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Abstract: Over the decades the Smiles rearrangement and its variants have become essential synthetic
tools in modern synthetic organic chemistry. In this mini-review we summarized some very recent
results of the radical version of these rearrangements. The selected examples illustrate the synthetic
power of this approach, especially if it is incorporated into a domino process, for the preparation of
polyfunctionalized complex molecules.
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1. Introduction

The Smiles rearrangement is an intramolecular nucleophilic ipso-substitution on an aromatic
ring system, activated with electron withdrawing group(s) at the ortho- and/or para-position(s) with
respect to the reaction center [1]. In its original version the ipso-attack is followed by the migration of
the activated aromatic ring from the heteroatom bound to the reaction center to a more nucleophilic
heteroatom [2]. Substrate-scope investigations evidenced the importance of electronic and steric effects
of ring substituents on the efficiency of the reaction. Over the decades the Smiles rearrangement
has found widespread synthetic application in organic chemistry and different varieties of the
rearrangement have been reported so far [3]. For example, in the Truce-Smiles version the nucleophile
is typically a carbanion rather than a heteroatom, thus allowing the formation of carbon-carbon
bonds [4].

The Smiles rearrangement and its different variants were originally developed under ionic
conditions and Speckamp was the first to transpose it to radical chemistry [5,6]. Later on, Motherwell
pointed out the importance of this approach, especially for the synthesis of biaryl systems [7–9]. In
fact, the biaryl appendage is a common structural unit of many natural products, pharmacologically
active compounds, chiral ligands, organic materials, or optoelectronic devices. To construct these
structures radical chemistry-based methods are considered to be additional tools for synthetic organic
chemists. The radical Smiles rearrangement is traditionally triggered by the attack of free radicals
on the ipso-position of sulfonates or sulfonamides, followed by sulfur dioxide extrusion and final
hydrogen abstraction, but the presence of an activating substituent in the migrating unit is not essential.
It is important to note that desulfuration is sometimes replaced by a decarboxylation step.

The Smiles rearrangement has recently appeared in multi-component reactions or one-pot
approaches [10–12], but only a few reports of domino strategies involving this rearrangement are
available, especially in a radical manner [13–16].

This mini-review, focused on the radical version of the Smiles rearrangement, presents recent
synthetic achievements, updating the work of Tu on radical aryl migration reactions [17]. We will first
present the more widespread sp3C-centered radical-promoted Smiles rearrangement, while a second
section will be devoted to sp2C radical-assisted approaches.
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2. sp3 C-Centered Radical-Promoted Rearrangements

In the last two decades increased attention was focused on light-induced chemical transformations,
especially in the field of radical chemistry [18,19]. UV or visible light can be used as green, sustainable
and inexpensive sources of energy. Light limits waste in radical reactions, is environmental friendly,
and makes purification of reaction products easier. In this line, Stephenson et al. have developed a
visible-light-mediated radical Smiles rearrangement of difluorobromo arylsulfonates enabling a direct
and efficient introduction of the difluoroethanol moiety into a range of aryl and heteroaryl ring-systems
(Scheme 1) [20]. From a mechanistic point of view, the reaction starts with the quenching of the excited
state of the photocatalyst ([Ru(bpy)3]2+) by a an electron donor (Bu3N¨ HCO2H) to give the strongly
reducing RuI species. Single-electron reduction of the substrate affords the expected difluoroethyl
radical that undergoes a consecutive ipso-addition—SO2 elimination—H atom abstraction process to
provide the desired product.

Molecules 2016, 21, 878 2 of 11 

 

2. sp3 C-Centered Radical-Promoted Rearrangements 

In the last two decades increased attention was focused on light-induced chemical transformations, 
especially in the field of radical chemistry [18,19]. UV or visible light can be used as green, sustainable 
and inexpensive sources of energy. Light limits waste in radical reactions, is environmental friendly, 
and makes purification of reaction products easier. In this line, Stephenson et al. have developed a 
visible-light-mediated radical Smiles rearrangement of difluorobromo arylsulfonates enabling a 
direct and efficient introduction of the difluoroethanol moiety into a range of aryl and heteroaryl 
ring-systems (Scheme 1) [20]. From a mechanistic point of view, the reaction starts with the quenching 
of the excited state of the photocatalyst ([Ru(bpy)3]2+) by a an electron donor (Bu3N.HCO2H) to give the 
strongly reducing RuI species. Single-electron reduction of the substrate affords the expected difluoroethyl 
radical that undergoes a consecutive ipso-addition—SO2 elimination—H atom abstraction process to 
provide the desired product. 

Ar O
S Br

O O

F F
Ar

OH
F F

Ar
OSO2

F F

Bu3N

Bu2N Pr

Ar O
S

O O

F F

Bu3N (1.5 equiv.)
HCO2H (1.5 equiv.)

[Ru(bpy)3]Cl2.6H2O (0.1 mol%)
DMSO (0.07 M), blue LED

rt, 1-16h - SO2

Smiles

rear rangement

RuII

photocatalyst

v isible light

[Bu3N][HCO2H]

[Bu3N][HCO2H]

Ar = thiophene, thiazole, furan,...

RuI

RuII

 
Scheme 1. Photocatalyzed radical Smiles rearrangement of difluorobromomethyl arylsulfonates. 

This domino process was successfully applied for the synthesis of the opioid receptor-like 1 
antagonist 1 used for the treatment of depression and/or obesity (Scheme 2). 
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Scheme 2. Application to the synthesis of difluoro-substituted spirocyclic ORL-1 antagonist. 

Another example of Smiles rearrangement, triggered by generation of the radical from a xanthate 
with dilauroyl peroxide (DLP) was proposed by Zard, as illustrated by Scheme 3. Sulfonamide 2 
furnished the corresponding trifluoromethylated oxadiazole 3 in 32% yield [21]. 
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This domino process was successfully applied for the synthesis of the opioid receptor-like
1 antagonist 1 used for the treatment of depression and/or obesity (Scheme 2).
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Another example of Smiles rearrangement, triggered by generation of the radical from a xanthate
with dilauroyl peroxide (DLP) was proposed by Zard, as illustrated by Scheme 3. Sulfonamide 2
furnished the corresponding trifluoromethylated oxadiazole 3 in 32% yield [21].
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For some years Nevado and coworkers have been interested in the development of new domino
reactions involving the addition of radicals to the double bond of N-(arylsulfonyl)acrylamides and
subsequent radical Smiles rearrangements. In a recent work they demonstrated the synthetic utility
of in-situ generated amidyl radical intermediates in additional C-C or C-heteroatom bond forming
reactions affording remarkable molecular complexity [22]. Thus, they described a regioselective one-pot
process for the synthesis of CF3, SCF3, P(O)Ph2, and N3-containing indolo[2,1-a]isoquinolin-6(5H)-ones
of potential biological interest (path a, Scheme 4). This multi-step process consists of an addition of
radical followed by ipso-substitution, 1,4-aryl group migration/desulfonylation, 5-exo-trig cyclization
and final H-abstraction.
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With 1,3-dicarbonyl compounds as primary radical precursors, highly functionalized
dihydropyridinone-type derivatives were prepared in a silver-catalyzed radical domino reaction
process (path b, Scheme 4). Dicarbonyl compounds act as both radical donors and acceptors adding to
the acrylamide C=C bond and trapping the key-intermediate amidyl radical, respectively.

A systematic substrate scope study concerning the radical sources as well as each part of the
N-(arylsulfonyl)acrylamide moiety evidenced the preparative efficiency of this multi-step radical
reaction cascade.
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When ortho-vinyl- or ortho-styryl-substituted N-(arylsulfonyl)arylamide substrates were reacted
with carbon or heteroatom centered radicals a multistep radical domino process takes place to
afford multifunctionalized indane- and dibenzocycloheptadiene-type products in a stereoselective
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manner (trans relative configuration between amide and phosphonyl or azide functions) [23].
According to the proposed mechanism (Scheme 5) primary radicals react with the vinyl moiety
to give benzyl radicals 4 or 5 that undergo 8-endo- or 10-endo-trig cyclization. With the obtained
α-keto radicals (6 or 7) a second 5- (or 7-membered) ipso-cyclization occurs provoking a subsequent
1,4-aryl group migration—desulfonylation—rearomatization—H-abstraction process, as part of a
Smiles rearrangement.

Using the same type of substrate Hu and coll. have proposed a straightforward introduction
of mono- and difluoroalkyl groups via a radical process. From N-arylsulfonylated acrylamides and
fluorinated alkylsodium sulfinate, a silver-catalyzed domino fluoroalkylation—aryl migration—SO2

extrusion sequence allowed the synthesis of α-aryl-β-fluoroalkyl amides in acceptable to good yields
(Scheme 6) [24]. Contrary to Nevado’s findings, the corresponding 3-fluoroalkyl-2-oxindoles as minor
products were observed in a few cases only. Their formation may be explained by an additional
5-exo-trig cyclization of the intermediate amidyl radical.
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metal catalysts. The procedure used NaNO2 as a nitro source and potassium peroxydisulfate as an
oxydant (Scheme 7). According to the mechanism proposed by Zhou and coworkers, the reaction starts
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resulting in the intermediate 8. Smiles rearrangement generates intermediates 9 that give oxindole
derivatives in good yields. The obtained nitromethyl-substituted oxindoles are valuable structures for
further synthetic applications [25].
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In several cases Smiles-type rearrangement combined with intramolecular radical ipso-substitution
on an aromatic group triggered structural transformations (aromatic moiety migration) without sulfur
dioxide extrusion.
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In this line α-aryl allylic alcohols have recently emerged as valuable substrates for the
difunctionalization of the alkene moiety by transition-metal catalysts or environmentally friendly light
catalysis. For example, Zhu et al. have developed a Cu(OTf)2-catalyzed radical coupling between
allylic alcohols and alkyl nitriles for the synthesis of α-aryl substituted β- or γ-cyanoketones [26]. This
domino process involved the formation of an alkylnitrile radical, its intramolecular addition to the
C=C double bond, followed by 1,2-aryl migration and generation of a carbonyl group, as main steps
(Scheme 8).
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Starting from similar allylic alcohols Xia et al. proposed a visible light-promoted radical
arylalkylation with diethyl bromomalonate [27]. Optimization of the reaction conditions evidenced
fac-Ir(ppy)3 as the best photoredox catalyst in DMSO, in the presence of 2,6-lutidine as additive
(Scheme 9). The potential application of this approach was demonstrated by a formal synthesis of
(˘)-sequirin D, a norlignan-type natural product with anti-gonadotropic activity.
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Very similar reaction conditions were found for the radical carbodifluoroalkylation of 1,1-diaryl
allylic alcohols affording α-difluoro-γ-aryl-δ-oxoesters of synthetic interest [28]. Using CF3I as a
relatively inexpensive CF3 source and Ru(bpy)3(PF6)2 as an alternative photoredox catalyst various
α-aryl-β-trifluoromethylketones were also synthesized. Both reactions meet the increasing demand for
new and efficient fluorination approaches.

Cheng and coll. have treated 1,1-diaryl allylic alcohols with aryl(alkyl)silanes in the
presence of di(tert-butyl)peroxide (DTBP), triethylamine and copper(I)oxide as catalyst to give
α-aryl-β-silylketones in moderate to good yields [29].

Scope and limitation studies revealed in all cases a favored migration tendency for electron
deficient aryl groups affording functionalized ketones with moderate to good regioselectivities.

For the synthesis of the D-ring isomer of galanthamine, a competitive and reversible inhibitor of
acetylcholine esterase, Banwell and coll. have exploited a seven-step process including a radical Smiles
rearrangement as key-step (Scheme 10) [30]. This example demonstrates how tertiary benzylamines
bearing a β-bromoethyl moiety may be involved in a radical Smiles rearrangement giving rise to a
radical intermediate ready to add to a non-aromatic π-system by an 8-endo-trig cyclization. Contrary
to expectations, eight-membered analog 12 displayed low in vitro acetylcholine esterase inhibitory
potency, confirmed by subsequent molecular docking studies.
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3. sp2 C-Centered Radical-Promoted Rearrangements

Motherwell is one of the pioneers who has exploited the radical version of the Smiles
rearrangement as an alternative path to transition metal-catalyzed coupling reactions for the synthesis
of functionalized biaryl derivatives [7].

A recent paper of his group deals with a systematic scope and limitation study of this
rearrangement by varying reaction conditions, the nature of the aryl acceptor ring with its substituents
and the tethering chain (Scheme 11). It was found that the 1,5-ipso-substitution vs. 1,6-cyclization
ratio was strongly impacted by the stoichiometry, the concentration, the rate of addition of
Bu3SnH, the temperature and the solvent used in the radical reaction. Ortho substituents, both
electron-donating and electron-attracting groups on the aromatic acceptor ring were clearly revealed to
be ipso-directors. Similarly, substrates bearing sulfonamide-type linker afforded 1,5-ipso products more
readily comparing to the sulfonate or carbonate analogs owing to a faster SO2 extrusion (vs. CO2)
from the radical intermediate. Heteroarylsulfonates or sulfonamides submitted to optimized reaction
conditions afforded mainly or exclusively 1,5-ipso-substitution products. Extension of this reaction to
benzylic sulfonamides or sulfonates evidenced a preference for the 1,7-cyclization path even if in some
cases 1,6-ipso-products were isolated in small quantity [31].
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As part of a study to explore new transition-metal complexes as potential photocatalysts
Barriault et al. have described a light-induced reductive radical reaction of unactivated alkyl and aryl
bromides using a dimeric phosphine-gold complex. Scope and limitation experiments demonstrated
the potential of the catalyst both in intra- and intermolecular transformations. As expected, among
the screened substrates sulfonamide 14 afforded mainly the biaryl amine 15 by ipso-substitution along
with the tricyclic sulfonamide 16 in 93% overall yield (Scheme 12) [32].
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Cascade reactions initiated by radical addition to alkynes are synthetically very attractive enabling
a short access to complex polyfunctionalized derivatives, especially when they are combined with a
Smiles-rearrangement.

Recently, Liu and coll. described a convenient metal-free radical yne-addition—
ipso-substitution—decarboxylation cascade reaction of aryl alkynoates to lead to functionalized
trisubstituted alkenes (Scheme 13). In these di(tert-butyl)peroxide-initiated reactions sp3 C-H substrates
such as cyclic ethers, amides, benzylic hydrocarbons, cycloalkanes or triethylsilane act both as radical
precursors and hydrogen donors [33].
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In parallel, the same multi-step radical cascade was also studied by Zhu [34], Wang [35], and
Pan [36] using cyclic or acyclic ethers, toluene derivatives and cycloalkanes as sp3 C-H substrates
and DTBP/Cu(I), tert-butylhydroperoxide (TBHP) and di-tert-butylperoxide (DTBP) as oxidants,
respectively (Scheme 14). The reaction displayed broad scope and high functional group compatibility
leading to a great variety of trisubstituted olefins with moderate to good yields. In addition, Pan also
developed an efficient cascade trifunctionalization reaction of alkynoates with N-iodosuccinimide for
the preparation of 1,1-diiodoalkenes through an iodination—aryl migration—decarboxylation and
second iodination process [37].
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Recently, Zhang reported a radical cascade process between alkynes, N-fluoroarylsulfonimides
and simple alcohols enabling the efficient synthesis of α-amino-α-aryl ketones 17. This process
combines four subsequent reactions: the vinyl radical formation from N-fluorobenzenesulfonimide,
(NFSI), followed by the aryl group migration, an efficient desulfonylation and a final semi-pinacol
rearrangement (Scheme 15) [38].
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Visible light Ru(II)-photoredox catalysis has been used by Belmont and coll. in a radical cascade
hydroamination—Smiles rearrangement process for the synthesis of various phthalazine derivatives 18
(Scheme 16) [39]. The mild reaction conditions combined with an excellent functional group tolerance
make this approach particularly attractive to reach a high molecular diversity. In addition, halogenoaryl
substituents are well tolerated allowing subsequent transition metal-catalyzed functionalizations.
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4. Conclusions 

During recent years, radical chemistry has played an important role in the development of 
modern synthetic methodologies, especially for the preparation of highly complex and polycyclic 
molecular frameworks. This mini-review demonstrates again that the radical Smiles rearrangement 
is now a well established and powerful addition to the synthetic chemistry toolbox and we are 
convinced that the selected examples will meet with the interest of researchers who have already 
been or will be engaged in this research topic. 
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Scheme 17. Proposed mechanism for hydroamination/Smiles rearrangement cascade.

4. Conclusions

During recent years, radical chemistry has played an important role in the development of modern
synthetic methodologies, especially for the preparation of highly complex and polycyclic molecular
frameworks. This mini-review demonstrates again that the radical Smiles rearrangement is now a well
established and powerful addition to the synthetic chemistry toolbox and we are convinced that the
selected examples will meet with the interest of researchers who have already been or will be engaged
in this research topic.
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