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Abstract: The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity,
and the responsible active components in the extract were further investigated in this study.
A flavone, named morusone (1), and sixteen known compounds 2–17 were isolated from M. alba
twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR
spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM),
2,4,2′,4′-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM), morachalcone A (IC50 0.08 ± 0.02 µM),
oxyresveratrol (IC50 0.10± 0.01 µM), and moracin M (8.00± 0.22 µM) exhibited significant tyrosinase
inhibition activities, much stronger than that of the positive control kojic acid. These results suggest
that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in
foods as antibrowning agents or in cosmetics as skin-whitening agents.
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1. Introduction

In agricultural and food products, enzymatic browning caused by tyrosinase (EC 1.14.18.1) in
fruits and vegetables usually impairs the color attributes and sensory properties of these products
and leads to a significant decrease in their quality, and eventually results in a dramatic reduction in
nutritional and market values [1]. On the other hand, tyrosinase is responsible for the synthesis of
melanin in animals and human beings [2,3]. Melanin can protect the human skin from ultraviolet
damage, but excessive melanin pigmentation may cause serious esthetic problems [4]. As enzymatic
browning in foods and hyperpigmentation of human skin are mostly undesirable, application of
tyrosinase inhibitors to control undesirable browning in food industry and to provide skin whitening
or to suppress excessive melanin production in the cosmetic and pharmaceutical industry has attracted
great attention. Although a number of tyrosinase inhibitors from natural sources have been discovered
in recent years [5,6], source limitations still one of the major obstacles in the exploitation of natural
tyrosinase inhibitors. Therefore, there is still a great demand from the food and cosmetic industry to
identify more abundant and safe tyrosinase inhibitors of natural origin. Mulberry tree (Morus alba L.)
is one of Morus species which belongs to the Moraceae family. It is widely distributed in Asia and
is cultivated in China, Korea and Japan for different purposes. Various parts of this plant including
the roots, fruits, twigs, leaves, and root barks have been used as traditional Chinese medicine for
centuries. The root bark of M. alba (called “Sang-Bai-Pi” in China) has been used as a medicinal
herb for humans to treat fever, improve eyesight, protect the liver, strengthen joints, lower blood
pressure, and facilitate the discharge of urine [7]. The leaves of M. alba have been used for a long
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time in traditional medicine for the treatment of fever, protection of the liver and lowering blood
pressure [8]. M. alba twigs have been widely used for the treatment of aching and numbness of
joints in oriental medicine and are known to have potential health benefits in folk medicine against
diabetes, stroke, cough, and beriberi [9]. Most studies on the phytochemistry and bioactivity for
M. alba have mainly focused on the leaves, root barks, and fruits, whereas few studies have paid
attention to the constituents and biological activities for the twigs, which are usually discarded as
agricultural waste. Recently, some phenolic compounds, such as oxyresveratrol 3′-O-β-D-glucoside,
oxyresveratrol, resveratrol, moracin M, maclurin, rutin, isoquercitrin, and morin, were isolated from
mulberry twigs [9,10], and morin was reported to be a natural antioxidant and tyrosinase inhibitor [10].
Mulberry young twig extract has exhibited potent inhibitory effects on mushroom, murine, and human
tyrosinase and melanin synthesis in B-16 melanoma cells [11]. On the other hand, mulberry twig
extract and oxyresveratrol from its extract have been reported to show remarkable antibrowning effects
on cloudy apple juices and fresh-cut apples slices in combination with ascorbic acid [12]. Therefore,
M. alba twigs and its constituents could be a promising natural source for development as dietary
supplements, antibrowning agents, and cosmetic whitening products.

Although some phenolic compounds have been isolated from the twigs of M. alba and its extract
had been reported to have tyrosinase inhibition and antibrowning effects, to our knowledge, except
for oxyresveratrol and mulberroside A the principal constituents of M. alba twigs responsible for the
tyrosinase inhibition have not yet been clearly identified until now. Thus, the aim of this study was to
investigate in detail the components responsible for the inhibitory activities on tyrosinase.

2. Results and Discussion

Compound 1 was obtained as a pale yellow amorphous powder. Its negative-ion HRESI-MS
gave a molecular ion peak at m/z 433.1270 ([M − H]−), which suggested its molecular formula
to be C25H22O7. The UV spectrum of compound 1 showed a maximum absorption at 270 nm.
The IR spectrum of this compound displayed absorption bands at 3385 cm−1 (OH), 1655 cm−1 (C=O),
1617 and 1575 cm−1 (C=C). Its 1H-NMR and 13C-NMR spectra suggested that compound 1 was likely
a flavone. Its 1H-NMR spectrum clearly exhibited the presence of three hydroxyl signals (δH 12.926
(1H, s, OH) and 8.874 ppm (2H, s, 2 × OH)), four aromatic proton signals (δH 7.217, 6.642, 6.544, and
6.486 ppm), four olefin proton signals (δH 6.173, 6.088, 5.812, and 5.678 ppm), one methylene signal
(δH 3.851 ppm) and three methyl signals [δH 1.814 (CH3 × 1) and 1.456 ppm (CH3 × 2)]. The singlet
at δH 6.173 ppm (1H, s) was assignable to the proton at C-6 position of a 1,2,4,5,6-pentasubstituted
flavone A ring. Three aromatic signals at δH 7.217 (1H, d, J = 8.4 Hz), 6.544 (1H, d, J = 2.0 Hz)
and 6.486 ppm (1H, dd, J = 8.4, 2.0 Hz) formed one ABX system and were assignable to the protons
at C-6′, 3′ and 5′ position of a 2′,4′-dihydroxy-substituted flavone B ring, respectively. The proton
signals at δH 6.642 (1H, d, J = 10.0 Hz), 5.678 (1H, d, J = 10.0 Hz), and 1.456 (6H, s) suggest the possible
presence of one 2,2-dimethylpyrano unit, which was formed by cyclization of an isoprenyl unit with
the flavonoid skeleton. The proton signals at δH 6.088 (1H, s), 5.812 (1H, d, J = 1.4 Hz), and 1.814
(3H, s), together with a carbonyl group at δC 198.36 formed an isopropenyl methyl ketone group.
In the 1H-1H COSY spectrum (Figure 1A), the signal at δH 1.814 (3H, s) showed the correlations
with signals at δH 6.088 (1H, s) and 5.812 (1H, d), which indicated the fragment of CH3−C=CH2,
the signal at δH 6.642 (1H, d) exhibited the correlations with signals at δH 5.678 (1H, d), suggesting
the presence of the fragment of –CH=CH–, and the signal at δH 7.217 (1H, d) had the correlations
with signals at δH 6.486 (1H, dd) suggesting one 1,2,4-dihydroxy-substituted aromatic ring in the
structure. Its 13C-NMR spectrum revealed the presence of 25 carbons, including 12 aromatic carbons,
six olefinic carbons, two carbonyl carbons, one oxygenated alkyl carbon, one methylene, and three
methyl groups. Furthermore, in its HMBC spectrum (Figure 1B), the proton at δH 6.642 (H-1′ ′)
exhibited correlations with the carbons at δC 1602.9 (C-7), 153.39 (C-9), and 78.97 (C-3′ ′), which
allowed the assignment of the 2,2-dimethylpyrano unit to the position C-7 and C-8 of the A ring
(Figure 2). On the other hand, proton at δH 3.851 (H-1′ ′ ′) exhibited correlations with the carbons
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at δC 163.42 (C-2), 117.77 (C-3), 182.79 (C-4), and 198.36 (C-2′ ′ ′), suggesting that the isopropenyl
methyl ketone group was attached to the position C-3 of the C ring. Moreover, the proton at δH

1.814 (H-5′ ′ ′) showed correlations with the carbons at δC 198.36 (C-2′ ′ ′), 145.13 (C-3′ ′ ′), and 125.03
(C-4′ ′ ′), also confirming that the modified isoprenyl unit was linked to the C-3 position of the C ring.
The hydroxyl proton at δH 12.926 (OH-5) showed correlations with the carbons at δC 162.69 (C-5),
100.04 (C-6), and 105.28 (C-10) and the proton at δH 6.172 (H-6) exhibited the corrections with carbons
at δC 101.93 (C-8), 160.29 (C-7), 162.69 (C-5), and 105.28 (C-10). The proton at δH 6.544 (H-3′) had
corrections with carbons at δC 132.41 (C-6′) and 108.53 (C-5′), the proton at δH 7.217 also exhibited
correlations with carbons at δC 157.56 (C, C-2′) and 161.97 (C-4′), the proton at δH 6.486 (H-5′) showed
corrections with carbons at δC 112.23 (C-1′) and 104.18 (C-3′), and the proton at δH 6.544 (H-3′) showed
corrections with carbons at δC 112.23 (C-1′), 108.53 (C-5′), 161.97 (C-4′), and 157.56 (C-2′), confirming
the presence of a 1′,2′,4′-dihydroxy-substituted B ring. Accordingly, compound 1 was identified
as 2-(2,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-3-(3-methyl-2-oxo-but-3-enyl)-8H-pyrano[2,3-f ]
chromen-4-one, and named morusone. The structure and all assignments of compound 1 were further
determined by detailed HSQC and HMBC analysis.
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The known compounds from the twigs of M. alba were identified by comparing their ESI-MS,
1H-NMR and 13C-NMR data with the literature as steppogenin (2) [13], 2,4,2′,4′-tetrahydroxy-chalcone
(3) [14], morachalcone A (4) [14], oxyresveratrol (5) [13], morusin (6) [15], kuwanon C (7) [16],
cyclomulberrin (8) [17], 5,7,2′,4′-tetrahydroxy-3-methoxyflavone (9) [18], dihydrokaempferol (10) [19],
eriodictyol (11) [20], 2,4-dihydroxybenzoic acid (12) [21], p-coumaric acid (13) [22], moracin M
(14) [14], moracin J (15) [23], moracin B (16) [24], and moracin D (17) [25] (Figure 2). These
seventeen compounds included five flavones, four benzofuran derivatives, three flavanones,
two chalcones, two phenolic acids, and one stilbene derivate. Among the sixteen known compounds,
5,7,2′,4′-tetrahydroxy-3-methoxyflavone (9) and eriodictyol (11) were found for the first time in M. alba
species, whereas steppogenin (2), 2,4,2′,4′-tetrahydroxychalcone (3), morachalcone A (4), kuwanon C
(7), cyclomulberrin (8), dihydrokaempferol (10), 2,4-dihydroxybenzoic acid (12), p-coumaric acid
(13), moracin J (15), moracin B (16), and moracin D (17) were firstly found from M. alba twigs.
2,4,2′,4′-Tetrahydroxychalcone and morachalcone A, two best powerful tyrosinase inhibitors from
natural sources, had been indentified in the root bark [26] and 2,4,2′,4′-tetrahydroxychalcone had been
found in leaves in this plant before [27]. In this study, both of them were simultaneously identified in
the twigs.

The tyrosinase inhibitory activity of compounds 1–17 was compared using a tyrosinase inhibition
assay and their activities were expressed as IC50 values. Among these seventeen compounds,
steppogenin, 2,4,2′,4′-tetrahydroxychalcone, morachalcone A, oxyresveratrol, and moracin M showed
much stronger mushroom tyrosinase inhibitory activities than kojic acid (Table 1). Although the extract
of M. alba twigs and some of its components (such as oxyresveratrol and mulberroside A) had been
reported to have anti-melanogenic effects, the principal constituents (except for oxyresveratrol and
mulberroside A) of M. alba twigs responsible for the tyrosinase inhibition have not yet been clearly
identified. This study simultaneously identified five compounds with high tyrosinase inhibitory
activity in the twigs of M. alba. These results suggested that M. alba twig extract should be served as a
good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as
skin-whitening agents. On the other hand, the new compound, morusone (1) showed weak tyrosinase
inhibitory activity (Table 1). Although it did not inhibit mushroom tyrosinase effectively, compared
to other compounds, a flavonoid attached by an isopropenyl methyl ketone group is relatively rare,
and could provide a reference for structural identification of other compounds in the future. This
study has been the first to simultaneously identify 2,4,2′,4′-tetrahydroxychalcone and morachalcone
A in M. alba twigs, although both of them had been found from the roots of M. nigra by our group
before [14]. A structure-activity relationship study for flavonoids and their glucosides, stilbenes and
their glucosides, 2-arylbenzofuran derivatives, coumarin glycosides had been discussed in detail
in our previous studies [13,14,28], but several aspects for the structure-activity relationship study
need to be emphasized and expanded as follows: (1) an unsubstituted resorcinol group at the 2′- and
4′-OH in the B-ring of flavonoids was very important for their tyrosinase inhibitory activities, and
changes in both the number and location of hydroxyl substituents caused changes in the tyrosinase
inhibitory activities. Examples were compounds 2 and 11, the former was 2′- and 4′-OH substituted,
whereas the latter was 3′- and 4′-OH substituted. Although they only differ in their hydroxyl group
substitution pattern, they demonstrated tremendously different tyrosinase inhibition activities, with
the former being more than 100-fold stronger than the latter; (2) the substitution of hydroxyl, methoxyl,
isoprenyl, and glucose groups at the C-3 position of the C-ring usually significantly decreased the
tyrosinase inhibition activity. For example, substitution of the methoxyl group at the C-3 position
of the C ring led to much weaker tyrosinase inhibitory activity for compound 9 (compared with
norartocapein [28]); (3) the presence of isoprenyl groups on the A or B-ring usually decreased the
tyrosinase inhibition activity, which was affected by the positions and the forms of isoprenyl groups,
such as cyclization with hydroxyl groups of flavonoids and substitution by hydroxyl groups or changes
into isopropenyl methyl ketone; (4) 2-arylbenzofuran derivatives usually showed moderate tyrosinase
inhibitory activity, and the factors affecting this tyrosinase inhibitory activities were similar to those of
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the flavonoid derivatives. For example, the cyclization with a hydroxyl group decreases the tyrosinase
inhibitory activity (compound 17); (5) many single resorcinol derivatives usually exhibited weak
tyrosinase inhibitory activities, although some of them have 2 and 4-OH substitutions. Examples were
compounds 12, 2,4-dihydroxybenzaldehyde and 2,4-dihydroxyacetophenone [29], all of which showed
weak tyrosinase inhibitory activities with IC50 values over 200 µM.

Table 1. Tyrosinase inhibition activities of compounds from the twigs of M. alba (n = 3).

Compounds IC50 (µM) ± SD

Morusone (1) 290.00 ± 7.90
Steppogenin (2) 0.98 ± 0.01

2,4,2′,4′-Tetrahydroxychalcone (3) 0.07 ± 0.02
Morachalcone A (4) 0.08 ± 0.02
Oxyresveratrol (5) 0.10 ± 0.01

Morusin (6) >100
Kuwanon C (7) 52.00 ± 2.50

Cyclomulberrin (8) 66.30 ± 7.20
5,7,2′,4′-Tetrahydroxy-3-methoxyflavone (9) >150

Dihydrokaempferol (10) >200
Eriodictyol (11) >150

2,4-Dihydroxybenzoic acid (12) >200
p-Coumaric acid (13) >200

Moracin M (14) 8.00 ± 0.22
Moracin J (15) 76.34 ± 0.86
Moracin B (16) 34.40 ± 1.7
Moracin D (17) >200

Kojic acid 58.30 ± 1.60

3. Materials and Methods

3.1. General Information

Mushroom tyrosinase (5771 units/mg), L-tyrosine, methanol-d6, acetone-d6 and kojic acid were
purchased from Sigma Chemical Co (St. Louis, MO, USA). Dichloromethane (CH2Cl2), dimethyl
sulfoxide (DMSO), 95% ethanol (EtOH), methanol (MeOH), sodium dihydrogen orthophosphate
(NaH2PO4·2H2O), formic acid, and anhydrous di-sodium hydrogen phosphate (Na2HPO4)
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Suzhou, China). HPLC grade solvents were
purchased from J&K Scientific (Newark, DE, USA). Silica gel (200–300 mesh) for column chromatography
and TLC plates (HSGF254) were purchased from Yantai Jiangyou Silicone Development Co., Ltd.
(Yantai, China). Sephadex LH-20 was purchased from GE Healthcare Bio-Sciences AB (Uppsala,
Sweden). D101 macropore adsorptive resin was purchased from Anhui Sanxing Resin Technology Co.,
Ltd. (Anhui, China). Analytical HPLC was carried out on a Waters 1525 system (Waters, Milford,
MA, USA) equipped with a 2487 dual-wavelength detector and the Empower Pro software. Alltima
C18 column (250 mm × 4.6 mm, 5 µm, Delta Technical Products Co., Des Plaines, IL, USA) was
used for analytical HPLC. 1H-NMR, 13C-NMR, HSQC and HMBC data were acquired on a 400 DRX
NMR spectrometer (Bruker, Colorado Springs, CO, USA). Molecular weights of compounds were
analyzed on Waters Maldi Syapt Q-Tof mass spectrometer. Spectrophotometric measurements for the
tyrosinase inhibition assay were taken on a UV-5300PC spectrophotometer (Metash Instrument Co.,
Ltd., Shanghai, China).

3.2. Plant Material

The twigs of M. alba were purchased from Bozhou Chinese Herbal Pieces Co. Ltd. (Bozhou,
Anhui, China). Voucher specimen (accession number 20160401) was deposited at State Key Laboratory
of Food Science and Technology, Jiangnan University (Wuxi, Jiangsu, China).
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3.3. Extraction and Isolation

M. alba twig powder (10.0 kg) was extracted by 70% ethanol (20.0 L × 3). The extraction solution
was filtered and all the filtrates were combined and concentrated under vacuum using a rotatory
evaporator at 50 ◦C to remove ethanol. The extract (217.2 g) was subjected to silica gel (200–300 mesh)
column chromatography and eluted with dichloromethane (CH2Cl2), CH2Cl2/MeOH (50:1, 25:1, 10:1,
5:1, v/v), which led to five fractions (Fr.1–5). Fr.2 (CH2Cl2/MeOH, 10:1) was further subjected to D101
macropore adsorptive resin column chromatography by successively eluted with different proportions
of water/ethanol mixtures (H2O/EtOH, v/v, 7:3, 3:2, 1:19) to yield four fractions (SubFrs.1–4). SubFr.1
(H2O/EtOH, 7:3, 1.6 g) was separated by a Sephadex LH-20 column and eluted by MeOH/H2O
(1:1) to give two fractions (Fr.A1 and A2). Fr.A1 (0.5 g) was isolated by a silica gel column and
eluted by CH2Cl2/MeOH (30:1) to provide compound 13 (93.4 mg). Fr.A2 (0.6) was subjected to
a silica gel column and eluted by CH2Cl2/MeOH (30:1) to give compound 12 (63.0 mg). SubFr.2
(H2O/EtOH, 7:3, 2.5 g) was separated by a Sephadex LH-20 column and eluted by MeOH/H2O (1:1)
to produce five fractions (Fr.B1 to B5). Fr.B1 (0.3 g) was separated by a silica gel column and eluted by
CH2Cl2/MeOH (30:1) to give compound 5 (39.4 mg). Fr.B2 was isolated by a silica gel column and
eluted by CH2Cl2/MeOH (50:1) to give compound 10 (10.2 mg). Fr.B3 (0.2 g) was isolated by a silica
gel column and eluted by CH2Cl2/MeOH (50:1) to give compound 9 (5.5 mg) and 11 (19.3 mg). Fr.B4
(0.4 g) was subjected to a silica gel column and eluted by CH2Cl2/MeOH (30:1) to give compounds
15 (5.1 mg) and 2 (41.5 mg). Fr.B5 (0.28 g) was separated by a silica gel column and eluted by
CH2Cl2/MeOH (30:1) to provide compound 3 (9.5 mg) and 14 (41.8 mg). SubFr.3 (H2O/EtOH, 2:3,
2.1 g) was separated by a Sephadex LH-20 column and eluted by MeOH/H2O (1:1) to give
two fractions (Fr.C1 to C2). Fr.C1 was isolated by a silica gel column and eluted by CH2Cl2/MeOH
(50:1) to give compound 7 (692.5 mg). Fr.C2 was isolated by a silica gel column and eluted
by CH2Cl2/MeOH (50:1) to give compound 4 (8.5 mg). Fr.3 (CH2Cl2/MeOH, 25:1) was further
subjected to D101 macropore adsorptive resin column chromatography by successively eluted with
different proportions of water/ethanol mixtures (H2O/EtOH, v/v, 7:3, 3:2, 1:19) to yield five fractions
(SubFrs.5–9). SubFr.5 (H2O/EtOH, 3:2, 0.12 g) was subjected to silica gel column and eluted with
CH2Cl2/MeOH (100:1) to give compound 16 (10.0 mg). SubFr.6 (H2O/EtOH, 3:2, 0.1 g) was subjected
to a Sephadex LH-20 column and eluted by MeOH/H2O (1:1) to give compound 17 (8.9 mg). SubFr.7
(H2O/EtOH, 1:19, 3.0 g) was separated by silica gel column and eluted with CH2Cl2/MeOH (100:1)
to give compounds 1 (26.8 mg) and compound 6 (22.5 mg). SubFr.3 (H2O/EtOH, 1:19, 0.12 g) was
separated by a silica gel column with CH2Cl2/MeOH (100:1) as eluent to give compound 8 (2.9 mg).

Morusone (1): pale yellow amorphous powder; UV (MeOH) 270, 298.5, 332 nm; IR (KBr) νmax 3385,
1655, 1617, 1434 cm−1; 1H-NMR (acetone-d6, 400 MHz) δ: 12.926 (1H, s, OH-5), 8.874 (2H, s, OH-2′,
4′), 7.217 (1H, d, J = 8.4 Hz, H-6′), 6.642 (1H, d, J = 10.0 Hz, H-1′ ′), 6.544 (1H, d, J = 2.0 Hz, H-3′),
6.486 (1H, dd, J = 8.4, 2.0 Hz, H-5′), 6.173 (1H, s, H-6), 6.088 (1H, s, H-4′ ′ ′), 5.812 (1H, d, J = 1.2 Hz,
H-4′ ′ ′), 5.678 (1H, d, J = 10.0 Hz, H-2′ ′), 3.851 (2H, s, H-1′ ′ ′), 1.814 (3H, s, H-5′ ′ ′), 1.456 (6H, s, H-4′ ′,
5′ ′); 13C-NMR (Acetone-d6, 100 MHz) δ: 198.36 (C=O, C-2′ ′ ′), 182.79 (C=O, C-4), 163.42 (C, C-2), 162.69
(C, C-5), 161.97 (C, C-4′), 160.29 (C, C-7), 157.56 (C, C-2′), 153.39 (C, C-9), 145.13 (C, C-3′ ′ ′), 132.41
(CH, C-6′), 128.30 (CH, C-2′ ′), 125.03 (C, C-4′ ′ ′), 117.77 (C, C-3), 115.47 (CH, C-1′ ′), 112.23 (C, C-1′),
108.53 (CH, C-5′), 105.28 (C, C-10), 104.18 (CH, C-3′), 101.93 (C, C-8), 100.04 (CH, C-6), 78.97 (C, C-3′ ′),
30.50 (CH2, C-1′ ′ ′), 28.38 (CH3, C-4′ ′, 5′ ′), 17.90 (CH3, C-5′ ′ ′); HRESI-MS m/z 433.1270 [M − H]−

(calcd for C25H21O7, 433.1287).

NMR data of the known compounds 2–17 is provided in the Supplementary Materials.

3.4. Mushroom Tyrosinase Inhibitory Assay

The tyrosinase inhibitory activities of isolated compounds were determined by spectrophotometric
method as described in our previous study [30]. The compounds were firstly dissolved in DMSO
at a concentration of 1.0 mg/mL and then diluted to different concentrations with DMSO. Each of
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the sample solution (30 µL) was diluted with 970 µL of 0.05 mM sodium phosphate buffer (pH 6.8)
in the test tubes, followed by the addition of 1 mL of 0.1 mg/mL L-tyrosine and finally 1.0 mL of
mushroom tyrosinase solution (200 units/mL). 30 µL of DMSO and kojic acid solution were used as
the blank reference and positive control, respectively. The reaction mixtures (3.0 mL) were vortexed
and the initial absorbance at 492 nm was measured. After incubation for 20 min at 37 ◦C, the final
absorbance at the same wavelength was taken. The IC50 values which represent the concentrations of
plant extracts or compounds at which 50% of the tyrosinase activity was inhibited were determined.
The percent inhibition of tyrosinase activity was calculated as follows:

%Inhibition = [(A2−A1)− (B2−B1)]/(A2−A1)× 100 (1)

A1 is the absorbance at 492 nm of the blank at 0 min, A2 is the absorbance at 492 nm of the blank
at 20 min; B1 is the absorbance at 492 nm of test sample at 0 min, B2 is the absorbance at 492 nm of test
sample at 20 min.

4. Conclusions

In summary, the phytochemicals in the twigs of M. alba were systematically studied. A total of
17 compounds, including one new compound, were isolated and their structures were determined
by ESI-MS and NMR data. Among them, steppogenin, 2,4,2′,4′-tetrahydroxychalcone, morachalcone
A, oxyresveratrol, and moracin M were found to exhibit significant tyrosinase inhibitory activity
and were the main components responsible for the strong tyrosinase inhibitory activity, suggesting
that M. alba twig or some of its constituents might become the promising sources in nutraceuticals
and cosmeceuticals to inhibit tyrosinase activity in food products or be used in cosmetics as
skin-whitening agents.

Supplementary Materials: The following are available online at: http://www.mdpi.com/1420-3049/21/9/1130/s1,
the 1D (1H- and 13C-NMR), 2D NMR (1H-1H COSY, HSQC and HMBC), HRESI-MS spectra of the new compound
and spectral data of known compounds.
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