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Abstract: Oxidative stress-mediated cellular injury has been considered as a major cause of
neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. The scavenging of
reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the
diseases’ progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular
herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to
investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H2O2)
and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment
of PC12 cells with CS prior to H2O2 exposure effectively increased the cell viability. Furthermore,
it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and
reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell
injury by H2O2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated
kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate
for neurodegenerative diseases resulting from oxidative damage and further research on this topic
should be encouraged.
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1. Introduction

Reactive oxygen species (ROS), a substance resulting from neuronal injury during oxidative stress,
regulates many cellular activities under physiological conditions [1]. Oxidative stress- mediated cellular
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injury has long been associated with a variety of neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease, stroke, and amyotrophic lateral sclerosis [2–5]. Furthermore, H2O2 is
thought to be the major precursor of ROS and has been utilized extensively as an inducer of oxidative
damage to interpret mechanisms and the neuroprotective potential of therapeutics [6].

Several evidences have showed that H2O2 induces cytotoxicity in rat pheochromocytoma (PC12),
which has neuron-like characteristics and provides a useful model system in analyzing the neurological
apoptosis and the prevention mechanisms of antioxidants [7–9]. Moreover, H2O2-induced apoptosis
has been linked to various key alterations including in anti-apoptosis proteins, pro-apoptosis proteins
and caspases. Therapeutic strategies focusing on prevention of the ROS mediated by antioxidants
seem to have potential for delaying the diseases’ progression [10]. Many synthetic antioxidants have
been demonstrated to be strong radical scavengers, but they are also carcinogenic and cause liver
damage [11]. Therefore, much attention has recently been focused on the isolation and identification of
antioxidants from natural sources with neuroprotective potential [12,13].

Costunolide (CS) is a sesquiterpene lactone found in the leaves of Laurus nobilis (Lauraceae),
which has been reported to have anti-inflammatory [14], neuronal dopaminergic cells protection [15],
anti-viral and anti-fungal properties [16,17], as well as cytotoxic effects on various human cancer
cells [18] and antioxidant activity [19]. The chemical structure of CS is shown in Figure 1. However,
its neuroprotective activity has yet to be explored. In this study, we used H2O2-induced oxidative
damage in PC12 cells as an in vitro model to determine the neuroprotective activity of CS and to
further investigate the mechanism.
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Figure 1. Chemical structure of costunolide (CS).

2. Results and Discussion

2.1. Effect of Costunolide on Viability of H2O2-Induced PC12 Cells

Overproduction of ROS causes damages to the cellular structures of neurons including lipids
and membranes, proteins, and DNA [20]. The oxidative stress-induced ROS is involved in
the pathophysiology of major neurodegenerative diseases such as Parkinson’s and Alzheimer’s
diseases [20–22]. Several reports suggest therapeutic strategies focused on searching for the potential
targets involved in the neuroprotection of natural compounds that can scavenge free radicals and
protect cells from oxidative damage [12,13]. Previous studies have revealed that CS possesses
antioxidant activities [19]. However, whether CS can exert protective effects against oxidative
cytotoxicity in neuronal models as a result of its antioxidant properties has not been established
in the literature.

A pilot study revealed that H2O2 ranging from 0.1 to 1.5 mM leads to cell death in a dose
dependent manner and 0.75 mM H2O2 induced cell injury in a moderate manner (Figure 2A). These
morphological alterations are reported illustrated in Figure 2B. The aim of the study was to investigate
the effects of antioxidants over a short time frame (0–6 h). Therefore this concentration (0.75 mM
H2O2) was used for all further experiments. The high concentration of H2O2 exposure of PC12 cells is
consistent with investigations of the neuroprotective effects of macranthoin G [9] and the flavonoid
extracts [23].
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Figure 2. Effects of H2O2 on PC12 cell viability and cell morphology. (A) Effect of H2O2 on viability of PC12 
cells (exposure to 4 h). A MTT assay showed that H2O2 decreased cell viability in a concentration- 
dependent manner; (B) treatments with different concentrations induced cell morphological alterations. 
Data were summarized from three independent experiments. * p < 0.05 vs. control group. 

To characterize the effects of CS on cell viability in the H2O2-stressed cultured PC12 cells, the cells 
were incubated with CS and 0.75 mM H2O2. The H2O2-induced cell death of cells was determined by 
MTT assays. As shown in Figure 3A, PC12 cells exposed to CS (0–200 µM) for 4 h did not exhibit any 
significant viability or proliferation alterations. However, incubation with 0.75 mM H2O2 for 4 h 
resulted in a cell viability rate of 26.9% compared to the control (Figure 3B). In contrast, pretreatment 
of the cells with CS (10, 30, 50, or 100 µM) for 1 h could remarkably restore cell survival to 34.0%, 
55.33%, 90.8%, and 95.87%, respectively. The potency of 100 µM vitamin E was similar to that of 50 µM 
CS (data not shown). Moreover, the H2O2-induced neuronal injury was accompanied by changes in 
cell morphology as observed in the loss of the characteristic round form and grouping shaped in PC12 
cells. According to the respective calculations, it was shown that the protection rates of CS were 
reported in Figure 3C. Results suggested that CS could be considered as a neuroprotective agent 
against H2O2-induced oxidative stress. 
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with various concentrations of CS for 4 h; (B) Cell viability of PC12 cells pretreated with CS (10, 30, 
50 and 100 µM) 1 h before exposure to H2O2 (0.75 mM) 4 h was measured by the MTT assay. Data are 
presented as mean ± SD (n = 3) and (C) The protection rates of CS are shown. Values with the same 
superscript letters are not significantly different from each other. # p < 0.01 compared with the 
control group; * p < 0.05, compared with the model group. 

Figure 2. Effects of H2O2 on PC12 cell viability and cell morphology. (A) Effect of H2O2 on
viability of PC12 cells (exposure to 4 h). A MTT assay showed that H2O2 decreased cell viability
in a concentration-dependent manner; (B) treatments with different concentrations induced cell
morphological alterations. Data were summarized from three independent experiments. * p < 0.05 vs.
control group.

To characterize the effects of CS on cell viability in the H2O2-stressed cultured PC12 cells, the cells
were incubated with CS and 0.75 mM H2O2. The H2O2-induced cell death of cells was determined
by MTT assays. As shown in Figure 3A, PC12 cells exposed to CS (0–200 µM) for 4 h did not exhibit
any significant viability or proliferation alterations. However, incubation with 0.75 mM H2O2 for 4 h
resulted in a cell viability rate of 26.9% compared to the control (Figure 3B). In contrast, pretreatment
of the cells with CS (10, 30, 50, or 100 µM) for 1 h could remarkably restore cell survival to 34.0%,
55.33%, 90.8%, and 95.87%, respectively. The potency of 100 µM vitamin E was similar to that of 50 µM
CS (data not shown). Moreover, the H2O2-induced neuronal injury was accompanied by changes
in cell morphology as observed in the loss of the characteristic round form and grouping shaped in
PC12 cells. According to the respective calculations, it was shown that the protection rates of CS
were reported in Figure 3C. Results suggested that CS could be considered as a neuroprotective agent
against H2O2-induced oxidative stress.
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Figure 3. Cytotoxicity and cytoprotective activity of costunolide (CS). (A) PC12 cells were pretreated
with various concentrations of CS for 4 h; (B) Cell viability of PC12 cells pretreated with CS (10, 30, 50
and 100 µM) 1 h before exposure to H2O2 (0.75 mM) 4 h was measured by the MTT assay. Data are
presented as mean ˘ SD (n = 3) and (C) The protection rates of CS are shown. Values with the same
superscript letters are not significantly different from each other. # p < 0.01 compared with the control
group; * p < 0.05, compared with the model group.
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2.2. Effect of CS on H2O2-Induced ROS Production and Mitochondria Membrane Potential (MMP) in
PC12 Cells

Oxidative stress-induced ROS production contributes to cell death by oxidation of many important
proteins, leading to mitochondrial dysfunction and cell death [24,25]. To provide further evidence
that CS could prevent H2O2-induced ROS generation and oxidative stress, levels of ROS production
in the cells were determined using the fluorescence probe DCFH-DA for measuring the fluorescent
compound dichlorofluorescein (DCF) [26]. As shown in Figure 4A, when cells were only exposed to
0.75 mM H2O2 for 6 h, the DCF fluorescence intensity increased significantly (305.18% of control group).
Pretreatment with CS suppressed the fluorescence intensity in the H2O2-induced PC12 cells, suggesting
that CS exerts its antioxidant effect in the intracellular compartment. A recent study indicated that the
CS possessed protective effects on ethanol-induced oxidative gastrointestinal mucosal injury through
restoration of oxidative stress markers, such as superoxide dismutase (SOD) and malondialdehyde
(MDA) [27]. These results confirm that CS has antioxidant activity against ROS.
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Figure 4. Effect of costunolide (CS) on H2O2-induced intracellular accumulation of ROS and
mitochondria membrane potential (MMP). Intracellular ROS levels and MMP were measured using
the MitoCapture™ Kit. PC12 cells were pretreated with various concentrations of CS for 30 min
before exposure to 0.75 mM H2O2 for 6 h. (A) Histogram showing the ROS level in PC12 cells after
treatment with H2O2 in presence or absence of CS compared to untreated groups; (B) Histogram
showing the number of cells with a low potential in PC12 cells after treatment with H2O2 in presence
or absence of CS compared to untreated groups. Cells were stained with MitoCapture™ solution,
demonstrating both a reduced number of healthy cells (red signal) and increased number of cells with
disrupted mitochondrial potential (green signal) in the presence of CS. Data are presented as mean ˘ SD
(n = 3). Values with the same superscript letters are not significantly different from each other at
# p < 0.01 compared with the control group; * p < 0.05, compared with the model group.

Excessive ROS production would damage mitochondrial membrane integrity and affect the
energy production in mitochondria, resulting in mitochondrial dysfunction [28,29]. Furthermore,
mitochondrial dysfunction includes a decrease in mitochondria membrane potential (MMP), activation
of caspase-3, and apoptosis [30]. Therefore, we studied the effect of CS on MMP induced by H2O2

using the MitoCapture™ Apoptosis Detection Kit. The MitoCapture™ fluorescent dye was used as
a marker for apoptosis. In healthy cells, the reagent congregates in the mitochondria and is detected
as a red fluorescence signal. Conversely, in apoptotic cells, the dye remains in the cell cytosol (due
to the disrupted mitochondrial membrane potential) and can be monitored as a green fluorescent
signal [31]. Exposure of PC12 cells to H2O2 (0.75 mM) for 6 h induced a significant loss of MMP
(Figure 4B), green fluorescence was increased by 45% ˘ 8%, while red fluorescence was decreased by
51% ˘ 6% (in both cases n = 30 and p < 0.001 compared with controls). Pretreatment with 50 µM CS
significantly enhanced the reduction in MMP induced by H2O2, demonstrating that CS might change
the occurrence of mitochondrial dysfunction after oxidative stress.
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2.3. Effect of CS on H2O2-Induced Apoptosis in PC12 Cells

ROS have been demonstrated to induce damage biological molecules resulting in apoptotic
or necrotic cell death [32]. Caspase-3 has been reported to be a key executioner caspase involved
in neuronal apoptosis which modulates the mitochondria-dependent pathway [31]. To determine
whether the cytoprotection by CS was due to the inhibition of apoptosis, the PC12 cells were treated
with H2O2 and various concentrations of CS. As shown in Figure 5A, H2O2 treatment caused
a remarkable increase of caspase-3 activity. However, adding 50 and 100 µM CS before H2O2 treatment
decreased the caspase-3 activity to 205.68% and 158.63%, respectively. It can therefore be concluded
that CS was effective in decreasing H2O2-induced apoptotic cell death. This supports the conclusion
that CS inhibits H2O2-induced apoptosis through the regulation of intracellular ROS levels and
mitochondria-dependent caspase-3 pathway.
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phosphorylation of p38 MAPK and ERK. Consistent with the previous results, CS markedly inhibited 
LPS-induced activation of p38 MAPK and ERK [39]. A number of reports have shown that NF-κB/Rel 
activity is mediated by MAPKs [40]. Thus, our results provided a possible mechanism responsible 
for the neuroprotective effect of CS on NF-κB/Rel activity. Taken together, the inhibitory effects of 
CS on H2O2-induced apoptosis in PC12 cells was not only due to ROS scavenging, but also to the 
specific modulation of phosphorylation of p38 and ERK. 

In addition, the neuroprotective effect of CS was also observed in dopamine-induced apoptosis 
in SH-SY5Y cells through reduction of α-synuclen [15] which increases the rate of production of 

Figure 5. Effect of costunolide (CS) on H2O2-induced apoptosis in PC12 cells. PC12 cells were
pretreated with various concentrations of MCG for 30 min before exposure to 0.75 mM H2O2 for 6 h.
(A) The effect of CS on caspase-3 activity in H2O2-induced PC12 cells. Cells were pretreated with
various concentrations of CS for 30 min before exposure to 0.75 mM H2O2 for 6 h. Caspase-3 activity
was determined using a commercial kit according to the manufacturer’s instruction. Values with the
same color bars with the same superscript letters are not significantly different from each other at
# p < 0.01 compared with the control group; * p < 0.05, compared with the model group; (B) Following
the same treatment, the levels of phospho- or total mitogen activated protein kinases (MAPKs)
(ERK and p38) were identified by their antibodies. Results are representative of three experiments.

2.4. Effect of CS on MAPK Phosphorylation in H2O2-Induced PC12 Cells

The mitogen-activated protein kinases (MAPK) signaling pathway plays an important role in
cell proliferation, differentiation, and apoptosis [33,34]. They are also involved in ROS-mediated
oxidative stress. ROS activates MAPKs in PC12 cells leading to apoptosis through activation of various
downstream signal related events, such as MMP dissipation and activation of caspase-3 [35–38].
To further explore the effect of CS on the modulation of upstream signaling events against
H2O2-stimulated oxidative stress, we examined MAPKs pathway by the immunoblot analysis.
As shown in Figure 5B, pretreatment of cells with 50 and 100 µM CS significantly inhibited the
H2O2-induced activation of phosphorylation of p38 MAPK and ERK. Consistent with the previous
results, CS markedly inhibited LPS-induced activation of p38 MAPK and ERK [39]. A number of
reports have shown that NF-κB/Rel activity is mediated by MAPKs [40]. Thus, our results provided
a possible mechanism responsible for the neuroprotective effect of CS on NF-κB/Rel activity. Taken
together, the inhibitory effects of CS on H2O2-induced apoptosis in PC12 cells was not only due to
ROS scavenging, but also to the specific modulation of phosphorylation of p38 and ERK.
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In addition, the neuroprotective effect of CS was also observed in dopamine-induced apoptosis
in SH-SY5Y cells through reduction of α-synuclen [15] which increases the rate of production of
ROS [41]. These results confirmed that CS is a cytoprotective agent for neurodegenerative diseases
caused by ROS.

3. Materials and Methods

3.1. Chemicals and Reagents

Costunolide (CS), dimethylsulfoxide (DMSO), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained from Sigma
(St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Hyclone
(Logan, UT, USA). Fetal bovine serum (FBS) and a penicillin/streptomycin mixture were purchased
from Gibco (Grand Island, NY, USA). Vitamin E, catechin hydrate, Reactive Oxygen Species Assay
Kit (S0033), cell lysis buffer for western blots and immunoprecipitation (IP) (P0013), 6ˆ SDS-PAGE
Sample Loading Buffer (P0015F) were obtained from Cell Signaling Technology (Danvers, MA, USA).

3.2. Cell Culture

PC12 cells were obtained from the American Type Culture Collection (ATCC), Rockville, MD,
USA). PC12 cells were cultured in RPMI 1640 supplemented with 5% heat-inactivated FBS, 10% HS,
100 U/mL of penicillin, and 100 µg/mL of streptomycin. Cells were incubated at 37 ˝C in a humidified
atmosphere of 95% air and 5% CO2.

3.3. Cell Viability Assay

Cytoprotective activity of CS on H2O2-induced cell injury was investigated by an MTT assay.
The PC12 cells were seeded into 96 well plates at a density of 5 ˆ 104 cells/well for 16 h and then
pretreated with vehicle alone or different concentrations of CS for 30 min before exposure to 0.75 mM
H2O2 for 6 h. After removing the supernatant of each well, a total of 10 µL of MTT solution (5 mg/mL
in phosphate-buffered saline (PBS)) and 90 µL of FBS-free medium were added to each well at the time
of incubation for 4 h at 37 ˝C. The dark blue formazan crystals formed inside the intact mitochondria
were solubilized with 100 µL of MTT stop solution (containing 10% sodium dodecyl sulfate (SDS) and
0.01 M hydrochloric acid). The amount of MTT formazan was determined based on the adsorption at
550 nm in a microplate reader (SpectraMax 250, Molecular Devices Inc., Sunnyvale, CA, USA). The
optical density of formazan formed in control cells was taken as 100% viability. The protection rate of
tested compounds was calculated using the following equation/protection rate (%) = (cell viability of
drug group ´ cell viability of model group)/(cell viability of control group ´ cell viability of model
group) ˆ 100%.

3.4. Measurement of ROS

Generation of intracellular ROS was detected using a ROS-sensitive fluorescent probe (DCFH-DA).
DCFH-DA is oxidized to highly fluorescent dichlorofluorescein (DCF) in the presence of ROS, which
is readily detected by a flow cytometry [25]. A total of 1 ˆ 105 PC12 cells was plated per well in
6 well plates with 2 mL culture medium for 16 h for stabilization and exposed to CS for 30 min before
exposure to 0.75 mM H2O2 for 6 h. The cells were detached by gentle pipetting and washed with
PBS. Cells were treated with 20 µM DHFH-DA for 30 min in the dark at room temperature. After
DCFH-DA was removed, the cells were rinsed by PBS and collected in 15 mL centrifuge tubes by
gentle centrifugation. Then, the supernatants were aspirated and cell pellets re-suspended in 1 mL PBS.
Cells were finally transferred to flow cytometry tubes and intracellular ROS was measured via flow
cytometry (Becton-Dickinson, Franklin Lakes, NJ, USA) at an excitation wavelength of 498 nm and an
emission wavelength of 522 nm. The mean fluorescent intensity (MFI) of 10,000 cells was analyzed
using three replicates for each experimental condition.
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3.5. Measurement of Mitochondrial Transmembrane Potential

Mitochondrial transmembrane potential was evaluated with a MitoCapture™ Mitochondrial
Apoptosis Detection kit (MBL, Nagoya, Japan), according to the manufacturer’s instructions. CS were
subjected to assays at 4 h. Images were taken under a fluorescence microscope using a bandpass filter
to detect FITC and rhodamine. The cells with many aggregates giving off a bright red fluorescence
represented those with a intact mitochondrial transmembrane potential and were enumerated.

3.6. Measurement of Caspase-3 Activity

Caspase-3 activity was measured using a commercial kit (Beyotime, Haimen, China) according to
manufacturer’s instruction. Briefly, a total of 1 ˆ 106 cells was plated per well in 6 well plates with
2 mL culture medium for 16 h and exposed to CS for 30 min before exposure to 0.75 mM H2O2 for 6 h.
Cells were harvested, washed twice with cold PBS and resuspended in lysis buffer on ice for 4 min.
Next, cell lysates were centrifuged at 10,000ˆ g at 4 ˝C for 10 min. Caspase-3 activity was measured by
using reaction buffer and optical density was determined based on the adsorption at 405 nm using
reaction buffer and optical density was determined based on the adsorption at 405 nm using an Infinite
M200 Pro spectrophotometer (Tecan, Männedorf, Switzerland).

3.7. Data Analysis

All tests were carried out in triplicate (n = 3). The data are expressed as the mean ˘ standard
derivation (SD). One-way analysis of variance (ANOVA) was used to determine the significant
differences between the groups followed by a Dunnett’s t-test for multiple comparisons. A probability
<0.05 was considered as significant. All analyses were performed using SPSS for Windows 7,
version 19.0 (IBM Corp., New York, NY, USA).

4. Conclusions

The neuroprotective effect of CS against H2O2-induced apoptosis in PC12 cells was investigated.
It was found that CS can decrease H2O2-induced oxidative stress in PC12 cells by decreasing the
ROS level and elevating MMP as well as restoring the mitochondria-dependent caspase-3 pathway.
Furthermore, CS possibly affects upstream regulatory elements, such as p38, and ERK to attenuate the
oxidative stress injury induced by H2O2 in PC12 cells. CS has been proved to possess aqueous solubility,
good intestinal absorption and blood-brain barrier penetration [42]. These results demonstrate the
potential of CS, providing a basis for further studies on its application to combat neurologic diseases,
despite the fact that CS can be quite cytotoxic against other cells so its use to combat neurological
disorders would probably be quite limited.
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