoxy)-3-methylbutanamide (**4c**). Compound **4c** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 50/50) as eluent gave the desired product (481 mg, 66%) as an orange solid. $R_f = 0.7$ (petroleum ether/ethyl acetate 50/50); mp 178–179 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.78$ (d, 1H, J = 2.8 Hz), 8.42 (dd, 1H, J = 9.4, 2.8 Hz), 7.23 (d, 1H, J = 9.4 Hz), 6.60 (br d, 1H, J = 8.0 Hz), 4.75 (d, 1H, J = 4.1 Hz), 3.83–3.67 (m, 1H), 2.38 (sept d, 1H, J = 6.9, 4.1 Hz), 1.96–1.86 (m, 1H), 1.76–1.50 (m, 4H), 1.44–0.88 (m, 5H), 1.08 (d, 3H, J = 6.9 Hz), 1.06 (d, 3H, J = 6.9 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.1$, 155.4, 140.9, 139.2, 129.5, 122.3, 115.3, 85.4, 48.2, 33.0, 32.7, 31.6, 25.4, 24.7, 24.6, 18.6, 17.1; IR (Neat): v = 3267, 2926, 2855, 1644, 1602, 1561, 1534, 1516, 1486, 1448, 1342, 1319, 1296, 1274, 1244, 1231, 1158, 1084, 1066, 1018 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₂₄N₃O₆ 366.1665, found 366.1682.

2-(2-*Bromo-4-nitrophenoxy*)-*N*-*cyclohexy*]-3,3-*dimethylbutanamide* (**4d**). Compound **4d** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (298 mg, 72%) as a white solid. R_f = 0.6 (petroleum ether/ethyl acetate 80/20); mp 168–169 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 8.48 (d, 1H, *J* = 2.7 Hz), 8.15 (dd, 1H, *J* = 9.2, 2.7 Hz), 6.93 (d, 1H, *J* = 9.2 Hz), 5.86 (br d, 1H, *J* = 8.4 Hz), 4.33 (s, 1H), 3.81–3.71 (m, 1H), 1.94–1.85 (m, 1H), 1.71–1.50 (m, 4H), 1.42–1.06 (m, 4H), 0.97–0.88 (m, 1H), 1.16 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 167.0, 159.1, 142.4, 129.3, 124.9, 113.7, 112.5, 88.5, 48.0, 35.1, 33.2, 32.7, 26.4, 25.4, 24.7, 24.6; IR (Neat): ν = 3275, 3085, 2930, 2856, 1650, 1583, 1553, 1523, 1478, 1448, 1397, 1362, 1339, 1314, 1278, 1250, 1238, 1193, 1144, 1119, 1094, 1062, 1041, 1016 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₈H₂₆BrN₂O₄ 413.1076, found 413.1068.

N-(4-*Chlorobenzyl*)-2-(2-*fluoro*-4-*nitrophenoxy*)-4,8-*dimethylnon*-7-*enamide* (4e). Compound 4e was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (334 mg, 72%) as a 1:1 mixture of unseparable diastereomers (yellow oil). $R_f = 0.7$ (petroleum ether/ethyl acetate 80/20); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.05$ -7.99 (m, 2H), 7.29-7.23 (m, 2H), 7.10 (dd, 2H, J = 8.3, 2.0 Hz), 7.02 (br t, 1H, J = 8.6 Hz), 6.54 (br t, 1H, J = 6.3 Hz), 5.08 (t, 0.5H, J = 7.1 Hz), 5.00 (t, 0.5H, J = 7.1 Hz), 4.78–4.74 (m, 1H), 4.45 (dd, 1H, J = 14.9, 5.8 Hz), 4.38 (dd, 0.5H, J = 14.9, 5.8 Hz), 4.38 (dd,

0.5H, J = 14.9, 5.8 Hz), 2.07–1.84 (m, 3.5H), 1.82–1.71 (m, 1.5H), 1.68 (s, 1.5H), 1.63 (s, 1.5H), 1.60 (s, 1.5H), 1.55 (s, 1.5H), 1.41–1.33 (m, 1H), 1.31–1.15 (m, 1H), 1.00 (d, 1.5H, J = 6.7 Hz), 0.92 (d, 1.5H, J = 6.2 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 170.5$, 170.4, 151.5 (d, $J_{C-F} = 249.4$ Hz), 151.1 (d, $J_{C-F} = 11.0$ Hz), 151.0 (d, $J_{C-F} = 11.0$ Hz), 142.0 (d, $J_{C-F} = 7.6$ Hz), 136.1, 133.7, 131.84, 131.77, 129.0, 124.2, 124.1, 121.0 (d, $J_{C-F} = 4.0$ Hz), 114.8, 112.93 (d, $J_{C-F} = 23.1$ Hz), 112.83 (d, $J_{C-F} = 23.1$ Hz), 80.1, 79.9, 42.6, 40.4, 40.3, 37.4, 36.4, 29.2, 28.9, 25.8, 25.7, 25.4, 25.2, 20.0, 19.0, 17.8, 17.7; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -128.9$, -128.8; IR (Neat): $\nu = 3289$, 3088, 2961, 2915, 2854, 1655, 1603, 1520, 1501, 1454, 1431, 1409, 1378, 1345, 1277, 1248, 1215, 1177, 1138, 1090, 1073, 1014 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₄H₂₉ClFN₂O₄463.1800, found 463.1823.

2-(2-*Fluoro-4-nitrophenoxy*)-*N*-*phenethyl-4-phenylbutanamide* (**4f**). Compound **4f** was prepared according to the general procedure B. Purification on a column of silica gel with with a gradient of ethyl acetate in petroleum ether (90/10 to 80/20) as eluent gave the desired product (579 mg, 69%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 80/20); mp 113–114 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.00$ (dd, 1H, J = 10.4, 2.7 Hz), 7.93 (m, 1H), 7.32–7.24 (m, 2H), 7.24–7.16 (m, 4H), 7.13 (d, 2H, J = 7.2 Hz), 7.06 (d, 2H, J = 7.2 Hz), 6.77 (dd, 1H, J = 9.1, 7.9 Hz), 6.28 (br t, 1H, J = 5.7 Hz), 4.60 (dd, 1H, J = 7.3, 4.8 Hz), 3.62 (dq, 1H, J = 19.7, 6.7 Hz), 3.52 (dq, 1H, J = 19.7, 6.7 Hz), 2.86–2.70 (m, 4H), 2.33–2.20 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 169.6$, 151.4 (d, $J_{C-F} = 251.5$ Hz), 150.7 (d, $J_{C-F} = 10.9$ Hz), 141.9 (d, $J_{C-F} = 7.0$ Hz), 140.1, 138.1, 128.8, 128.7, 128.62, 128.57, 126.8, 126.5, 121.0 (d, $J_{C-F} = 3.8$ Hz), 114.6, 112.8 (d, $J_{C-F} = 22.7$ Hz), 79.8, 40.1, 35.4, 34.3, 31.0; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -129.1$; IR (Neat): $\nu = 3284$, 3088, 3064, 3028, 2931, 2859, 1646, 1601, 1556, 1519, 1497, 1454, 1345, 1333, 1286, 1247, 1219, 1182, 1156, 1141, 1073, 1029, 1011 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₄H₂₄FN₂O₄423.1720, found 423.1715.

2-(2-*Fluoro-4-nitrophenoxy*)-*N*-(4-*methoxybenzy*])-3-*methylbutanamide* (**4g**). Compound **4g** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (80/20) as eluent gave the desired product (573 mg, 76%) as an off-white solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 70/30); mp 113–114 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.02-7.96$ (m, 2H), 7.09 (d, 2H, *J* = 8.5 Hz), 7.01 (t, 1H, *J* = 8.5 Hz), 6.80 (d, 2H, *J* = 8.5 Hz), 6.44 (br t, 1H, *J* = 5.4 Hz), 4.51 (d, 1H, *J* = 4.7 Hz), 4.43 (dd, 1H, *J* = 14.5, 5.9 Hz), 4.35 (dd, 1H, *J* = 14.5, 5.9 Hz), 3.78 (s, 3H), 2.41–2.32 (m, 1H), 1.091 (d, 3H, *J* = 6.8 Hz), 1.086 (d, 3H, *J* = 6.8 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 169.1$, 159.2, 151.58 (d, *J*_{C-F} = 252.1 Hz), 151.56 (d, *J*_{C-F} = 10.6 Hz), 141.9 (d, *J*_{C-F} = 7.2 Hz), 129.7, 129.1, 121.0 (d, *J*_{C-F} = 3.7 Hz), 115.1, 114.2, 112.8 (d, *J*_{C-F} = 23.2 Hz), 86.0, 55.3, 42.8, 31.9, 18.8, 17.3; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -129.1$; IR (Neat): $\nu = 3270$, 3089, 3042, 2964, 2930, 2878, 2833, 1639, 1613, 1604, 1587, 1537, 1514, 1501, 1461, 1441, 1389, 1337, 1293, 1277, 1249, 1213, 1183, 1176, 1150, 1139, 1111, 1076, 1057, 1032 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₉H₂₂FN₂O₅ 377.1513, found 377.1531.

2-(2-*Fluoro-4-nitrophenoxy*)-3,3-*dimethyl*-*N*-*phenethylbutanamide* (**4h**). Compound **4h** was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (354 mg, 47%) as a yellow oil. $R_f = 0.5$ (petroleum ether/ethyl acetate 80/20); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.00-7.93$ (m, 2H), 7.21–7.13 (m, 3H), 7.02 (dd, 2H, *J* = 7.3, 2.0 Hz), 6.89 (t, 1H, *J* = 8.5 Hz), 6.04 (br t, 1H, *J* = 5.2 Hz), 4.25 (s, 1H), 3.61 (dq, 1H, *J* = 13.6, 6.8 Hz), 3.51 (dq, 1H, *J* = 13.6, 6.8 Hz), 2.76 (t, 2H, *J* = 6.8 Hz), 1.07 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.3$, 151.5 (d, *J*_{C-F} = 10.6 Hz), 151.4 (d, *J*_{C-F} = 23.3 Hz), 88.4, 39.9, 35.4, 35.1, 26.2; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -129.7$; IR (Neat): v = 3299, 3089, 3029, 2960, 1655, 1603, 1520, 1504, 1480, 1454, 1398, 1367, 1348, 1332, 1281, 1249, 1213, 1139, 1074, 1053, 1011 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C₂₀H₂₄FN₂O₄ 375.1720, found 375.1721.

2-(2-Fluoro-4-nitrophenoxy)-N-(4-methoxybenzyl)-3,3-dimethylhex-5-enamide (4i). Compound 4i was prepared according to the general procedure B. Purification on a column of silica gel with ethyl

acetate in petroleum ether (80/20) as eluent gave the desired product (590 mg, 71%) as a yellow solid. $R_f = 0.5$ (petroleum ether/ethyl acetate 70/30); mp 96–97 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.00-7.94$ (m, 2H), 7.04 (d, 2H, J = 8.6 Hz), 6.95 (br t, 1H, J = 8.7 Hz), 6.77 (d, 2H, J = 8.5 Hz), 6.29 (br t, 1H, J = 5.9 Hz), 5.82 (m, 1H), 5.04 (dd, 1H, J = 10.2, 2.1 Hz), 4.96 (br d, 1H, J = 17.0 Hz), 4.40 (s, 1H), 4.37 (dd, 1H, J = 14.5, 6.0 Hz), 4.34 (dd, 1H, J = 14.5, 6.0 Hz), 3.77 (s, 3H), 2.30 (dd, 1H, J = 13.7, 8.3 Hz), 2.16 (dd, 1H, J = 13.7, 6.7 Hz), 1.12 (s, 3H), 1.10 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.2$, 159.3, 151.40 (d, $J_{C-F} = 251.0$ Hz), 151.38 (d, $J_{C-F} = 10.2$ Hz), 141.9 (d, $J_{C-F} = 7.3$ Hz), 133.8, 129.7, 129.2, 121.0 (d, $J_{C-F} = 3.8$ Hz), 118.9, 114.7 (d, $J_{C-F} = 1.6$ Hz), 114.2, 112.7 (d, $J_{C-F} = 22.5$ Hz), 86.7, 55.4, 43.8, 42.9, 38.2, 23.51, 23.46; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -129.4$; IR (Neat): $\nu = 3285$, 3083, 2975, 2955, 2834, 1649, 1615, 1601, 1561, 1514, 1464, 1390, 1370, 1343, 1317, 1286, 1274, 1244, 1214, 1174, 1140, 1112, 1095, 1074, 1057, 1039, 1002 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₂H₂₆FN₂O₅ 417.1826, found 417.1822.

N-Cyclohexyl-2-(2-fluoro-4-nitrophenoxy)butanamide (**4j**). Compound **4j** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (80/20) as eluent gave the desired product (493 mg, 76%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 80/20); mp 132–133 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.07-8.00$ (m, 2H), 7.04 (t, 1H, *J* = 8.3 Hz), 6.19 (br d, 1H, *J* = 8.4 Hz), 4.64 (t, 1H, *J* = 5.5 Hz), 3.85–3.76 (m, 1H), 2.05 (qd, 2H, *J* = 7.4, 5.5 Hz), 1.96–1.89 (m, 1H), 1.86–1.74 (m, 1H), 1.74–1.67 (m, 1H), 1.67–1.58 (m, 2H), 1.43–1.31 (m, 2H), 1.22–1.13 (m, 2H), 1.10–1.01 (m, 1H), 1.05 (t, 3H, *J* = 7.4 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.6$, 151.7 (d, *J*_{C-F} = 252.1 Hz), 151.1 (d, *J*_{C-F} = 10.4 Hz), 142.0 (d, *J*_{C-F} = 7.3 Hz), 121.0 (d, *J*_{C-F} = 3.7 Hz), 115.2, 112.9 (d, *J*_{C-F} = 23.7 Hz), 82.1, 48.1, 33.0, 32.9, 26.0, 25.4, 24.8, 24.7, 9.02; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -129.3$; IR (Neat): v = 3262, 3087, 2928, 2853, 1649, 1614, 1604, 1557, 1519, 1502, 1465, 1447, 1346, 1336, 1283, 1245, 1234, 1218, 1144, 1107, 1075, 1049 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₂₂FN₂O4 325.1564, found 325.1563.

N-(3,4-Dimethoxyphenethyl)-2-(2-fluoro-4-nitrophenoxy)-4,8-dimethylnon-7-enamide (4k). Compound 4k was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 80/20 to 70/30) as eluent gave the desired product (701 mg, 70%) as a 1:1 mixture of unseparable diastereomers (yellow oil). $R_f = 0.3$ (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 8.01–7.94 (m, 2H), 6.91–6.84 (m, 1H), 6.67 (dd, 1H, J = 8.1, 2.3 Hz), 6.61 (d, 1H, J = 2.3 Hz), 6.53 (dt, 1H, J = 8.1, 2.3 Hz), 6.18 (br t, 0.5H, J = 5.0 Hz), 6.17 (br t, 0.5H, J = 5.0 Hz), 5.07 (t, 0.5H, J = 7.0 Hz), 4.99 (t, 0.5H, J = 7.0 Hz), 4.64 (m, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.62–3.53 (m, 1H), 3.52–3.45 (m, 1H), 2.72 (t, 2H, J = 6.9 Hz), 2.04–1.87 (m, 3H), 1.83–1.77 (m, 0.5H), 1.76–1.69 (m, 1.5H), 1.67 (s, 1.5H), 1.62 (s, 1.5H), 1.59 (s, 1.5H), 1.55 (s, 1.5H), 1.40– 1.31 (m, 1H), 1.28–1.12 (m, 1H), 0.97 (d, 1.5H, J = 6.6 Hz), 0.89 (d, 1.5H, J = 6.1 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 169.7, 169.6, 150.8 (d, *J*_{C-F} = 249.9 Hz), 150.5 (d, *J*_{C-F} = 10.2 Hz), 150.4 (d, *J*_{C-F} = 10.2 Hz), 148.6, 147.4, 141.3 (d, JCF = 7.4 Hz), 131.4, 131.3, 130.1, 123.9, 123.8, 120.6 (d, JCF = 3.3 Hz), 120.3, 114.0, 112.5 (d, JC-F = 22.6 Hz), 112.4 (d, JC-F = 22.6 Hz), 111.3, 111.0, 79.9, 79.7, 56.04, 56.00, 40.6, 40.5, 40.4, 37.7, 36.6, 35.21, 35.19, 29.6, 29.2, 26.12, 26.09, 25.7, 25.5, 20.4, 19.3, 18.2, 18.1; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): δ = -129.17, -129.22; IR (Neat): ν = 3347, 2929, 1667, 1604, 1515, 1453, 1419, 1345, 1277, 1261, 1235, 1214, 1156, 1139, 1074, 1027 cm⁻¹; HRMS (ESI+; MeCN/CH₂Cl₂): *m/z* calculated for C₂₇H₃₆FN₂O₆ 503.2557, found 503.2536.

N-(*4*-*Chlorobenzyl*)-2-(2-*fluoro*-4-*nitrophenoxy*)*butanamide* (**4**). Compound **4**I was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 70/30) as eluent gave the desired product (533 mg, 73%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 70/30); mp 116–117 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.05-8.00$ (m, 2H), 7.28 (d, 2H, J = 8.4 Hz), 7.15 (d, 2H, J = 8.4 Hz), 7.03 (dd, 1H, J = 9.1, 8.2 Hz), 6.68 (br t, 1H, J = 5.8 Hz), 4.74 (t, 1H, J = 5.4 Hz), 4.50 (dd, 1H, J = 15.0, 6.1 Hz), 4.41 (dd, 1H, J = 15.0, 6.1 Hz), 2.08 (qd, 2H, J = 7.4, 5.4 Hz), 1.05 (t, 3H, J = 7.4 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 169.7$, 151.7 (d, $J_{C-F} = 251.1$ Hz), 150.8 (d, $J_{C-F} = 10.5$ Hz), 142.1 (d, $J_{C-F} = 7.4$ Hz), 136.2, 133.7, 129.1, 129.0, 121.0 (d, $J_{C-F} = 3.5$ Hz), 115.2, 113.0 (d, $J_{C-F} = 23.0$ Hz), 81.9, 42.6, 25.9, 9.1; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = 169.7$, 151.7 (d, $J_{C-F} = 3.5$ Hz), 115.2, 113.0 (d, $J_{C-F} = 23.0$ Hz), 81.9, 42.6, 25.9, 9.1; ¹⁹F-NMR (282 MHz, CDCl₃)

25 °C): δ = -129.0; IR (Neat): ν = 3248, 3093, 2988, 2925, 1653, 1616, 1603, 1553, 1508, 1490, 1461, 1410, 1383, 1349, 1332, 1310, 1282, 1261, 1242, 1209, 1145, 1105, 1092, 1077, 1047, 1013 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₁₇ClFN₂O₄ 367.0861, found 367.0875.

N-(*Tert-butyl*)-2-(2-*fluoro-4-nitrophenoxy*)-3-*methylbutanamide* (4m). Compound 4m was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (191 mg, 31%) as an off-white solid. R_f = 0.7 (petroleum ether/ethyl acetate 70/30); mp 108–109 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 8.04–8.00 (m, 2H), 7.04 (t, 1H, *J* = 8.3 Hz), 6.01 (br s, 1H), 4.33 (d, 1H, *J* = 4.7 Hz), 2.39–2.27 (m, 1H), 1.32 (s, 9H), 1.10 (d, 3H, *J* = 6.8 Hz), 1.08 (d, 3H, *J* = 6.8 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 168.4, 151.76 (d, *J*_{C-F} = 254.3 Hz), 151.75 (d, *J*_{C-F} = 10.6 Hz), 142.0 (d, *J*_{C-F} = 7.3 Hz), 121.0 (d, *J*_{C-F} = 3.3 Hz), 115.4, 112.9 (d, *J*_{C-F} = 23.5 Hz), 86.6, 51.6, 31.9, 28.7, 18.8, 17.3; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): δ = –129.4; IR (Neat): ν = 3275, 3074, 2971, 2919, 1646, 1614, 1602, 1551, 1525, 1506, 1467, 1391, 1363, 1343, 1333, 1299, 1276, 1247, 1216, 1148, 1138, 1074, 1022 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₅H₂₂FN₂O₄ 313.1564, found 313.1555.

N-Cyclohexyl-2-(2-fluoro-4-nitrophenoxy)-3,3-dimethylbutanamide (**4n**). Compound **4n** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (90/10) as eluent gave the desired product (351 mg, 50%) as a yellow solid. $R_f = 0.6$ (petroleum ether/ethyl acetate 80/20); mp 148–149 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 8.06-7.98$ (m, 2H), 7.02 (m, 1H), 5.90 (br d, 1H, J = 8.5 Hz), 4.26 (s, 1H), 3.84–3.75 (m, 1H), 1.95–1.88 (m, 1H), 1.72–1.58 (m, 3H), 1.41–1.25 (m, 3H), 1.17–1.10 (m, 2H), 1.13 (s, 9H), 1.00–0.91 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.2$, 151.7 (d, $J_{C-F} = 10.4$ Hz), 151.6 (d, $J_{C-F} = 251.4$ Hz), 141.8 (d, $J_{C-F} = 7.0$ Hz), 121.0 (d, $J_{C-F} = 3.5$ Hz), 114.9, 112.8 (d, $J_{C-F} = 22.8$ Hz), 88.8, 48.1, 35.1, 33.3, 32.9, 26.3, 25.4, 24.8, 24.7; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -129.6$; IR (Neat): $\nu = 3281$, 3093, 2930, 2856, 1732, 1647, 1618, 1603, 1556, 1526, 1508, 1481, 1450, 1396, 1363, 1347, 1283, 1252, 1240, 1214, 1197, 1152, 1138, 1094, 1076, 1059, 1017 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): m/z calculated for C₁₈H₂₆FN₂O₄ 353.1877, found 353.1872.

2-*Isopropyl*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**5a**). Compound **5a** was prepared according to the general procedure C. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (76 mg, 79%) as a white solid. $R_f = 0.5$ (petroleum ether/ethyl acetate 80/20); mp 113–114 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.56$ (br s, 1H), 7.00–6.87 (m, 3H), 6.81–6.75 (m, 1H), 4.35 (d, 1H, *J* = 5.9 Hz), 2.30 (sept d, 1H, *J* = 6.8, 5.9 Hz), 1.11 (d, 3H, *J* = 6.8 Hz), 1.04 (d, 3H, *J* = 6.8 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.5$, 143.4, 126.2, 124.2, 122.3, 116.9, 115.6, 81.8, 29.8, 18.7, 17.5; IR (Neat): $\nu = 3187$, 3134, 3072, 2965, 2924, 2869, 1673, 1604, 1500, 1466, 1436, 1387, 1366, 1307, 1275, 1262, 1205, 1161, 1134, 1112, 1039, 1026; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₁H₁₄NO₂ 192.1025, found 192.1025.

2-*Phenethyl*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**5b**). Compound **5b** was prepared according to the general procedure C. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (113 mg, 89%) as an off-white solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 80/20); mp 135–136 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 9.20$ (br s, 1H), 7.34–7.15 (m, 5H), 7.04–6.91 (m, 3H), 6.88–6.79 (m, 1H), 4.55 (dd, 1H, *J* = 8.7, 4.5 Hz), 3.01–2.76 (m, 2H), 2.36–2.11 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.2$, 143.0, 140.8, 128.7, 128.6, 126.5, 126.2, 124.3, 122.7, 117.2, 115.8, 76.0, 32.0, 31.1; IR (Neat): $\nu = 3200$, 3135, 3060, 3024, 2991, 2925, 2855, 1676, 1612, 1553, 1519, 1500, 1453, 1435, 1402, 1361, 1316, 1267, 1229, 1179, 1115, 1091, 1081, 1042, 1031; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₁₆NO₂ 254.1181, found 254.1191.

2-*Isopropyl-6-methoxy-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**5c**). Compound **5c** was prepared according to the general procedure C. Purification on a column of silica gel with petroleum ether/ethyl acetate 80/20 as eluent gave the desired product (72 mg, 65%) as an off-white solid. R_f = 0.3 (petroleum ether/ethyl acetate 80/20); mp 127–128 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 8.68 (br s, 1H), 6.89 (d, 1H, *J* = 8.8 Hz), 6.50 (dd, 1H, *J* = 8.8, 2.8 Hz), 6.37 (d, 1H, *J* = 2.8 Hz), 4.26 (d, 1H, *J* = 6.3 Hz), 3.76 (s,

3H), 2.26 (oct, 1H, J = 6.8 Hz), 1.09 (d, 3H, J = 6.8 Hz), 1.04 (d, 3H, J = 6.8 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.4$, 155.1, 137.2, 126.9, 117.2, 108.7, 102.0, 81.7, 55.9, 29.4, 18.7, 17.6; IR (Neat): $\nu = 3064$, 2965, 2906, 1686, 1625, 1610, 1523, 1501, 1463, 1394, 1366, 1329, 1298, 1261, 1218, 1197, 1169, 1140, 1129, 1039, 1016; HRMS (ESI⁺; MeCN/CH₂Cl₂): m/z calculated for C₁₂H₁₆NO₃ 222.1130, found 222.1137.

6-*Chloro-2-ethyl-2H-benzo*[*b*][1,4]*oxazin-3*(4*H*)-*one* (**5d**). Compound **5d** was prepared according to the general procedure C. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (80 mg, 76%) as a white solid. $R_i = 0.4$ (petroleum ether/ethyl acetate 80/20); mp 155–156 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 9.10$ (br s, 1H), 6.94 (dd, 1H, *J* = 8.5, 2.0 Hz), 6.90 (d, 1H, *J* = 8.5 Hz), 6.83 (d, 1H, *J* = 2.0 Hz), 4.50 (dd, 1H, *J* = 8.1, 4.6 Hz), 2.05–1.81 (m, 2H), 1.09 (t, 3H, *J* = 7.4 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.2$, 141.7, 127.4 (2C), 124.0, 118.2, 115.7, 78.2, 24.0, 9.5; IR (Neat): $\nu = 3181$, 3086, 2965, 2877, 1675, 1602, 1493, 1463, 1454, 1400, 1378, 1354, 1330, 1303, 1292, 1273, 1259, 1241, 1227, 1144, 1112, 1084, 1054, 1014; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₂H₁₄ClN₂O₂ 253.0744, found 253.0756.

2-(4-*Methoxyphenyl*)-6-*methyl*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**5e**). Compound **5e** was prepared according to the general procedure C. Purification on a column of silica gel with petroleum ether/ethyl acetate 80/20 as eluent gave the desired product (53 mg, 39%) as an off-white solid. *R*^{*t*} = 0.2 (petroleum ether/ethyl acetate 80/20); mp 189–190 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 8.27 (br s, 1H), 7.38–7.32 (m, 2H), 6.91–6.84 (m, 3H), 6.76 (dd, 1H, *J* = 8.2, 1.8 Hz), 6.60 (d, 1H, *J* = 1.8 Hz), 5.60 (s, 1H), 3.78 (s, 3H), 2.26 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 166.5, 160.1, 140.8, 132.5, 128.6, 127.3, 125.8, 124.9, 117.2, 116.3, 114.2, 78.5, 55.4, 20.8; IR (Neat): ν = 3000, 1683, 1607, 1515, 1497, 1450, 1392, 1350, 1302, 1246, 1221, 1205, 1175, 1130, 1111, 1031; HRMS (ESI+; MeCN/CH₂Cl₂): *m*/z calculated for C₁₆H₁₆NO₃ 270.1130, found 270.1133.

2-(3-*Fluorophenyl*)-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**5f**). Compound **5f** was prepared according to the general procedure C. Purification on a column of silica gel with petroleum ether/ethyl acetate 80/20 as eluent gave the desired product (114 mg, 94%) as a white solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 80/20); mp 153–154 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.67$ (br s, 1H), 7.33 (td, 1H, *J* = 7.8, 5.6 Hz), 7.28–7.23 (m, 1H), 7.22–7.16 (m, 1H), 7.09–6.93 (m, 4H), 6.84–6.77 (m, 1H), 5.69 (s, 1H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 165.5$, 163.0 (d, *J*_{C-F} = 246.5 Hz), 142.8, 137.5 (d, *J*_{C-F} = 7.4 Hz), 130.4 (d, *J*_{C-F} = 8.2 Hz), 125.8, 124.7, 123.1, 122.7 (d, *J*_{C-F} = 2.8 Hz), 117.5, 116.02, 116.00 (d, *J*_{C-F} = 21.1 Hz), 114.2 (d, *J*_{C-F} = 21.1 Hz), 78.0; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -112.0$; IR (Neat): $\nu = 3188$, 3132, 3065, 2982, 2956, 2915, 1680, 1607, 1498, 1451, 1435, 1393, 1352, 1307, 1268, 1257, 1215, 1143, 1109, 1052, 1035, 1025; HRMS (ESI+; MeCN/CH₂Cl₂): *m/z* calculated for C14H11FNO₂ 244.0774, found 244.0773.

2-(*Methoxymethyl*)-2-*methyl*-2H-benzo[b][1,4]oxazin-3(4H)-one (**5g**). Compound **5g** was prepared according to the general procedure C. Purification on a column of silica gel with petroleum ether/ethyl acetate 80/20 as eluent gave the desired product (81 mg, 78%) as an off-white solid. $R_f = 0.2$ (petroleum ether/ethyl acetate 80/20); mp 81–82 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 9.26$ (br s, 1H), 6.99–6.88 (m, 3H), 6.83–6.79 (m, 1H), 3.90 (d, 1H, *J* = 10.4 Hz), 3.64 (d, 1H, *J* = 10.4 Hz), 3.42 (s, 3H), 1.47 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.8$, 142.5, 126.1, 124.2, 122.3, 117.3, 115.5, 80.9, 75.7, 60.1, 19.5; IR (Neat): v = 3204, 3140, 3077, 2996, 2902, 1675, 1608, 1502, 1472, 1451, 1432, 1391, 1375, 1308, 1285, 1273, 1257, 1214, 1199, 1160, 1143, 1115, 1033; HRMS (ESI+; MeCN/CH₂Cl₂): *m*/z calculated for C11H14NO3 208.0974, found 208.0977.

6-Bromospiro[*benzo*[*b*][1,4]*oxazine-2*,1'*-cyclobutan*]-3(4*H*)-*one* (**5h**). Compound **5h** was prepared according to the general procedure C. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (59 mg, 44%) as a white solid. $R_f = 0.6$ (petroleum ether/ethyl acetate 80/20); mp 226–227 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.25$ (br s, 1H), 7.07 (dd, 1H, J = 8.5, 2.3 Hz), 6.94 (d, 1H, J = 2.3 Hz), 6.88 (d, 1H, J = 8.5 Hz), 2.71–2.57 (m, 2H), 2.40–2.27 (m, 2H), 2.07–1.90 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 168.8$, 141.9, 128.3, 126.7, 119.2, 118.1, 114.8, 80.0, 31.6, 13.3; IR (Neat): $\nu = 3121$, 3078, 3037, 3000, 2948, 2870,

1697, 1602, 1493, 1445, 1411, 1381, 1306, 1279, 1261, 1238, 1213, 1153, 1139, 1112, 1066, 1051; HRMS (ESI+; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₃H₁₄BrN₂O₂ 309.0239, found 309.0233.

6-*Chlorospiro*[*benzo*[*b*][1,4]*oxazine*-2,1'-*cyclobutan*]-3(4*H*)-*one* (**5i**). Compound **5i** was prepared according to the general procedure C. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (84 mg, 75%) as a white solid. *R*^{*t*} = 0.6 (petroleum ether/ethyl acetate 80/20); mp 225–226 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): *δ* = 7.88 (br s, 1H), 6.95 (d, 1H, *J* = 8.4 Hz), 6.92 (dd, 1H, *J* = 8.4, 2.0 Hz), 6.78 (d, 1H, *J* = 2.0 Hz), 2.71–2.58 (m, 2H), 2.40–2.26 (m, 2H), 2.06–1.91 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): *δ* = 168.9, 141.3, 127.9, 127.7, 123.7, 118.7, 115.4, 80.0, 31.6, 13.3; IR (Neat): *ν* = 3082, 3042, 3003, 2962, 2874, 1693, 1607, 1495, 1442, 1412, 1379, 1307, 1282, 1261, 1240, 1213, 1155, 1138, 1110, 1077, 1052; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₃H₁₄ClN₂O₂ 265.0744, found 265.0757.

2-*Methyl*-2-(*trifluoromethyl*)-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**5j**). Compound **5j** was prepared according to the general procedure C. Purification on a column of silica gel with petroleum ether/ethyl acetate 90/10 as eluent gave the desired product (90 mg, 78%) as a white solid. $R_f = 0.5$ (petroleum ether/ethyl acetate 80/20); mp 143–144 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 8.45 (br s, 1H), 7.06–6.97 (m, 3H), 6.81 (d, 1H, *J* = 7.8 Hz), 1.80 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 163.0, 141.5, 125.0, 124.9, 123.5 (q, *J*_{C-F} = 287.3 Hz), 123.3, 116.8, 115.9, 79.2 (q, *J*_{C-F} = 28.9 Hz), 18.3; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): δ = –77.9; IR (Neat): ν = 3064, 2965, 2906, 1687, 1625, 1610, 1523, 1501, 1463, 1450, 1393, 1366, 1329, 1298, 1276, 1261, 1218, 1197, 1169, 1141, 1129, 1108, 1039, 1016; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₂H₁₂F₃N₂O₂ 273.0851, found 273.0850.

4-*Cyclohexyl-2-isopropyl-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**6a**). Compound **6a** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluent gave the desired product (73 mg, 89%) as a yellow oil. $R_f = 0.6$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.17-7.10$ (m, 1H), 7.02–6.94 (m, 3H), 4.20 (tt, 1H, *J* = 12.2, 3.8 Hz), 4.15 (d, 1H, *J* = 6.7 Hz), 2.45–2.32 (m, 2H), 2.21–2.10 (m, 1H), 1.93–1.66 (m, 5H), 1.44–1.22 (m, 3H), 1.04 (d, 3H, *J* = 6.8 Hz), 0.99 (d, 3H, *J* = 6.8 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.1$, 145.6, 129.7, 123.8, 122.2, 117.7, 115.9, 82.8, 56.8, 29.8, 29.3, 28.9, 26.6, 26.5, 25.5, 18.7, 17.8. IR (Neat): (cm⁻¹) 2931, 2854, 1675, 1605, 1496, 1464, 1411, 1361, 1320, 1298, 1262, 1245, 1125, 1042, 1015; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₂₃NO₂ 274.1807, found 274.1797.

7-*Chloro-4-cyclohexylspiro*[*benzo*[*b*][1,4]*oxazine-2*,1'*-cyclobutan*]-3(4*H*)-*one* (**6b**). Compound **6b** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluent gave the desired product (45 mg, 91%) as a yellow solid. $R_i = 0.3$ (petroleum ether/ethyl acetate 99/1); mp 77–78 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.04$ (d, 1H, *J* = 8.6 Hz), 7.02 (d, 1H, *J* = 2.4 Hz), 6.96 (dd, 1H, *J* = 8.6, 2.4 Hz), 4.17 (tt, 1H, *J* = 12.5, 3.7 Hz), 2.60–2.46 (m, 2H), 2.38–2.15 (m, 4H), 2.02–1.82 (m, 4H), 1.80–1.65 (m, 3H), 1.42–1.12 (m, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.6$, 145.4, 128.9, 128.3, 122.5, 118.7, 116.7, 80.4, 56.8, 30.9, 29.5, 26.5, 25.5, 13.2; IR (Neat): $\nu = 2932$, 2855, 1678, 1581, 1491, 1452, 1424, 1405, 1360, 1336, 1270, 1245, 1147, 1118, 1081, 1045; HRMS (ESI+; MeCN/CH₂Cl₂): *m*/z calculated for C₁₇H₂₀ClNO₂ 306.1261, found 306.1259.

2-*Isobutyl-4-phenethyl-7-(trifluoromethyl)-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**6c**). Compound **6c** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (80 mg, 71%) as a yellow oil. $R_f = 0.4$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.34-7.29$ (m, 2H), 7.29–7.26 (m, 1H), 7.26–7.21 (m, 4H), 6.99 (d, 1H, *J* = 8.4 Hz), 4.63 (dd, 1H, *J* = 9.8, 4.3 Hz), 4.19 (dt, 1H, *J* = 14.0, 7.9 Hz), 2.95 (t, 2H, *J* = 7.9 Hz), 1.96–1.87 (m, 1H), 1.70 (ddd, 1H, *J* = 14.7, 8.7, 4.3 Hz), 0.99 (d, 3H, *J* = 6.6 Hz), 0.98 (d, 3H, *J* = 6.6 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 166.2$, 144.1, 137.9, 131.7, 128.9, 128.8, 127.0, 126.1 (q, *J*_{C-F} = 33.7 Hz), 123.8 (q, *J*_{C-F} = 271.1 Hz), 119.8 (q, *J*_{C-F} = 3.6 Hz), 115.0 (q, *J*_{C-F} = 3.6 Hz), 114.5, 75.9, 43.2, 38.9, 33.5, 24.5, 23.2, 21.7; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -62.1$; IR (Neat): $\nu = 2959$, 2872, 1689, 1622, 1519,

1498, 1444, 1394, 1369, 1325, 1303, 1260, 1235, 1169, 1146, 1118, 1076 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₂₁H₂₃F₃NO₂ 378.1681, found 378.1677.

4-*Cyclohexyl-2-methyl-2-(trifluoromethyl)-2H-benzo*[*b*][*1*,4]*oxazin-3*(4*H*)-*one* (**6d**). Compound **6d** was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 99/1 to 98/2) as eluent gave the desired product (76 mg, 81%) as a yellow oil. $R_f = 0.5$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.17-7.12$ (m, 1H), 7.08–6.99 (m, 3H), 4.18 (tt, 1H, *J* = 12.3, 3.7 Hz), 2.49–2.32 (m, 2H), 1.94–1.87 (m, 2H), 1.84–1.76 (m, 2H), 1.75–1.68 (m, 1H), 1.70 (s, 3H), 1.44–1.32 (m, 2H), 1.32–1.03 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 162.8$, 143.1, 128.6, 124.4, 123.7 (q, *J*_{C-F} = 288.4 Hz), 123.2, 117.7, 115.6, 79.5 (q, *J*_{C-F} = 28.1 Hz), 57.9, 29.2, 28.9, 26.5, 26.4, 25.4, 18.3; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): $\delta = -77.2$; IR (Neat): v = 2934, 2857, 1685, 1611, 1592, 1498, 1453, 1413, 1379, 1361, 1324, 1299, 1274, 1248, 1191, 1148, 1102, 1044; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₁₈F₃NO₂ 314.1368, found 314.1360.

2-*Ethyl*-4-(4-*methoxybenzyl*)-3-*oxo*-3,4-*dihydro*-2H-*benzo*[*b*][1,4]*oxazine*-7-*carbonitrile* (**6e**). Compound **6e** was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (72 mg, 74%) as a white solid. R_f = 0.6 (petroleum ether/ethyl acetate 70/30); mp 138–139 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.26–7.24 (m, 1H), 7.20 (dd, 1H, *J* = 8.4, 1.8 Hz), 7.14 (d, 2H, *J* = 8.6 Hz), 6.94 (d, 1H, *J* = 8.4 Hz), 6.86 (d, 2H, *J* = 8.6 Hz), 5.17 (d, 1H, *J* = 15.9 Hz), 5.02 (d, 1H, *J* = 15.9 Hz), 4.64 (dd, 1H, *J* = 8.5, 4.5 Hz), 3.78 (s, 3H), 2.08–1.97 (m, 1H), 1.92 (dquint, 1H, *J* = 14.9, 7.3 Hz), 1.12 (t, 3H, *J* = 7.4 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 166.2, 159.3, 144.3, 133.1, 128.0, 127.2, 127.0, 120.7, 118.3, 115.9, 114.6, 107.1, 78.5, 55.4, 44.8, 24.2, 9.5; IR (Neat): ν = 3063, 2964, 2934, 2836, 2226, 1687, 1610, 1587, 1509, 1463, 1446, 1395, 1333, 1292, 1280, 1246, 1190, 1177, 1142, 1118, 1097, 1073, 1047, 1028; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₉H₁₈N₂O₃ 323.1396, found 323.1380.

7-*Bromo-4*-(*3*,4-*dimethoxyphenethyl*)-2-*isopropyl*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**6f**). Compound **6f** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (80/20) as eluent gave the desired product (91 mg, 70%) as a yellow oil. $R_f = 0.4$ (petroleum ether/ethyl acetate 80/20); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.15$ (d, 1H, *J* = 2.1 Hz), 7.11 (dd, 1H, *J* = 8.7, 2.1 Hz), 6.80 (d, 1H, *J* = 8.0 Hz), 6.78 (d, 1H, *J* = 8.7 Hz), 6.75 (dd, 1H, *J* = 8.0, 2.0 Hz), 6.71 (d, 1H, *J* = 2.0 Hz), 4.26 (d, 1H, *J* = 6.4 Hz), 4.18 (dt, 1H, *J* = 14.1, 7.8 Hz), 4.03 (dt, 1H, *J* = 14.1, 7.8 Hz), 3.86 (s, 3H), 3.85 (s, 3H), 2.87 (t, 2H, *J* = 7.0 Hz), 2.20 (oct, 1H, *J* = 6.8 Hz), 1.04 (d, 3H, *J* = 6.8 Hz), 0.96 (d, 3H, *J* = 6.8 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 164.9$, 149.2, 148.0, 145.5, 130.5, 127.9, 125.3, 120.9, 120.6, 115.8, 115.7, 112.2, 111.6, 82.0, 56.1, 56.0, 43.0, 33.0, 29.6, 18.7, 17.5; IR (Neat): $\nu = 2963, 2934, 2835, 1678, 1590, 1515, 1493, 1463, 1420, 1388, 1323, 1260, 1235, 1182, 1156, 1140, 1075, 1027; HRMS (ESI+; MeCN/CH₂Cl₂):$ *m/z*calculated for C₂₁H₂₄BrNO₄ 434.0967, found 434.0975.

4-(4-*Methoxybenzyl)spiro[benzo[b]*[1,4]*oxazine*-2,1'-*cyclobutan*]-3(4*H*)-*one* (**6g**). Compound **6g** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (79 mg, 86%) as a yellow oil. R_i = 0.3 (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.18 (d, 2H, *J* = 8.6 Hz), 7.01 (dd, 1H, *J* = 7.7, 1.1 Hz), 6.95 (td, 1H, *J* = 7.9, 1.5 Hz), 6.92–6.86 (m, 2H), 6.85 (d, 2H, *J* = 8.7 Hz), 5.08 (s, 2H), 3.77 (s, 3H), 2.72–2.64 (m, 2H), 2.39–2.31 (m, 2H), 2.07–1.94 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 167.8, 159.0, 143.7, 129.5, 128.6, 128.0, 123.7, 122.7, 117.9, 115.3, 114.4, 79.7, 55.3, 44.8, 31.5, 13.3; IR (Neat): ν = 2954, 2835, 1675, 1609, 1587, 1512, 1498, 1464, 1387, 1331, 1303, 1243, 1175, 1148, 1105, 1032, 1011; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₉H₁₉NO₃ 310.1443, found 310.1436.

4-(Tert-butyl)-7-chloro-2-isopropyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (**6h**). Compound **6h** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (79 mg, 94%) as a yellow oil. $R_f = 0.5$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.05$ (d, 1H, *J* = 8.7 Hz),

7.03 (d, 1H, *J* = 2.5 Hz), 6.95 (dd, 1H, *J* = 8.7, 2.5 Hz), 4.03 (d, 1H, *J* = 4.5 Hz), 2.36–2.25 (m, 1H), 1.62 (s, 9H), 1.09 (d, 3H, *J* = 6.9 Hz), 0.97 (d, 3H, *J* = 6.9 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 172.6, 149.7, 129.4, 128.9, 121.7, 118.1, 85.5, 59.2, 29.9, 29.7, 19.2, 16.9; IR (Neat): v = 2969, 2936, 1683, 1579, 1489, 1466, 1419, 1398, 1367, 1347, 1324, 1292, 1269, 1247, 1191, 1136, 1079, 1020; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₅H₂₀ClNO₂ 282.1261, found 282.1263.

4-(3,4-Dimethoxyphenethyl)-2-(2,6-dimethylhept-5-en-1-yl)-7-(trifluoromethyl)-2H-benzo[b][1,4]oxazin-

3(*4H*)-*one* (**6i**). Compound **6i** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (90/10) as eluent gave the desired product (108 mg, 71%) as a 1:1 mixture of unseparable diastereomers (yellow oil). R_f = 0.2 (petroleum ether/ethyl acetate 90/10); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.31–7.27 (m, 1H), 7.23 (d, 0.5H, *J* = 2.1 Hz), 7.22 (d, 0.5H, *J* = 2.1 Hz), 7.02 (d, 0.5H, *J* = 8.5 Hz), 7.01 (d, 0.5H, *J* = 8.5 Hz), 6.80 (d, 1H, *J* = 8.0 Hz), 6.75 (br d, 1H, *J* = 8.0 Hz), 6.73–6.70 (s, 1H), 5.09 (t, 0.5H, *J* = 7.0 Hz), 5.05 (t, 0.5H, *J* = 7.0 Hz), 4.67–4.61 (m, 1H), 4.21–4.05 (m, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.88 (br t, 2H, *J* = 7.3 Hz), 2.09–1.87 (m, 2H), 1.84–1.73 (m, 2H), 1.71–1.51 (m, 1H), 1.68 (s, 1.5H), 1.66 (s, 1.5H), 1.60 (s, 1.5H), 1.55 (s, 1.5H), 1.51–1.13 (m, 2H), 0.99 (d, 1.5H, *J* = 6.5 Hz), 0.98 (d, 1.5H, *J* = 6.5 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 166.4, 166.2, 149.1, 148.0, 144.2, 144.0, 131.7, 131.6, 130.3, 126.5 (q, *J*_{C-F} = 33.0 Hz), 124.5, 124.3, 123.8 (q, *J*_{C-F} = 268.9 Hz), 120.9, 119.8 (q, *J*_{C-F} = 3.8 Hz), 115.0 (q, *J*_{C-F} = 3.4 Hz), 114.6, 112.1, 111.4, 76.0, 75.4, 56.0, 43.2, 43.1, 37.5, 37.3, 36.9, 36.1, 33.0, 29.2, 28.4, 25.8, 25.7, 25.4, 25.3, 20.0, 18.8, 17.8, 17.7; ¹⁹F-NMR (282 MHz, CDCl₃, 25 °C): δ = -62.1; IR (Neat): ν = 2926, 1689, 1622, 1591, 1516, 1443, 1395, 1325, 1305, 1261, 1237, 1142, 1119, 1074, 1028; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C₂₈H₃₄F₃NO4 506.2518, found 506.2533.

4-(4-*Chlorobenzyl*)-2-*isobutyl*-7-*methyl*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**6j**). Compound **6j** was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 98/2 to 95/5) as eluent gave the desired product (69 mg, 67%) as a yellow solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 95/5); mp 77–78 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.28$ (d, 2H, *J* = 8.3 Hz), 7.16 (d, 2H, *J* = 8.3 Hz), 6.81 (br s, 1H), 6.70 (br d, 1H, *J* = 8.4 Hz), 6.67 (d, 1H, *J* = 8.4 Hz), 5.16 (d, 1H, *J* = 16.2 Hz), 4.99 (d, 1H, *J* = 16.2 Hz), 4.70 (dd, 1H, *J* = 10.2, 3.9 Hz), 2.26 (s, 3H), 2.03–1.90 (m, 1H), 1.81 (ddd, 1H, *J* = 14.4, 10.2, 5.1 Hz), 1.70 (ddd, 1H, *J* = 14.2, 8.9, 3.9 Hz), 1.01 (d, 3H, *J* = 6.9 Hz), 0.99 (d, 3H, *J* = 6.9 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 167.0$, 143.8, 135.0, 134.3, 133.3, 129.1, 128.1, 126.3, 123.1, 118.3, 115.0, 75.9, 44.6, 38.8, 24.6, 23.3, 21.7, 20.8; IR (Neat): v = 2957, 2870, 1675, 1511, 1490, 1469, 1430, 1397, 1368, 1317, 1294, 1260, 1207, 1156, 1089, 1059, 1030, 1013; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₀H₂₂ClNO₂ 344.1417, found 344.1417.

2-(*Tert-butyl*)-7-*methoxy*-4-*phenethyl*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**6k**). Compound **6k** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (98 mg, 96%) as a yellow solid. $R_f = 0.2$ (petroleum ether/ethyl acetate 95/5); mp 82–83 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.32$ (t, 2H, J = 7.4 Hz), 7.29–7.26 (m, 2H), 7.25–7.21 (t, 1H, J = 7.4 Hz), 6.83 (d, 1H, J = 9.0 Hz), 6.58 (d, 1H, J = 2.8 Hz), 6.53 (dd, 1H, J = 9.0, 2.8 Hz), 4.28 (s, 1H), 4.19 (ddd, 1H, J = 13.9, 10.0, 6.0 Hz), 4.04 (ddd, 1H, J = 13.9, 10.0, 6.0 Hz), 3.79 (s, 3H), 2.98 (ddd, 1H, J = 13.4, 10.0, 6.0 Hz), 2.92 (ddd, 1H, J = 13.4, 10.0, 6.0 Hz), 1.02 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 163.6$, 156.4, 146.4, 138.4, 128.9, 128.7, 126.7, 122.0, 114.7, 107.1, 103.0, 84.4, 55.7, 43.1, 37.0, 33.6, 26.6; IR (Neat): v = 3029, 2969, 1671, 1624, 1592, 1511, 1476, 1454, 1431, 1397, 1367, 1329, 1306, 1274, 1238, 1194, 1159, 1126, 1072, 1057, 1039, 1022; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₁H₂₅NO₃ 340.1913, found 340.1915.

4-*Cyclohexyl-2-ethyl-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**6**]. Compound **6**I was prepared according to the general procedure D. Purification on a column of silica gel with petroleum ether/ethyl acetate (98/2) as eluent gave the desired product (62 mg, 80%) as an orange oil. $R_f = 0.5$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.10-7.04$ (m, 1H), 6.97–6.88 (m, 3H), 4.25 (dd, 1H, J = 8.6, 4.5 Hz), 4.11 (tt, 1H, J = 12.3, 3.7 Hz), 2.38–2.20 (m, 2H), 1.90–1.58 (m, 7H), 1.39–1.10 (m, 3H), 0.98 (t, 3H, J = 7.4 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 167.9, 145.5, 130.0, 123.8, 122.4, 117.8,$

116.0, 79.2, 57.0, 29.6, 29.5, 26.6, 26.5, 25.5 23.4, 9.6; IR (Neat): $\nu = 2931$, 2854, 1676, 1604, 1589, 1496, 1454, 1411, 1363, 1322, 1298, 1269, 1245, 1211, 1191, 1150, 1118, 1049; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₂₁NO₂ 260.1651, found 260.1654.

7-*Bromo-2-(tert-butyl)-4-phenethyl-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**6m**). Compound **6m** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (110 mg, 95%) as an off-white solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 95/5); mp 117–118 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.35-7.29$ (m, 2H), 7.28–7.21 (m, 3H), 7.14 (d, 1H, J = 2.1 Hz), 7.09 (dd, 1H, J = 8.6, 2.1 Hz), 6.77 (d, 1H, J = 8.6 Hz), 4.29 (s, 1H), 4.20 (ddd, 1H, J = 14.0, 9.9, 6.0 Hz), 4.04 (ddd, 1H, J = 14.0, 9.9, 6.0 Hz), 2.97 (ddd, 1H, J = 13.3, 9.9, 6.0 Hz), 2.91 (ddd, 1H, J = 13.3, 9.9, 6.0 Hz), 1.02 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 163.7$, 146.3, 138.0, 128.9, 128.8, 127.7, 126.9, 124.9, 119.9, 115.9, 115.4, 84.4, 43.1, 37.1, 33.5, 26.6; IR (Neat): v = 2965, 1667, 1581, 1494, 1463, 1420, 1395, 1370, 1330, 1276, 1229, 1186, 1141, 1056, 1018; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₂₀H₂₂BrNO₂ 388.0912, found 388.0898.

4-(4-*Methoxybenzyl*)-7-*methyl*-2-(2-*methylpent*-4-*en*-2-*yl*)-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (6n). Compound 6n was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (102 mg, 93%) as a yellow oil. $R_f = 0.3$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.22 (d, 2H, *J* = 8.6 Hz), 6.84 (d, 2H, *J* = 8.6 Hz), 6.78 (d, 1H, *J* = 1.8 Hz), 6.77 (d, 1H, *J* = 8.4 Hz), 6.66 (dd, 1H, *J* = 8.4, 1.8 Hz), 5.93–5.81 (m, 1H), 5.14–5.07 (m, 3H), 5.00 (d, 1H, *J* = 15.7 Hz), 4.45 (s, 1H), 3.77 (s, 3H), 2.32 (dd, 1H, *J* = 14.0, 7.7 Hz), 2.25 (s, 3H), 2.20 (dd, 1H, *J* = 14.0, 7.7 Hz), 1.06 (s, 3H), 1.00 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 164.7, 158.9, 145.3, 134.4, 134.0, 128.8, 128.4, 126.2, 122.5, 118.4, 117.0, 115.0, 114.2, 82.5, 55.4, 44.8, 43.9, 39.8, 24.1, 23.4, 20.8; IR (Neat): *v* = 2963, 2932, 2836, 1670, 1639, 1613, 1586, 1511, 1440, 1396, 1325, 1289, 1245, 1175, 1143, 1112, 1035; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C₂₃H₂₇NO₃ 366.2069, found 366.2069.

2-(*Tert-butyl*)-4-*cyclohexyl*-2H-*benzo*[*b*][1,4]*oxazin*-3(4H)-*one* (**6o**). Compound **6o** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluent gave the desired product (61 mg, 71%) as an orange oil. $R_f = 0.6$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.13-7.07$ (m, 1H), 6.98–6.92 (m, 3H), 4.24 (tt, 1H, *J* = 12.6, 3.9 Hz), 4.20 (s, 1H), 2.45 (qd, 1H, *J* = 12.4, 3.7 Hz), 2.36 (qd, 1H, *J* = 12.4, 3.7 Hz), 1.94–1.85 (m, 2H), 1.85–1.74 (m, 2H), 1.74–1.67 (m, 1H), 1.46–1.32 (m, 2H), 1.32–1.22 (m, 1H), 0.99 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 166.0$, 146.3, 129.6, 123.8, 121.9, 117.1, 115.7, 84.8, 56.8, 36.6, 29.8, 29.1, 26.8, 26.7, 26.5, 25.6; IR (Neat): v = 2931, 2870, 1672, 1605, 1589, 1498, 1476, 1463, 1453, 1410, 1361, 1325, 1296, 1271, 1245, 1216, 1184, 1149, 1123, 1062, 1016; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₈H₂₅NO₂ 288.1964, found 288.1959.

7-*Bromo-4*-(3,4-*dimethoxyphenethyl*)*spiro*[*benzo*[*b*][1,4]*oxazine*-2,1'-*cyclobutan*]-3(4*H*)-*one* (6**p**). Compound **6p** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (80/20) as eluent gave the desired product (111 mg, 86%) as a yellow oil. $R_f = 0.5$ (petroleum ether/ethyl acetate 70/30); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.18$ (d, 1H, J = 2.0 Hz), 7.12 (dd, 1H, J = 8.4, 2.0 Hz), 6.80 (d, 1H, J = 8.1 Hz), 6.76 (d, 1H, J = 8.4 Hz), 6.75 (dd, 1H, J = 8.1, 1.9 Hz), 6.73 (d, 1H, J = 1.9 Hz), 4.08 (dd, 2H, J = 8.8, 6.8 Hz), 3.86 (s, 3H), 3.85 (s, 3H), 2.87 (dd, 2H, J = 8.8, 6.8 Hz), 2.60–2.51 (m, 2H), 2.32–2.22 (m, 2H), 2.04–1.85 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 166.9$, 149.1, 148.0, 144.6, 130.6, 128.4, 125.7, 121.3, 120.8, 115.6, 115.5, 112.2, 111.5, 79.9, 56.05, 55.98, 43.4, 33.1, 31.4, 13.2; IR (Neat): v = 2953, 2834, 1677, 1590, 1515, 1491, 1453, 1418, 1386, 1332, 1275, 1259, 1235, 1179, 1140, 1121, 1075, 1027; HRMS (ESI+; MeCN/CH₂Cl₂): *m/z* calculated for C₂₁H₂₂BrNO₄ 432.0810, found 432.0815.

4-(3,4-Dimethoxyphenethyl)-2-isobutyl-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-carbonitrile (6q). Compound 6q was prepared according to the general procedure D. Purification on a column of silica

gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (98 mg, 83%) as an off-white solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 70/30); mp 123–124 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.32 (dd, 1H, *J* = 8.4, 1.7 Hz), 7.24 (d, 1H, *J* = 1.7 Hz), 6.97 (d, 1H, *J* = 8.4 Hz), 6.79 (d, 1H, *J* = 8.1 Hz), 6.73 (dd, 1H, *J* = 8.1, 1.8 Hz), 6.70 (d, 1H, *J* = 1.8 Hz), 4.63 (dd, 1H, *J* = 9.6, 4.4 Hz), 4.17 (dt, 1H, *J* = 14.1, 7.8 Hz), 4.08 (dt, 1H, *J* = 14.1, 7.8 Hz), 3.86 (s, 3H), 3.85 (s, 3H), 2.88 (t, 2H, *J* = 7.6 Hz), 1.94–1.82 (m, 1H), 1.66 (ddd, 1H, *J* = 14.6, 8.7, 4.2 Hz), 1.61 (ddd, 1H, *J* = 14.6, 8.7, 4.2 Hz), 0.97 (d, 3H, *J* = 6.4 Hz), 0.96 (d, 3H, *J* = 6.4 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 166.1, 149.2, 148.2, 144.1, 133.0, 130.1, 127.1, 121.0, 120.9, 118.3, 115.0, 112.2, 111.6, 107.0, 75.9, 56.1, 56.0, 43.2, 38.9, 33.0, 24.5, 23.1, 21.6; IR (Neat): v = 2959, 2226, 1686, 1606, 1508, 1456, 1421, 1395, 1367, 1334, 1289, 1259, 1237, 1183, 1159, 1136, 1027 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated C₂₃H₂₇N₂O₄ 395.1971, found 395.1987.

4-*Cyclohexyl-2-phenethyl-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**6r**). Compound **6r** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (85 mg, 84%) as a yellow oil. $R_f = 0.4$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.31-7.10$ (m, 6H), 7.07–6.95 (m, 3H), 4.35 (dd, 1H, J = 9.2, 4.3 Hz), 4.18 (tt, 1H, J = 12.3, 3.7 Hz), 2.97–2.73 (m, 2H), 2.44–2.26 (m, 2H), 2.26–1.99 (m, 2H), 1.94–1.82 (m, 2H), 1.82–1.63 (m, 3H), 1.46–1.21 (m, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.9$, 145.4, 141.1, 130.0, 128.7, 128.5, 126.1, 123.9, 122.6, 117.8, 116.1, 76.9, 57.0, 31.6, 31.2, 29.6, 29.5, 26.5, 25.5; IR (Neat): $\nu = 3027, 2930, 2854, 1675, 1604, 1589, 1495, 1453, 1412, 1359, 1297, 1269, 1245, 1178, 1150, 1122, 1059; HRMS (ESI⁺; MeCN/CH₂Cl₂):$ *m/z*calculated for C₂₂H₂₅NO₂ 336.1964, found 336.1961.

4-(*Tert-butyl*)-7-*chloro-2-ethyl-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (6s). Compound 6s was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluent gave the desired product (76 mg, 95%) as a yellow oil. $R_f = 0.5$ (petroleum ether/ethyl acetate 95/5); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.07$ (d, 1H, J = 8.7 Hz), 7.03 (d, 1H, J = 2.3 Hz), 6.96 (dd, 1H, J = 8.7, 2.3 Hz), 4.22 (dd, 1H, J = 8.2, 4.0 Hz), 1.91 (dqd, 1H, J = 14.4, 7.5, 4.2 Hz), 1.77 (dquint, 1H, J = 14.4, 7.5 Hz), 1.62 (s, 9H), 1.04 (t, 3H, J = 7.4 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 172.9$, 149.2, 129.4, 128.9, 121.8, 121.7, 118.3, 82.3, 59.1, 29.9, 23.7, 9.5; IR (Neat): $\nu = 2972$, 2936, 1683, 1579, 1489, 1418, 1398, 1355, 1337, 1276, 1245, 1202, 1190, 1122, 1096, 1079, 1055, 1017; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₄H₁₈ClNO₂ 268.1104, found 268.1098.

7-*Chloro-2-(methoxymethyl)-2-methyl-4-phenethyl-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (6t). Compound 6t was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (77 mg, 74%) as a yellow oil. R_f = 0.62 (petroleum ether/ethyl acetate 90/10); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.33–7.28 (m, 2H), 7.25–7.21 (m, 3H), 7.00 (d, 1H, *J* = 2.3 Hz), 6.95 (dd, 1H, *J* = 8.6, 2.3 Hz), 6.79 (d, 1H, *J* = 8.6 Hz), 4.15 (dt, 1H, *J* = 13.9, 7.8 Hz), 4.06 (dt, 1H, *J* = 13.9, 7.8 Hz), 3.82 (d, 1H, *J* = 10.4 Hz), 3.58 (d, 1H, *J* = 10.4 Hz), 3.38 (s, 3H), 2.94 (t, 2H, *J* = 7.9 Hz), 1.40 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 166.3, 144.2, 138.0, 129.0, 128.7, 128.6, 127.1, 126.8, 122.2, 118.1, 114.8, 80.9, 76.0, 60.0, 43.3, 33.3, 19.5; IR (Neat): ν = 2932, 1674, 1603, 1587, 1496, 1454, 1425, 1393, 1368, 1326, 1286, 1189, 1154, 1109, 1087, 1030; HRMS (ESI*; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₉H₂₀ClNO₃ 346.1210, found 346.1206.

2-(*Tert-butyl*)-7-*chloro-4*-(4-*chlorobenzyl*)-2*H*-*benzo*[*b*][1,4]*oxazin-3*(4*H*)-*one* (**6u**). Compound **6u** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluent gave the desired product (104 mg, 95%) as an off-white solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 95/5); mp 142–143 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.30$ (d, 2H, J = 8.5 Hz), 7.21 (d, 2H, J = 8.5 Hz), 6.99 (d, 1H, J = 2.2 Hz), 6.83 (dd, 1H, J = 8.6, 2.2 Hz), 6.70 (d, 1H, J = 8.6 Hz), 5.18 (d, 1H, J = 16.1 Hz), 5.00 (d, 1H, J = 16.1 Hz), 4.43 (s, 1H), 1.07 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 164.3$, 146.1, 134.8, 133.6, 129.2, 129.1, 128.4, 127.3, 122.0, 117.0, 115.7, 84.6, 44.9, 37.2, 26.7; IR (Neat): v = 2966, 1671, 1582, 1494, 1463, 1421, 1391, 1369, 1329, 1277, 1186,

1142, 1085, 1054, 1015; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/*z* calculated for C₁₉H₁₉Cl₂NO₂ 364.0871, found 364.0879.

4-*Cyclohexyl-2-(methoxymethyl)-2-methyl-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**6v**). Compound **6v** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluent gave the desired product (73 mg, 83%) as a yellow oil. $R_f = 0.4$ (petroleum ether/ethyl acetate 96/4); ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.17-7.10$ (m, 1H), 7.05–6.95 (m, 3H), 4.18 (tt, 1H, *J* = 12.4, 3.8 Hz), 3.83 (d, 1H, *J* = 10.4 Hz), 3.60 (d, 1H, *J* = 10.4 Hz), 3.43 (s, 3H), 2.50–2.27 (m, 2H), 1.96–1.66 (m, 5H), 1.49–1.18 (m, 3H), 1.34 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.6$, 144.3, 129.6, 123.9, 122.3, 118.5, 115.6, 80.9, 75.7, 60.2, 57.2, 29.7, 29.2, 26.7, 26.6, 25.7, 18.9. IR (Neat): (cm⁻¹) 2930, 2854, 1674, 1607, 1497, 1452, 1411, 1357, 1327, 1299, 1277, 1248, 1204, 1109, 1045; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₂₃NO₃ 290.1756, found 290.1754.

4-*Cyclohexylspiro[benzo[b]*[1,4]*oxazine-2,1'-cyclobutan*]-3(4*H*)-*one* (**6**w). Compound **6**w was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluent gave the desired product (39 mg, 89%) as a yellow solid. $R_f = 0.7$ (petroleum ether/ethyl acetate 95/5); mp 87–88 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.15-7.08$ (m, 1H), 7.05–6.93 (m, 3H), 4.18 (tt, 1H, *J* = 12.3, 3.7 Hz), 2.59–2.47 (m, 2H), 2.44–2.28 (m, 2H), 2.28–2.15 (m, 2H), 2.02–1.65 (m, 7H), 1.46–1.21 (m, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 169.2, 144.7, 130.2, 123.7, 122.7, 118.5, 116.0, 80.2, 56.9, 31.0, 29.6, 26.6, 25.7, 13.4; IR (Neat): <math>v = 2943, 2857, 1672, 1607, 1491, 1448, 1406, 1358, 1325, 1297, 1256, 1244, 1147, 1036 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂):$ *m/z*calculated for C₁₇H₂₂NO₂ 272.1651, found 272.1643.

4-*Cyclohexyl-2-ethyl-2H-pyrido*[*3*,2-*b*][*1*,4]*oxazin-3*(*4H*)-*one* (**6x**). Compound **6x** was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 98/2 to 95/5) as eluent gave the desired product (44 mg, 56%) as a yellow solid. $R_f = 0.6$ (petroleum ether/ethyl acetate 90/10); mp 64–65 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.99$ (dd, 1H, J = 4.8, 1.4 Hz), 7.21 (dd, 1H, J = 7.9, 1.4 Hz), 6.90 (dd, 1H, J = 7.9, 4.8 Hz), 4.88 (tt, 1H, J = 12.3, 3.6 Hz), 4.42 (dd, 1H, J = 8.2, 4.6 Hz), 2.62–2.41 (m, 2H), 1.98–1.75 (m, 4H), 1.75–1.62 (m, 3H), 1.48–1.20 (m, 3H), 1.04 (t, 3H, J = 7.4 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.5$, 142.8, 140.6, 140.3, 123.9, 119.1, 78.8, 53.9, 29.2, 29.1, 26.6, 25.5, 24.3, 9.5; IR (Neat): v = 2967, 2921, 2849, 1673, 1595, 1456, 1407, 1365, 1333, 1269, 1240, 1193, 1109, 1064 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₅H₂₁N₂O₂ 261.1603, found 261.1604.

1-*Cyclohexyl-3-isopropyl-1H-pyrido*[2,3-*b*][1,4]*oxazin-2*(3*H*)-*one* (**6***y*). Compound **6***y* was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 80/20 to 70/30) as eluent gave the desired product (43 mg, 71%) as a yellow oil. $R_f = 0.4$ (petroleum ether/ethyl acetate 70/30); ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.90$ (dd, 1H, *J* = 4.8, 1.5 Hz), 7.42 (dd, 1H, *J* = 7.9, 1.5 Hz), 6.97 (dd, 1H, *J* = 7.9, 4.8 Hz), 4.43 (d, 1H, *J* = 5.7 Hz), 4.20 (tt, 1H, *J* = 12.3, 3.7 Hz), 2.39–2.16 (m, 3H), 1.95–1.84 (m, 2H), 1.84–1.65 (m, 3H), 1.48–1.18 (m, 3H), 1.09 (d, 3H, *J* = 6.9 Hz), 1.00 (d, 3H, *J* = 6.9 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 166.2$, 152.6, 141.5, 124.2, 123.3, 118.3, 82.7, 56.4, 30.3, 29.5, 29.1, 26.43, 26.40, 25.4, 18.8, 17.4; IR (Neat): *ν* = 2966, 2934, 2857, 1678, 1579, 1454, 1413, 1364, 1320, 1240, 1214, 1133, 1074, 1056, 1019 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₆H₂₃N₂O₂ 275.1760, found 275.1762.

2-(4-Chlorophenyl)-N-cyclohexyl-2-oxoacetamide (7). The general procedure D applied to the compound 2f didn't give the desired product. Instead, the compound 7 was formed and was isolated as a yellow solid (29 mg, 46%) after purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 99/1 to 98/2) as eluent. $R_f = 0.5$ (petroleum ether/ethyl acetate 95/5); mp 101–102 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.32$ (d, 2H, J = 8.8 Hz), 7.44 (d, 2H, J = 8.8 Hz), 7.00 (br d, 1H, J = 5.7 Hz), 3.91–3.75 (m, 1H), 2.03–1.91 (m, 2H), 1.83–1.70 (m, 2H), 1.70–1.59 (m, 1H), 1.50–1.12 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 186.8$, 160.5, 141.3, 132.8, 131.9, 128.9, 48.6, 32.8, 25.5,

24.8; IR (Neat): *v* = 3381, 2936, 2856, 1655, 1583, 1527, 1448, 1397, 1283, 1263, 1246, 1205, 1169, 1092, 1005 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₄H₁₇NO₂Cl 266.0948, found 266.0945.

4-(4-*Chlorobenzyl*)-2-((*S*)-2,6-*dimethylhept-5-en-1-yl*)-7-*nitro-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (8a). Compound 8a was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (75 mg, 56%) as a 6:4 mixture of unseparable diastereomers (orange oil). $R_f = 0.4$ (petroleum ether/ethyl acetate 90/10); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.86 (d, 1H, *J* = 2.5 Hz), 7.85 (d, 1H, *J* = 2.5 Hz), 7.83 (dd, 1H, *J* = 8.8, 2.5 Hz), 7.32 (d, 2H, *J* = 8.2 Hz), 7.15 (dd, 2H, *J* = 8.2 Hz), 6.90 (dd, 1H, *J* = 8.8, 1.0 Hz), 5.24 (d, 0.4H, *J* = 9.0 Hz), 5.21 (d, 0.6H, *J* = 9.0 Hz), 5.13–5.02 (m, 2H), 4.87–4.82 (m, 1H), 2.12–1.94 (m, 2H), 1.94–1.79 (m, 2H), 1.78–1.67 (m, 0.6H), 1.70 (s, 1.8H), 1.66 (s, 1.2H), 1.61 (s, 1.2H), 1.55 (s, 1.8H), 1.53–1.45 (m, 0.6H), 1.40–1.19 (m, 1.8H), 1.03 (d, 1.2H, *J* = 6.1 Hz), 1.02 (d, 1.8H, *J* = 6.1 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 166.7, 166.5, 143.93, 143.87, 143.8, 134.4, 133.9, 133.7, 131.85, 131.78, 129.4, 128.0, 124.4, 124.2, 118.7, 114.9, 113.3, 76.1, 75.6, 44.9, 37.6, 37.4, 37.2, 36.1, 29.3, 28.4, 25.83, 25.76, 25.4, 25.3, 20.0, 18.8, 17.8, 17.7; IR (Neat): ν = 2962, 2919, 2853, 1694, 1600, 1522, 1500, 1439, 1384, 1337, 1301, 1246, 1147, 1092, 1059, 1014 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₄H₂₈ClN₂O₄ 443.1738, found 443.1736.

4-*Cyclohexyl-2-ethyl-7-nitro-2H-benzo[b]*[1,4]*oxazin-3*(4*H*)-*one* (**8b**). Compound **8b** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (90/10) as eluent gave the desired product (58 mg, 64%) as a yellow solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 90/10); mp 92–93 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.92$ (dd, 1H, J = 9.0, 2.4 Hz), 7.86 (d, 1H, J = 2.4 Hz), 7.22 (d, 1H, J = 9.0 Hz), 4.41 (dd, 1H, J = 8.5, 4.5 Hz), 4.23 (tt, 1H, J = 12.4, 3.4 Hz), 2.42–2.24 (m, 2H), 1.98–1.85 (m, 3H), 1.85–1.70 (m, 4H), 1.49–1.24 (m, 3H), 1.06 (t, 3H, J = 7.4 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 167.4, 145.3, 143.3, 135.7, 118.4, 115.5, 113.4, 79.2, 57.5, 29.5, 29.4, 26.4, 25.4, 23.7, 9.5; IR (Neat): <math>\nu = 3094, 2919, 2853, 1692, 1598, 1510, 1495, 1456, 1411, 1336, 1307, 1276, 1258, 1247, 1207, 1152, 1135, 1114, 1079, 1052 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): <math>m/z$ calculated for C₁₈H₂₄N₃O₄ 346.1767, found 346.1774.

2-*Isopropyl*-4-(4-*methoxybenzyl*)-7-*nitro*-2H-*benzo*[*b*][1,4]*oxazin*-3(4H)-*one* (8c). Compound 8c was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 98/2 to 90/10) as eluent gave the desired product (73 mg, 68%) as a yellow solid. $R_f = 0.4$ (petroleum ether/ethyl acetate 90/10); mp 107–108 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.85 (d, 1H, *J* = 2.5 Hz), 7.80 (dd, 1H, *J* = 8.9, 2.5 Hz), 7.16 (d, 2H, *J* = 8.7 Hz), 6.97 (d, 1H, *J* = 8.9 Hz), 6.87 (d, 2H, *J* = 8.7 Hz), 5.25 (d, 1H, *J* = 15.8 Hz), 5.02 (d, 1H, *J* = 15.8 Hz), 4.50 (d, 1H, *J* = 6.5 Hz), 3.78 (s, 3H), 2.32 (oct, 1H, *J* = 6.8 Hz), 1.13 (d, 3H, *J* = 6.8 Hz), 1.08 (d, 3H, *J* = 6.8 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 165.4, 159.3, 144.4, 143.5, 134.5, 128.0, 127.2, 118.4, 115.0, 114.6, 112.8, 82.0, 55.4, 45.0, 30.0, 18.7, 17.6; IR (Neat): ν = 3064, 2964, 2923, 1684, 1599, 1511, 1462, 1447, 1384, 1368, 1334, 1306, 1293, 1253, 1236, 1189, 1178, 1153, 1111, 1086, 1032 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₉H₂₁N₂O₅ 357.1450, found 357.1455.

2-(*Tert-butyl*)-7-*nitro*-4-*phenethyl*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**8d**). Compound **8d** was prepared according to the general procedure D. Purification on a column of silica gel with petroleum ether/ethyl acetate 95/5 as eluent gave the desired product (87 mg, 82%) as a yellow solid. R_i = 0.5 (petroleum ether/ethyl acetate 90/10); mp 123–124 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.89 (dd, 1H, *J* = 8.9, 2.5 Hz), 7.84 (d, 1H, *J* = 2.5 Hz), 7.35–7.29 (m, 2H), 7.28–7.23 (m, 3H), 6.96 (d, 1H, *J* = 8.9 Hz), 4.38 (s, 1H), 4.29 (ddd, 1H, *J* = 14.1, 9.6, 6.3 Hz), 4.11 (ddd, 1H, *J* = 14.1, 9.6, 6.3 Hz), 3.04–2.91 (m, 2H), 1.04 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 163.7, 145.2, 143.5, 137.5, 134.1, 128.89, 128.86, 127.1, 118.2, 113.8, 112.2, 84.3, 43.4, 37.2, 33.5, 26.5; IR (Neat): ν = 3063, 3028, 2971, 2872, 1684, 1597, 1516, 1498, 1478, 1457, 1446, 1387, 1371, 1334, 1312, 1298, 1280, 1254, 1229, 1191, 1145, 1085, 1052, 1026 cm⁻¹; HRMS (ESI+; MeCN/CH₂Cl₂): *m/z* calculated for C₂₀H₂₃N₂O₄ 355.1658, found 355.1643.

4-(4-*Methoxybenzyl*)-2-(2-*methylpent*-4-*en*-2-*yl*)-7-*nitro*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (8e). Compound 8e was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (90/10) as eluent gave the desired product (70 mg, 59%) as a yellow oil. $R_f = 0.5$ (petroleum ether/ethyl acetate 90/10); ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.82$ (d, 1H, *J* = 2.5 Hz), 7.78 (dd, 1H, *J* = 8.8, 2.5 Hz), 7.20 (d, 2H, *J* = 8.6 Hz), 6.99 (d, 1H, *J* = 8.8 Hz), 6.86 (d, 2H, *J* = 8.6 Hz), 5.94–5.76 (m, 1H), 5.19 (d, 1H, *J* = 15.7 Hz), 5.16–5.10 (m, 2H), 5.07 (d, 1H, *J* = 15.7 Hz), 4.57 (s, 1H), 3.78 (s, 3H), 2.32 (dd, 1H, *J* = 13.5, 7.6 Hz), 2.21 (dd, 1H, *J* = 13.5, 7.6 Hz), 1.08 (s, 3H), 1.02 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 164.4$, 159.3, 145.3, 143.5, 134.3, 133.6, 128.3, 127.3, 119.0, 118.1, 114.9, 114.5, 111.9, 82.6, 55.4, 45.1, 43.7, 40.1, 24.0, 23.4; IR (Neat): $\nu = 2964$, 2933, 1686, 1639, 1599, 1513, 1464, 1384, 1337, 1295, 1243, 1176, 1113, 1085, 1035 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m*/z calculated for C_{22H25}N₂O₅ 397.1763, found 397.1756.

2-(*Tert-butyl*)-4-*cyclohexyl*-7-*nitro*-2H-*benzo*[*b*][1,4]*oxazin*-3(4H)-*one* (**8f**). Compound **8f** was prepared according to the general procedure D. Purification on a column of silica gel with ethyl acetate in petroleum ether (90/10) as eluent gave the desired product (70 mg, 70%) as a yellow solid. R_i = 0.5 (petroleum ether/ethyl acetate 90/10); mp 107–108 °C; ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 7.88 (dd, 1H, *J* = 9.0, 2.5 Hz), 7.82 (d, 1H, *J* = 2.5 Hz), 7.18 (d, 1H, *J* = 9.0 Hz), 4.38–4.22 (m, 1H), 4.29 (s, 1H), 2.50–2.23 (m, 2H), 1.97–1.86 (m, 2H), 1.86–1.68 (m, 3H), 1.50–1.17 (m, 3H), 1.00 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): δ = 165.4, 146.1, 143.3, 135.2, 118.0, 115.1, 112.4, 84.8, 57.3, 37.0, 29.8, 29.0, 26.65, 26.58, 26.4, 25.4; IR (Neat): ν = 3124, 3093, 2988, 2968, 2926, 2855, 1686, 1596, 1509, 1495, 1477, 1466, 1451, 1410, 1360, 1339, 1309, 1291, 1262, 1243, 1190, 1148, 1080, 1056, 1021 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₈H₂₅N₂O₄ 333.1814, found 333.1814.

7-*Nitro-2,4-diphenethyl-2H-benzo*[*b*][*1,4*]*oxazin-3(4H)-one* (**8g**). Compound **8g** was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluent gave the desired product (79 mg, 65%) as a yellow solid. $R_f = 0.3$ (petroleum ether/ethyl acetate 90/10); mp 79–80 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.92$ (dd, 1H, *J* = 8.9, 2.6 Hz), 7.86 (d, 1H, *J* = 2.6 Hz), 7.33–7.27 (m, 4H), 7.25–7.18 (m, 6H), 6.97 (d, 1H, *J* = 8.9 Hz), 4.55 (dd, 1H, *J* = 9.1, 4.2 Hz), 4.23 (ddd, 1H, *J* = 14.2, 8.6, 7.1 Hz), 4.13 (ddd, 1H, *J* = 14.2, 8.6, 6.6 Hz), 3.00–2.90 (m, 2H), 2.88–2.77 (m, 2H), 2.27–2.18 (m, 1H), 2.17–2.08 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 165.6$, 144.0, 143.4, 140.3, 137.5, 134.5, 128.9, 128.7, 127.1, 126.4, 118.7, 114.2, 113.3, 76.1, 43.4, 33.4, 32.0, 30.9; IR (Neat): $\nu = 3086$, 3027, 2932, 1695, 1598, 1514, 1495, 1454, 1387, 1336, 1296, 1276, 1246, 1182, 1137, 1109, 1073, 1053, 1029 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₂₄H₂₃N₂O₄ 403.1658, found 403.1664.

4-(3,4-Dimethoxyphenethyl)-2-((S)-2,6-dimethylhept-5-en-1-yl)-7-nitro-2H-benzo[b][1,4]oxazin-3(4H)-one and a standard standard(8h). Compound 8h was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluent gave the desired product (107 mg, 74%) as a 1:1 mixture of unseparable diastereomers (yellow solid). $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate 80/20); ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.94 (dd, 1H, J = 8.9, 2.6 Hz), 7.85 (d, 1H, J = 2.6 Hz), 7.84 (d, 1H, J = 2.6 Hz), 7.00 (d, 1H, J = 8.9 Hz), 6.99 (d, 1H, J = 8.9 Hz), 6.79 (d, 1H, J = 8.0 Hz), 6.74 (br dd, 1H, J = 8.0, 1.9 Hz), 6.72 (br t, 1H, J = 1.9 Hz), 5.09 (t, 0.5H, J = 7.1 Hz), 5.04 (t, 0.5H, J = 7.1 Hz), 4.71-4.66 (m, 1H), 4.24-4.08 (m, 2H), 3.87 (s, 3H), 3.85 (s, 3H), 2.90 (m, 2H), 2.09–1.90 (m, 2H), 1.83–1.74 (m, 2H), 1.69 (s, 1.5H), 1.66 (s, 1.5H), 1.63–1.56 (m, 0.5H), 1.60 (s, 1.5H), 1.55 (s, 1.5H), 1.50–1.41 (m, 0.5H), 1.36–1.23 (m, 1.5H), 1.23–1.16 (m, 0.5H), 0.99 (d, 1.5H, J = 6.1 Hz), 0.98 (d, 1.5H, J = 6.1 Hz); ¹³C-NMR (75 MHz, CDCl₃, 25 °C): $\delta = 166.2$, 166.0, 149.2, 148.2, 143.93, 143.86, 143.5, 134.58, 134.55, 131.8, 131.7, 130.0, 124.4, 124.2, 120.9, 118.7, 114.2, 113.4, 112.1, 111.5, 76.0, 75.5, 56.0, 43.45, 43.43, 37.4, 37.0, 36.1, 33.1, 29.2, 28.4, 25.82, 25.76, 25.4, 25.3, 20.0, 18.8, 17.8, 17.7; IR (Neat): *v* = 2961, 2916, 2851, 1693, 1597, 1502, 1466, 1454, 1444, 1419, 1395, 1328, 1305, 1290, 1277, 1257, 1236, 1192, 1184, 1157, 1135, 1079, 1059, 1025 cm⁻¹; HRMS (ESI+; MeCN/CH2Cl2): m/z calculated for C₂₇H₃₅N₂O₆483.2495, found 483.2516.

4-(4-*Chlorobenzyl*)-2-*ethyl*-7-*nitro*-2*H*-*benzo*[*b*][1,4]*oxazin*-3(4*H*)-*one* (**8i**). Compound **8i** was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 98/2 to 90/10) as eluent gave the desired product (71 mg, 68%) as an off-white solid. $R_f = 0.2$ (petroleum ether/ethyl acetate 90/10); mp 148–149 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.88$ (d, 1H, *J* = 2.5 Hz), 7.82 (dd, 1H, *J* = 8.9, 2.5 Hz), 7.32 (d, 2H, *J* = 8.4 Hz), 7.15 (d, 2H, *J* = 8.4 Hz), 6.89 (d, 1H, *J* = 8.9 Hz), 5.22 (d, 1H, *J* = 16.2 Hz), 5.10 (d, 1H, *J* = 16.2 Hz), 4.69 (dd, 1H, *J* = 8.5, 4.5 Hz), 2.04 (dqd, 1H, *J* = 14.4, 7.4, 4.5 Hz), 1.95 (dquint, 1H, *J* = 14.4, 7.4 Hz), 1.14 (t, 3H, *J* = 7.4 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): $\delta = 166.1$, 144.0, 143.6, 134.2, 133.8, 133.6, 129.3, 127.9, 118.5, 114.8, 113.2, 78.4, 44.8, 24.1, 9.4; IR (Neat): $\nu = 3090$, 3069, 2979, 2931, 1688, 1597, 1515, 1492, 1441, 1389, 1326, 1310, 1299, 1283, 1246, 1198, 1154, 1132, 1109, 1092, 1078, 1061, 1039, 1015 cm⁻¹; HRMS (ESI⁺; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₁₅ClN₂O₄ 346.0720, found 346.0718.

4-*Cyclohexyl-2-isopropyl-7-nitro-2H-benzo[b]*[*1,4]oxazin-3*(*4H)-one* (**8j**). Compound **8j** was prepared according to the general procedure D. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluent gave the desired product (79 mg, 83%) as a white solid. *R*^f = 0.6 (petroleum ether/ethyl acetate 90/130); mp 83–84 °C; ¹H-NMR (500 MHz, CDCl₃, 25 °C): δ = 7.91 (dd, 1H, *J* = 9.0, 2.6 Hz), 7.85 (d, 1H, *J* = 2.6 Hz), 7.21 (d, 1H, *J* = 9.0 Hz), 4.26 (d, 1H, *J* = 6.3 Hz), 4.24 (tt, 1H, *J* = 12.1, 3.6 Hz), 2.42–2.29 (m, 2H), 2.19 (oct, 1H, *J* = 6.8 Hz), 1.95–1.88 (m, 2H), 1.84–1.70 (m, 3H), 1.45–1.34 (m, 2H), 1.33–1.24 (m, 1H), 1.06 (d, 3H, *J* = 6.8 Hz), 1.00 (d, 3H, *J* = 6.8 Hz); ¹³C-NMR (125 MHz, CDCl₃, 25 °C): δ = 166.6, 145.5, 143.3, 135.5, 118.3, 115.3, 113.2, 82.7, 57.5, 29.6, 29.5, 29.2, 26.5, 26.4, 25.4, 18.6, 17.5; IR (Neat): *ν* = 2974, 2932, 2857, 1702, 1594, 1513, 1497, 1464, 1453, 1408, 1369, 1357, 1337, 1310, 1286, 1261, 1244, 1205, 1192, 1146, 1118, 1084, 1059, 1026 cm⁻¹; HRMS (ESI*; MeCN/CH₂Cl₂): *m/z* calculated for C₁₇H₂₃N₂O₄ 319.1658, found 319.1642.

3. ¹H and ¹³C-NMR Spectra of Compounds

 $1-(4-Chloro-2-nitrophenoxy)-N-cyclohexylcyclobutane carboxamide~({\bf 1b})$

por 160 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

ppm 180 170 160

150

140 130 120 110 100 90 80 70

60

50 40

....

30

20

10

N-Cyclohexyl-3,3,3-trifluoro-2-methyl-2-(2-nitrophenoxy)propanamide (1e)

N-Cyclohexyl-3-methyl-2-(2-nitrophenoxy)butanamide (2b)

N-Cyclohexyl-3,3-dimethyl-2-(2-nitrophenoxy)butanamide (2c)

N-Cyclohexyl-2-(2-nitrophenoxy)-4-phenylbutanamide (2d)

N-Cyclohexyl-2-(3-fluorophenyl)-2-(2-nitrophenoxy)acetamide (2e)

2-(4-Chlorophenyl)-N-cyclohexyl-2-(2-nitrophenoxy)acetamide (2f)

N-(4-Methoxybenzyl)-3,3-dimethyl-2-(4-methyl-2-nitrophenoxy)hex-5-enamide (2g)

N-(4-*Chlorobenzyl*)-4-*methyl*-2-(4-*methyl*-2-*nitrophenoxy*)*pentanamide* (2h)

N-Cyclohexyl-2-(4-methoxyphenyl)-2-(4-methyl-2-nitrophenoxy)acetamide (2i)

2-(4-Methoxy-2-nitrophenoxy)-3,3-dimethyl-N-phenethylbutanamide (2j)

2-(2-Allyl-6-nitrophenoxy)-N-cyclohexyl-3-methylbutanamide (2k)

N-Cyclohexyl-2-(4-methoxy-2-nitrophenoxy)-3-methylbutanamide (21)

2-(4-Bromo-2-nitrophenoxy)-3,3-dimethyl-N-phenethylbutanamide (2n)

2-(4-Bromo-2-nitrophenoxy)-N-(3,4-dimethoxyphenethyl)-3-methylbutanamide (20)

N-(Tert-butyl)-2-(4-chloro-2-nitrophenoxy)butanamide (**2p**)

N-(Tert-butyl)-2-(4-chloro-2-nitrophenoxy)-3-methylbutanamide (2q)

2-(4-Chloro-2-nitrophenoxy)-N-(4-methoxybenzyl)butanamide (2s)

4-Methyl-2-(2-nitro-4-(trifluoromethyl)phenoxy)-N-phenethylpentanamide (2v)

N-(3,4-Dimethoxyphenethyl)-4,8-dimethyl-2-(2-nitro-4-(trifluoromethyl)phenoxy)non-7-enamide (2w)

N-Cyclohexyl-2-((2-nitropyridin-3-yl)oxy)butanamide (2xa)

N-Cyclohexyl-3-methyl-2-((2-nitropyridin-3-yl)oxy)butanamide (**2xb**)

N-Cyclohexyl-2-((3-nitropyridin-2-yl)oxy)butanamide (2ya)

N-Cyclohexyl-3-methyl-2-((3-nitropyridin-2-yl)oxy)butanamide (**2yb**)

N-Cyclohexyl-3-methyl-2-(4-nitrophenoxy)butanamide (2z)

N-Cyclohexyl-2-(1-(2-nitrophenoxy)propoxy)butanamide (3a)

Diastereomer 1 (contaminated by Passerini-Smiles adduct)

Diastereomer 2

N-Cyclohexyl-2-(2-fluoro-4-nitrophenoxy)-3-methylbutanamide (4a)

2-(2-Chloro-4-nitrophenoxy)-N-cyclohexyl-3-methylbutanamide (4b)

N-(4-Chlorobenzyl)-2-(2-fluoro-4-nitrophenoxy)-4,8-dimethylnon-7-enamide (4e)

2-(2-Fluoro-4-nitrophenoxy)-N-(4-methoxybenzyl)-3-methylbutanamide (4g)

2-(2-Fluoro-4-nitrophenoxy)-N-(4-methoxybenzyl)-3,3-dimethylhex-5-enamide (4i)

N-Cyclohexyl-2-(2-fluoro-4-nitrophenoxy)butanamide (4j)

N-(3,4-Dimethoxyphenethyl)-2-(2-fluoro-4-nitrophenoxy)-4,8-dimethylnon-7-enamide (4k)

N-(4-Chlorobenzyl)-2-(2-fluoro-4-nitrophenoxy)butanamide (41)

pp^{og}200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

N-Cyclohexyl-2-(2-fluoro-4-nitrophenoxy)-3,3-dimethylbutanamide (4n)

2-Isopropyl-2H-benzo[b][1,4]oxazin-3(4H)-one (5a)

2-Phenethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (5b)

2-Isopropyl-6-methoxy-2H-benzo[b][1,4]oxazin-3(4H)-one (5c)

6-Chloro-2-ethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (5d)

2-(4-Methoxyphenyl)-6-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one (5e)

2-(3-Fluorophenyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (5f)

2-(Methoxymethyl)-2-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one (5g)

6-Bromospiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (5h)

6-Chlorospiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (5i)

4-Cyclohexyl-2-isopropyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6a)

7-Chloro-4-cyclohexylspiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (6b)

4-Cyclohexyl-2-methyl-2-(trifluoromethyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (6d)

7-Bromo-4-(3,4-dimethoxyphenethyl)-2-isopropyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6f)

4-(4-Methoxybenzyl)spiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (6g)

4-(Tert-butyl)-7-chloro-2-isopropyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6h)

 $\begin{array}{l} 4-(3,4-Dimethoxyphenethyl)-2-(2,6-dimethylhept-5-en-1-yl)-7-(trifluoromethyl)-2H-benzo[b][1,4]oxazin-3(4H)-one~({\bf 6i}) \end{array}$

2-(Tert-butyl)-7-methoxy-4-phenethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6k)

4-Cyclohexyl-2-ethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6l)

7-Bromo-2-(tert-butyl)-4-phenethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6m)

4-(4-Methoxybenzyl)-7-methyl-2-(2-methylpent-4-en-2-yl)-2H-benzo[b][1,4]oxazin-3(4H)-one (6n)

2-(Tert-butyl)-4-cyclohexyl-2H-benzo[b][1,4]oxazin-3(4H)-one (60)

S116 of S139

4-Cyclohexyl-2-phenethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6r)

4-(Tert-butyl)-7-chloro-2-ethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6s)

ppm 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

7-Chloro-2-(methoxymethyl)-2-methyl-4-phenethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6t)

ppm 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

4-Cyclohexyl-2-(methoxymethyl)-2-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one (6v)

4-Cyclohexylspiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (6w)

4-Cyclohexyl-2-ethyl-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one (6x)

1-Cyclohexyl-3-isopropyl-1H-pyrido[2,3-b][1,4]oxazin-2(3H)-one (6y)

2-(4-Chlorophenyl)-N-cyclohexyl-2-oxoacetamide (7)

4-Cyclohexyl-2-ethyl-7-nitro-2H-benzo[b][1,4]oxazin-3(4H)-one (8b)

2-(Tert-butyl)-4-cyclohexyl-7-nitro-2H-benzo[b][1,4]oxazin-3(4H)-one (8f)

7-Nitro-2,4-diphenethyl-2H-benzo[b][1,4]oxazin-3(4H)-one (8g)

 $\label{eq:constraint} 4-(3,4-Dimethoxyphenethyl)-2-((S)-2,6-dimethylhept-5-en-1-yl)-7-nitro-2H-benzo[b][1,4]oxazin-3(4H)-one \mbox{(8h)}$

4-(4-Chlorobenzyl)-2-ethyl-7-nitro-2H-benzo[b][1,4]oxazin-3(4H)-one (8i)

4-Cyclohexyl-2-isopropyl-7-nitro-2H-benzo[b][1,4]oxazin-3(4H)-one (8j)

3. X-ray Crystallography

Details on X-ray analyses for compounds **1b**, **6b**, **6m**, and **6u** were provided elsewhere [1] and related crystallographic models were deposited in the Cambridge Structural Database [2], with the following CSD refcodes XISYIJ, XISYOP, XISZAC, and XISYUV, respectively.

For the seven newly obtained structures, they were all derived from X-ray analyses upon single crystals grown during slow evaporation of dichloromethane, or diisopropyl ether for EM016E. For five of them (2h, 2j, 5i, 5j and 6w) data collections were carried out by means of an Enraf–Nonius Kappa-CCD diffractometer using graphite-monochromated Mo-Ka (λ = 0.71073 Å) radiation at ambient temperature. The determination of crystal class and unit cell parameters was carried out by the COLLECT program package [3] running the Denzo-HKL2000 program [4]. The raw frame data were integrated using Denzo, then scaled and reduced after semi-empirical absorption correction using Scalepack [4] to yield a unique reflection data file. For the last compound 8j, the tested crystal was mounted on a chi-partial, three axes goniometer of a Rigaku MM007 HF copper ($\lambda = 1.54187$ Å) rotating-anode diffractometer, equipped with Osmic CMF optics and a Rapid II curved Image Plate. All structures were solved by Direct Methods with the SHELX-S97 structure solution program [5] and refined with the SHELX-L2014 refinement package [6] on F^2 anisotropically for all the nonhydrogen atoms by the full-matrix least-squares method. Most of the H atoms attached to C atoms were located from difference Fourier maps in the final stages of refinement, but all were introduced in their idealized positions and treated as riding, with Uiso (H) =1.2Ueq (C) or 1.5 if methyl C atoms. H atoms attached to N atoms if present were located from difference Fourier maps and refined with restrained N-H distances in 2h and 5j (if not for 2j). With respect to 5j, residual electron density $(\geq e.Å^{-3})$ over the methyl group may suggest an exchange disorder between the methyl group and the CF3 group, both attached at the sp3 C2 atom. This exchange turns out to be extremely minor with site-occupancy factors of 0.98/0.02, leading to leave the minor-occupied orientation with isotropic atomic displacement parameters and restrained bond distances (SADI, standard su). In absence of strong anomalous signal, the absolute structure parameter is meaningless (su of 0.5) in the case of the compound **6w** that crystallized in the non-centrosymmetric space group, Pna21.

Thermal ellipsoid plots of the molecular structures were made using MERCURY [7], the ellipsoids enclosing 50 % of the electronic density.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-1054699 (**2h**), CCDC-1054700 (**2j**), CCDC-1054701 (**5i**), CCDC-1054702 (**5j**), CCDC-1054703 (**6w**) and CCDC-1054704 (**8j**). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Identification Code	1b	2h	2j	5i	
Chemdraw Drawing			MeO NH Ph		
Ortep view					
CCDC code	XISYIJ	1054699	1054700	1054701	
Empirical formula	C17H21ClN2O4	C20H23ClN2O4	C21H26N2O5	C11H10ClNO2	
Formula weight	352.81	390.85	386.44	223.65	
Temperature (K)	293(2)	293(2)	293(2)	293(2)	
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	
Recrystallization solvent	Isopropyl oxide	CH ₂ Cl ₂	CH ₂ Cl ₂	CH ₂ Cl ₂	
Crystal system, space	Monoclinic P21/c	Monoclinic P21/c	Triclinic P-1	Monoclinic C2/c	
group	wonoenine, i zije	wonoennie, i zije	filenine, f f	wonoennie, ez/e	
a (Å)	11.688(1)	11.668(2)	9.248(2)	18.292(2)	
b (Å)	17.404(3)	16.195(3)	10.596(2)	5.251(1)	
c (Å)	9.965(2)	10.603(2)	11.804(4)	21.525(3)	
α (°)	90	90	91.001(2)	90	
β (°)	113.76(5)	103.476(4)	109.887(2)	100.06(2)	
γ (°)	90	90	103.196(4)	90	
Volume (Å ³)	1855.2(8)	1948.4(6)	1053.3(5)	2035.7(5)	
Ζ,	4,	4,	2,	8,	
Calc. density (Mg/m ³)	1.263	1.332	1.218	1.459	
Abs. coefficient (mm-1)	0.228	0.224	0.087	0.352	
F(000)	744	824	412	928	
Crystal size (mm)	$0.53 \times 0.36 \times 0.14$	$0.45 \times 0.31 \times 0.15$	$0.52\times0.40\times0.18$	$0.580 \times 0.280 \times 0.180$	
θ range for data coll. (°)	3.266 to 25.362	2.515 to 26.117	3.417 to 25.298	4.042 to 27.502	
	$-14 \le h \le 14$,	$-14 \le h \le 14$,	-11 ≤ h ≤ 11,	$-23 \le h \le 23$,	
Limiting indices	$-20 \le k \le 19$,	$-18 \le k \le 20$,	$-12 \le k \le 12$,	$-6 \le k \le 6,$	
	$-11 \le l \le 12$	$-13 \le l \le 13$	$-14 \le l \le 14.$	$-27 \le l \le 27$	
Reflections	22970 / 3381	20616 / 3854	17230 / 3778	8120 / 2263	
collected/unique	[R(int) = 0.0219]	[R(int) = 0.0205]	[R(int) = 0.0172]	[R(int) = 0.0298]	
Completeness to θ_{max} (%)	99.5	99.6	98.9	97.0	
Absorption correction	Semi-empirical from equivalents				
Max. and min. transm.	0.96 and 0.88	0.97 and 0.88	0.98 and 0.94	0.94 and 0.79	
Refinement method	Full-matrix least-squares on F ²				
Data/restr./param.	3381/21/231	3846/1/251	3767/0/261	2261/1/140	
Goodness-of-fit on F ²	1.037	1.035	1.043	1.062	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0497,	R1 = 0.0430,	R1 = 0.0465,	R1 = 0.0433,	
	wR2 = 0.1335	wR2 = 0.1065	wR2 = 0.1201	wR2 = 0.1110	
R indices (all data)	R1 = 0.0762,	R1 = 0.0656,	R1 = 0.0637,	R1 = 0.0562,	
K multes (all data)	wR2 = 0.1527	wR2 = 0.1195	wR2 = 0.1331	wR2 = 0.1202	
Extinction coefficient	0.036(5)	0.014(3)	0.092(13)	0.020(4)	
Largest diff. peak and hole (e. Å ⁻³)	0.197 and -0.228	0.208 and -0.266	0.191 and -0.143	0.236 and -0.267	

Identification Code	5j	6b	6m	6u	
Chemdraw Drawing	CF3 NH O		Br O NO		
Ortep view			କ୍ କ୍ ତ୍ରିକ୍ କ୍ ତ୍ରିକ ନ୍ତୁ ହ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍ କ୍		
CCDC code	1054702	XISYOP	XISZAC	XISYUV	
Empirical formula	$C_{10}H_8F_3NO_2$	C17H20CINO2	C ₂₀ H ₂₂ BrNO ₂	C19H19Cl2NO2	
Formula weight	231.17	305.79	388.30	364.25	
Temperature (K)	293(2)	293(2)	293(2)	293(2)	
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	
Recrystallization solvent	CH ₂ Cl ₂	CH ₂ Cl ₂	CH ₂ Cl ₂	CH ₂ Cl ₂	
Crystal system.	Monoclinic.	Triclinic.	Monoclinic.	Monoclinic.	
space group	C2/c	P -1	$P 2_1/c$	$P 2_1/c$	
a (Å)	, -				
<i>w</i> (11)	20.936(2)	5.880(1)	7.217(1)	5.954(1)	
h (Å)	5.538(1)	9.120(2)	11.276(2)	8.628(2)	
$c(\dot{\Lambda})$	18.616(2)	14.895(2)	22.803(3)	34.703(5)	
α (°)	90	77 537(2)	90	90	
$\beta(\mathbf{e})$	112 33(2)	85 432(3)	92 725(3)	93 476(2)	
μ() γ(°)	90	77 725(3)	90	90	
Volume $(Å^3)$	1996 5(5)	761 6(2)	1853 6(5)	1779 5(6)	
Z.	8	2	4	4	
Calc density (Mg/m ³)	1 538	1.333	1 391	1.360	
Abs_coefficient (mm ⁻¹)	0 144	0.255	2 229	0.376	
F(000)	944	324	800	760	
Crystal size (mm)	0 59 x 0 56 x 0 37	0.560 x 0.360 x 0.100	$0.51 \times 0.28 \times 0.24$	0 30 x 0 30 x 0 30	
θ range for data coll (°)	3 716 to 25 342	3 548 to 26 338	3 354 to 25 507	3 33 to 26 23	
o funge for data con. ()	0.710 to 20.042	0.040 10 20.000	0.004 to 20.007	0.00 10 20.20	
	-24 < h < 24	-7 < h < 6	-8 < h < 8	-7 < h < 7	
Limiting indices	-6 <k<6< td=""><td>-11 < k < 11</td><td>$-12 \le k \le 13$</td><td>-10 < k < 9</td></k<6<>	-11 < k < 11	$-12 \le k \le 13$	-10 < k < 9	
	-22 ≤ 1 ≤ 22	-18≤1≤18	$-27 \le 1 \le 27$	-42 ≤1 ≤ 42	
		10 = 1 = 10	_, _ , _ , _ ,		
	22412/1797	6531/3038	11449/3395	9987 / 3429	
Reflections collected/unique	[R(int) = 0.0368]	[R(int) = 0.0237]	[R(int) = 0.0350]	[R(int) = 0.0279]	
Completeness to θ_{max} (%)	98.3	97.9	98.7	95.9	
Absorption correction	Semi-empirical from equivalents		alents		
Max. and min. transm.	0.95 and 0.90	0.98 and 0.92 0.58 and 0.44 0.89 and 0.78			
Refinement method		Full-m	atrix least-squares of	on F ²	
Data / restr. / param.	1797/7/166	3035/0/190	3391/0/221	3420/0/221	
Goodness-of-fit on F ²	1.047	1.017	1.027	1.032	
	R1 = 0.0514.	R1 = 0.0449.	R1 = 0.0473.	R1 = 0.0473.	
Final R indices $[I > 2\sigma(I)]$	wR2 = 0.1335	wR2 = 0.1098	wR2 = 0.1178	wR2 = 0.1199	
	R1 = 0.0786.	R1 = 0.0615.	R1 = 0.0770.	R1 = 0.0773.	
R indices (all data)	wR2 = 0.1490	wR2 = 0.1217	wR2 = 0.1362	wR2 = 0.1357	
Extinction coefficient	0.011(3)	_	0.014(2)	0.024(4)	
Largest diff. peak and hole (e. $Å^{-3}$)	0.197 and -0.204	0.196 and -0.320	0.448 and -0.452	0.226 and -0.219	

Identification Code	6w	8j
	\sim	0 ₂ NO
		L L Ì
Chemdraw Drawing		× N `O ↓
		\bigcap
	· · ·	
	0000	
		6 6 6 6 6 6 6 6 6 6
Orten view		
ency new		
	- Sta	a the second second
	Ţ	7
CCDC code	1054703	1054704
Empirical formula	C17H21NO2	C17H22N2O4
Formula weight	271.35	318.36
Temperature (K)	293(2)	293(2)
Wavelength (A)	0.71073	1.54187
Recrystallization solvent	CH ₂ Cl ₂	diisopropyl ether
Crystal system,	Orthorhombic,	Monoclinic,
space group	Pna21	C2/c
a (A)	12.696(2)	29.153(2)
$b(\mathbf{\hat{A}})$	7.067(1)	9.0210(7)
<i>c</i> (Å)	16.318(3)	12.7261(9)
α (°)	90	90
β (°)	90	93.001(7)
γ (°)	90	90
Volume (Å ³)	1464.1(4)	3342.2(4)
Ζ,	4,	8,
Calc. density (Mg/m ³)	1.231	1.265
Abs. coefficient (mm ⁻¹)	0.080	0.743
F(000)	584	1360
Crystal size (mm)	$0.58 \times 0.56 \times 0.50$	$0.31 \times 0.20 \times 0.08$
θ range for data coll. (°)	3.528 to 28.696	3.036 to 68.142
Limiting indices	$-16 \le h \le 17$,	$-34 \le h \le 34$,
	$-9 \le k \le 9,$	$-6 \le k \le 10,$
	$-22 \le l \le 21$	$-14 \le l \le 14$
Reflections collected/unique	15986/3451	6382/2934
	[R(int) = 0.031]	[R(int) = 0.0409]
Completeness to θ_{max} (%)	98.5	96.1
Absorption correction	Semi-empirical	from equivalents
Max. and min. transm.	0.96 and 0.91	0.94 and 0.76
Refinement method	Full-matrix lea	ist-squares on F ²
Data/restr./param.	3451/1/181	2929/0/210
Goodness-of-fit on F ²	1.071	1.017
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0412,	R1 = 0.0662,
	wR2 = 0.0960	wR2 = 0.1573
R indices (all data)	R1 = 0.0526,	R1 = 0.1573,
	wR2 = 0.1034	wR2 = 0.2285
Extinction coefficient	-	-
Absolute structure parameter	0.032(480)	-
Largest diff. peak and hole (e. A^{-3})	0.114 and -0.118	0.227 and -0.249

Kinetic studies

Reference

- 1. Martinand-Lurin, E.; Dos Santos, A.; El Kaim, L.; Grimaud, L.; Retailleau, P. Double Smiles rearrangement of Passerini adducts towards benzoxazinones. *Chem. Commun.* **2014**, *50*, 2214–2217
- 2. Groom, C.R.; Allen, F.H. The Cambridge Structural Database in retrospect and prospect. *Angew. Chem. Int. Ed.* **2014**, *53*, 662–671.
- 3. Nonius. COLLECT. 1998. Nonius BV, Delft, The Netherlands.
- 4. Otwinowski, Z.; Minor, W. *Macromolecular Crystallography. Part A. Methods in Enzymology*; Charles, W.C. Jr., Robert, M.S., Eds.; New York: Academic Press: New York, NY, USA, 1997; Volume 276, 307–326.
- 5. Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.
- 6. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
- 7. Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. *Mercury*: Visualization and analysis of crystal structures. *J. Appl. Cryst.* **2006**, *39*, 453–457.