Supplementary Materials: Metabolism of 20(*S*)-Ginsenoside Rg₂ by Rat Liver Microsomes: Bioactivation to Metabolites of Activating SIRT1

Li-Yuan Ma, Qi-Le Zhou, Xin-Bao Yang, Hong-Ping Wang and Xiu-Wei Yang

Figure S1. The typical mass spectra and possible fragmentations of 20(*S*)-G-Rg2 (**A**) and pseudoginsenoside F11 (**B**).

No.	20(S)-Ginsenoside-Rg ₂ (1)		Pseudoginsenoside F11 (M3)	
	¹ H (<i>J</i> in Hz)	¹³ C	¹ H (<i>J</i> in Hz)	¹³ C
1α	0.96 (1H, m)	20 7:	0.96 (1H, m)	20 7
1β	1.60 (1H, m)	39.7t	1.62 (1H, m)	39.7t
2α	1.85 (1H, m)	20.04	1.86 (1H, m)	07 0.
2β	1.77 (1H, m)	28.0t	1.77 (1H, m)	27.8t
3β	3.46 (1H, dd, 11.1, 4.3)	78.9d	3.48 (1H, dd, 11.4, 4.8)	78.5d
4	_	40.2s	_	40.2s
5α	1.40 (1H, d, 11.1)	61.1d	1.41 (1H, d, 10.7)	61.0d
6β	4.66 (1H, br dd, 11.1, 3.0)	74.7d	4.72 (1H, br dd, 10.7, 3.1)	74.4d
7α	1.98 (1H, t, 10.6)	46.24	1.93 (1H, t, 12.6)	16 11
7β	2.27 (1H, dd, 10.6, 3.0)	46.3t	2.27 (1H, dd, 12.6, 3.1)	46.1t
8	_	39.9s	_	41.2s
9α	1.48 (1H, br d, 12.0)	50.0d	1.48 (1H, dd, 12.6, 2.4)	50.2d
10	_	41.4s	_	39.6s
11α	2.12 (1H, m)		2.06 (1H, m)	
11ß	1.81 (1H, m)	32.3t	1.27 (1H, m)	32.6t
12α	3.93 (1H, m)	71.3d	3.71 (1H, td, 9.9, 4.3)	71.3d
13	2.00(1H, t, 10.3)	48.5d	2.17 (1H, t, 9.9)	48.4d
14		51.9s		52.3s
15α	1.54 (1H, m)	31.6t	1.42 (1H, m)	32.9t
15ß	1.45(1H, m)		0.89(1H, m)	
<u>16</u> α	1.84 (1H m)		2 14 (1H m)	
16B	1.54(111, m) 1.55(1H m)	27.1t	1.87 (1H m)	25.6t
<u>170</u>	2 30 (1H m)	54.9d	1.07 (111, m)	19.6d
18B	1.38(3H s)	17.2a	1.70(111, 111) 1.21(3H s)	17.00
19B	0.95(3H s)	17.2q 18.0g	0.95(3H s)	17.0q 18.0a
20	-	73.3s	-	10.0q 86.8s
$\frac{20}{21\alpha}$	1 38 (3H s)	27.3a	1 25 (3H s)	27.1a
222	2.01 (1H m)	27.59	1.25(011,3)	27.19
22a 22b	1.64 (1H m)	36.1t	1.79(111, dd, 12.5, 5.7) 1.58(1H dt 12.5, 3.9)	31.8t
220	2.57 (1H m)		1.55 (11, dt, 12.5, 5.5)	
23h	2.07 (111, m)	23.2t	1.00(111, 111) 1.20(1H dt 10.1.7.9)	28.9t
230	5 22 (111, III)	126.64	2.04 (111 + 7.8)	95 9J
24	5.52 (111, 1, 0.0)	120.00 131.0c	3.94 (111, t, 7.0)	70.5c
25	- 1 67 (2H c)	151.05 26.1 <i>a</i>	$\frac{1}{2}$ (2H c)	70.35
20	1.67 (3H, s)	20.1q 17.9g	1.20(311, 8) 1.46(3H s)	27.1q 27.3q
288	2.07(3H s)	17.5q 32.4g	2.11(3H c)	27.5q 22.3q
20p 29a	1.33(3H s)	17.4q	1.34 (3H s)	17.7g
$\frac{2}{\alpha}$	0.90(3H s)	17.9q 17.4g	0.91(3H s)	17.7 q 18.3 a
500	0.90 (011, 3)	6-C-lc	0.71 (011, 3)	10.54
1/	5 22 (1H d 6 8)	102 144	5 26 (1H d 6 9)	102 14
1	$3.22(1\Pi, 0, 0.0)$	102.140 70.6d	$5.26(1\Pi, 0, 0.9)$	102.10 70.6d
2	4.33(111, uu, 0.5, 0.0)	79.00 79.74	4.36(111, dd, 9.0, 0.5)	79.00 79.74
3	$4.55(1\Pi, 00, 6.9, 6.4)$	70.70 72.0d	$4.30(1\Pi, dd, 9.0, 8.4)$	70.70 72.84
4 5'	$4.10(1\Pi, uu, 0.9, 0.4)$	72.90 78.6d	4.21 (1 Π , uu , 9.2 , 0.4)	72.00 78.64
3	5.75 (117, br aa, 8.4, 5.0)	70.00	3.70 (111, br aa, 8.4, 3.6)	70.00
оа 67-	4.04 (117, aa, 11.2, 5.3)	63.4t	4.00 (117, 00, 11.0, 0.0)	63.3t
0.0	4.49 (117, ud, 11.2, 2.3)	D1	4.34 (117, ud, 11.3, 2.3)	
1//		102.05.1		101.0.1
1''	0.43 (1H, Drs)	102.05d	6.49 (1H, brs)	101.9d
2"	4.76 (1H, br d, 3.6)	72.5d	4.80 (1H, br d, 3.7)	72.4d
3''	4.66 (1H, dd, 9.8, 3.6)	72.6d	4.67 (1H, dd, 9.5, 3.7)	72.6d
4''	4.32 (1H, dd, 9.8, 2.1)	74.4d	4.33 (1H, dd, 9.5, 2.1)	74.3d
5"	4.96 (1H, dd, 9.8, 5.6)	69.7d	4.96 (1H, dd, 9.5, 6.1)	69.6d
6″	L75 (1H, d, 5.6)	19.0a	1.79 (1H, d, 6.2)	18.9t

Table S1. ¹H (400 MHz) and ¹³C (100 MHz) NMR data in pyridine- d_5 (δ_{ppm}) of 1 and M3 ^a.