Supplementary Materials: Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors, and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer's Disease

Youssef Dgachi, Oscar M. Bautista-Aguilera, Mohamed Benchekroun, Hélène Martin, Alexandre Bonet, Damijan Knez, Justyna Godyń, Barbara Malawska, Stanislav Gobec, Mourad Chioua, Jana Janockova, Ondrej Soukup, Fakher Chabchoub, José Marco-Contelles and Lhassane Ismaili

1. Inhibition of Aβ₁₋₄₂ Aggregation

Table S1. Inhibition of A β_{1-42} aggregation.

Compound	Structure	Inhibition of A β_{1-42} Aggregation at 10 μ M (%) ^a
3Ab		13.6 ± 2.1 *
3Bb		n.a. ^b
3Cb ^c	O N	n.a. ^b
3Ba	O O O O O O O O O O O O O O O O O O O	n.a. ^b

^a Percent of inhibition at 10 μM compound and 1.5 μM A $β_{1-42}$. Percentage of inhibition is expressed as mean ± standard deviation of two independent experiments. * p < 0.05, compared to the control (oneway ANOVA, followed by Bonferoni t-test). ^b n.a.; inhibition lower than 10%, compound defined as not active. ^c poor solubility in DMSO at 10 mM and 1 mM.

Compound **3Ab** showed weak inhibition of A β_{1-42} aggregation, whereas other compound were not active.

2. Thioflavin-T (ThT) Fluorometric Assay [1]

Recombinant human 1,1,1,3,3,3-hexafluoro-2-propanol pretreated A β_{1-42} peptide (Merck Millipore, Darmstadt, Germany) was dissolved in DMSO to give 75 μ M stock solution. The stock solution was further diluted in HEPES buffered solution (150 mM HEPES, pH 7.4, 150 mM NaCl), to 7.5 μ M. A β_{1-42} solution was then added to the test compounds in black-walled 96-well plate, and diluted with ThT solution (final concentration of ThT was 10 μ M). Final mixture contained 1.5 μ M A β_{1-42} , 10 μ M of test compounds, and 3% DMSO. ThT fluorescence was measured every 5 min (λ_{ex} = 440 nm, λ_{em} = 490 nm), with the medium continuously shaking between measurements using a 96-well microplate reader (SynergyTM H4, BioTek Instruments, Inc., Winooski, VT, USA). The fluorescence intensities at the plateau reached after 24 h in the absence and presence of the test compound were averaged, and the average fluorescence of the corresponding wells at t = 15 min was subtracted. The A β_{1-42} aggregation inhibitory potency is expressed as the percentage inhibition (% inh = (1 – F_i/F₀) × 100%), where F_i is the increase in fluorescence of A β_{1-42} treated with the test compound, and F₀ is the increase in fluorescence of A β_{1-42} alone.

Reference

1. LeVine, H. Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: Detection of amyloid aggregation in solution. *Protein Sci. Publ. Protein Soc.* **1993**, *2*, 404–410.