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Abstract: An efficient multi-component reaction to synthesize multi-substituted 1,3-oxazolidine 

compounds of high optical purity was described. All the products were well-characterized and 

the absolute configuration of one chiral center was determined. The plausible mechanism 

was proposed and a kinetic resolution of epoxides process was confirmed. 
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1. Introduction 

The value of 1,3-oxazolidine derivatives, which are found in many natural products and synthetic 

complex compounds, lies in their utility in drugs, agrochemicals, dyes, and organic synthesis of a wide 

range of biologically-important compounds [1–10]. Thus, highly efficient and creative synthetic methods 

of 1,3-oxazolidine skeleton is an attractive topic in organic synthesis [11–13]. As a result, more and more 

efficient syntheses of 1,3-oxazolidine derivatives were reported utilizing intramolecular cyclization and 

intermolecular cycloaddition [14,15]. Cascade reaction, an ecologically- and economically-favorable 

method, was considered to fall under the banner of “green chemistry” because of its atom and resource 

economy [16–19], as well as time efficiency [20–29]. However, cascade reaction has not been used to 

construct 1,3-oxazolidine skeleton up to date. Application of more efficient multicomponent cascade 

reactions to replace traditional single-step-procedure reactions in constructing 1,3-oxazolidine skeleton 

is still an interesting topic.  

On the other hand, kinetic resolution, a powerful strategy in asymmetric synthesis, makes racemic 

substrates into optically-pure compounds [30–41]. Although many methods towards 1,3-oxazolidine 

skeletons have been developed, asymmetric synthesis of 1,3-oxazolidine with three components reaction 

involving kinetic resolution has not been well studied [42–53]. 

The reaction of imine with aldehyde is a well-established one, for example, Ishii group described a 

method to synthesize 1,3-oxazolidines from a multi-step synthesis of imines and epoxides [13]. However, 

the reaction yields were relatively low and the stereochemistry was not explained. Herein, we describe 

an efficient multi-component reaction to access 1,3-oxazolidine compounds of high optical purity. The 

plausible mechanism of the reaction was suggested and a kinetic resolution of the epoxides process was 

confirmed. All of products were well-characterized and the absolute configuration of the chiral center 

from the epoxides part was determined. To the best of our knowledge [54,55], this is the first report of 

synthesis of 1,3-oxazolidine with a multi-component reaction via the kinetic resolution from epoxides, 

anilines, and ethyl glyoxalate. 

2. Results and Discussion 

The formal references about 1,3-oxazolidine all required multi-step reactions [56–61]. When  

we investigated the reactions of anilines, ethyl glyoxalate, and epoxides by one-pot asymmetric  

multi-component reaction, products with 1,3-oxazolidine structure were obtained (Scheme 1). 

 

Scheme 1. Asymmetric multi-component reaction of anilines, ethyl glyoxalate, and epoxides. 

The reaction conditions optimization of three-component reactions was carried out, a variety of 

different chiral Lewis acid (4a–4d) catalysts were screened (Figure 1). 
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Figure 1. Chiral ligands used in this work. 

First we examined the reaction of aniline 1a, ethylglyoxalate, and epoxide 2a in dichloromethane at 

18 °C in the presence of catalyst 4a (10 mol %), while the reaction gave the product in only 5% yield 

with poor diastereoselectivity and enantioselectivity after two days (Table 1, entry 1). Little higher yield 

and ee value were achieved when catalyst 4b was applied (Table 1, entry 2). With this encouragement, 

the product with a higher ee was obtained when the reaction was carried out at −10 °C (Table 1, entry 3). 

Catalyst 4c/Ti(IV), which was prepared by mixing 4c and Ti(O-i-Pr)4 in 1:1 molar ratio in dichloromethane 

for 2 h, afforded a moderate ee of 41% (Table 1, entry 4). On the contrary, when the reaction was carried 

out with catalyst 4c/Ti(IV), which was prepared in a 1:1 molar ratio in toluene, good diastereoselectivity 

and enantioselectivity trifluoroacetic acid (TFA) (0.5 mol %) was added, the product with a good yield 

was obtained (Table 1 were provided (Table 1, entry 5). To our delight, after a small amount of, entry 

6). Therefore, it is indicated that TFA was very important for the cyclization. TFA might be beneficial 

for the ring-opening of epoxide. However, when TFA was used as the only catalyst, the reaction rate 

was not accelerated, and completion of the reaction also needed a long time at room temperature. 

Catalyst 4c/Ti(IV) was prepared in a 2:1 molar ratio in toluene, affording better ee value (Table 1, 

entry 7). Slightly lower yield was observed for the reaction carried out with the catalyst 4d/Ti(IV), which 

was prepared in a 2:1 molar ratio in toluene (Table 1, entry 8). The influence of temperature to the 

reaction was also investigated (Table 1, entries 9 and 10), the decrease of temperature were negative to 

the yields. It could be concluded that the molar ratio of 4c and Ti(IV) influenced the enantioselectivity 

and TFA strongly benefited the yields. 

Theoretically, the products had C-5 isomer and C-4 isomer, but the C-4 isomer was only separated 

and actually detected when different reaction scales from 1 mmol to 10 mmol were conducted (Figure 2). 

The C-5 isomer was not found. Furthermore, NMR spectra, such as 1H-1H NOESY, and HMBC could 

prove that the structure of the desired product belongs to the C-4 isomer. The H11 had the chemical 

shift value of 4.56 ppm because it was adjacent to an oxygen atom. It had heteronuclear coupling with 

C10 and C12. Accordingly, C6 had heteronuclear coupling with H10 and H11 (see Supporting Information). 

 

Figure 2. Isomer characterization of the product. 
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Table 1. Catalyst screening and optimization of the three-component reactions a. 

 
Entry Solvent Catal. T (°C) Yield (%) b d.r. c ee (%) d 

1 CH2Cl2 4a 18 5 2:1 10 
2 CH2Cl2 4b 18 13 3:1 15 
3 CH2Cl2 4b −10 13 2:1 30 

4 e CH2Cl2 4c/Ti(IV) −40 13 3:1 41 
5 e PhCH3 4c/Ti(IV) −40 15 4:1 60 
6 e PhCH3 4c/Ti(IV) −40 50 4:1 61 
7 f PhCH3 4c/Ti(IV) −40 53 11:1 72 
8 f PhCH3 4d/Ti(IV) −40 36 11:1 72 
9 f PhCH3 4c/Ti(IV) −55 30 12:1 73 

10 f PhCH3 4c/Ti(IV) −70 15 12:1 73 
a 1a (1.1 mmol) and ethyl glyoxalate (1.0 mmol) were stirred for 1 h in 1.5 mL solvent, then 2a (0.2 mmol) 

and catalyst (0.1 mmol) were added, and the system was stirred for 4 days; b Yields of isolated products;  
c,d were determined by HPLC on a chiral column; e Catalysts were prepared by Ti(IV) and 4c ligand in a 1:1 

molar ratio and TFA was added into the reactions as a catalyst; f Catalysts were prepared by Ti(IV) and 4c, 

4d ligands in a 1:2 molar ratio and TFA was added into the reactions as a catalyst. 

The three-component reactions of anilines, ethyl glyoxalate, and epoxides were expanded under the 

optimized conditions (Table 2). A series of chiral 1,3-oxazolidine derivatives in moderate yields with 

good diastereoselectivities and enantioselectivities was provided, such as 4-chloroaniline, affording 

good ee and diastereoselectivity (Table 2, entries 2, 8, and 9). Product 3h was obtained with a good 

enantioselectivity (Table 2, entry 8). Product 3i was obtained with the highest ee (up to 90%) (Table 2, 

entry 9). From entries 1, 2, 3, and 11 in Table 2, we found that the ee changed with group R1. The 

electron-withdrawing group was negative for the reaction, such as entry 11 in Table 2. Therefore, 

substrates bearing electron-donating substituents were advantageous to the reaction. We speculated the 

reaction is a kinetic resolution as the yields are around 50%. Thus, the reaction of entry 10 (Table 2) 

also had been carried out as controlled experiment. Racemic (±)-epoxystyrene was used as substrate to 

react with ethyl glyoxalate and anisidine under the condition listed in Table 2. When the reaction was 

finished, unreacted epoxystyrene was subjected into a chiral column on the HPLC. To our delight, the 

epoxystyrene recollected from the reaction is no longer racemic, according to the HPLC analysis. 

Instead of the substrate racemic (±)-epoxystyrene, unreacted epoxystyrene with 68% ee was obtained. 

This means one enantiomer of the racemic epoxystyrene was consumed and the other was kept and the 

reaction is indeed a kinetic resolution (see Supporting Information). 

To understand more about the reaction, effort also has been made to determine the absolute 

configuration of the products. Firstly, we figured out the retention time of (R)-epoxystyrene and  

(S)-epoxystyrene by detecting the racemic (±)-epoxystyrene and a standard (R)-epoxystyrene. Then, 

we reclaimed unreacted epoxystyrene from the reaction of entry 10 in Table 2, by checking the 

retention time. We found (S)-epoxystyrene was consumed and (R)-epoxystyrene not. This means that 
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the absolute configuration of the chiral center from epoxides in the product is S-configuration [10].  

(see Supporting Information). 

On the basis of previous studies and the results of our experiments [13,42–53], a possible reaction 

mechanism of the present reaction is proposed. Firstly, (S)-BINOL reacted with Ti(O-i-Pr)4 for two 

hours to give a complex A. When racemic epoxide B was added, a transition state C was formed by the 

complexation of A and (S)-epoxide with the influence of TFA. Immediately, C reacted with the imine 

from aniline and ethyl glyoxalate to give the target product D, releasing out complexes A to participate 

the next cycle at the same time (Figure 3). 

Table 2. Three-component reaction of anilines, ethyl glyoxalate, and epoxides a. 

 
Entry 3 R1 R2 Yield (%) b d.r. c ee (%) d 

1 3a CH3O CH2Cl 52 12:1 43 
2 3b Cl CH2Cl 50 10:1 69 
3 3c CH3CH2O CH2Cl 47 10:1 39 
4 3d CH3O CH2OCH(CH3)2 56 4:1 43 
5 3e CH3O CH2O(CH2)3CH3 46 1.5:1 71 
6 3f CH3CH2O CH2O(CH2)3CH3 53 3:1 34 
7 3g CH3CH2O CH2OCH(CH3)2 53 3:1 72 
8 3h Cl CH2O(CH2)3CH3 48 3:1 69 
9 3i Cl CH2OCH(CH3)2 54 4:1 90 

10 3j CH3O Ph 42 1.7:1 84.6 
11 3k NO2 CH2Cl trace ― ― 

a Reactions were carried out under optimum conditions; b Yields of isolated products; c determined by  
1H-NMR; d determined by HPLC on a chiral column. 
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Figure 3. Proposed reaction mechanism. 
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3. Experimental Section 

3.1. General Procedure for the Synthesis of All 1,3-Oxazolidines  

Ti(O-i-Pr)4 (0.05 mmol) and chiral binaphthalene ligand (4c, 0.10 mmol) were dissolved in 2.0 mL 

toluene, and the mixture was stirred for 2 h at room temperature, then aniline (1.1 mmol) and ethyl 

glyoxalate (1.0 mmol) were added into the mixture, and the result system was stirred for 30 min. 

Finally epoxide (1.2 mmol) and TFA (0.5 mol %) were added into the system and were stirred at −40 °C 

for four days. Then, the solvent was evaporated under vacuum. The residue was purified by silica gel 

column chromatography using 1:5 ethyl acetate/petroleum ether as eluent, giving a light yellow liquid. 

Enantiomeric excess (ee) were determined by HPLC analysis on a L-7420 (UV-VIS Detector with an 

L-7110 pump and a Chiralcel OD-H column). We determined the retention time of the product is based 

on significant changes in HPLC on a chiral column. 

3.2. Characterization Data for All of the Compounds 

Ethyl 5-(chloromethyl)-3-(4-methoxyphenyl)oxazolidine-2-carboxylate (3a1) Light yellow liquid; Rf = 0.46 

(1:5 ethyl acetate:petroleum ether); 48% yield (pure 3a1). The enantiomeric excess (ee) was determined by 

HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, λ = 254 nm), 

tR = 8.92 min (major), tR = 10.397 min (minor), 43% ee; 1H-NMR (400 MHz, CDCl3) δ 6.82 (d, J = 6.8 Hz, 

2H), 6.69 (d, J = 6.8 Hz, 2H), 5.42 (s, 1H), 4.58–4.55 (m, 1H), 4.18–4.16 (m, 2H), 3.84–3.80 (m, 1H), 

3.78–3.72 (m, 5H), 3.56–3.52 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 170.2, 

153.9, 138.7, 116.0, 115.0, 89.7, 78.6, 61.6, 55.8, 51.5, 44.834, 14.2. HRMS (EI+) exact mass calculated 

for C14H18ClNO4 [M]+ requires m/z 299.0924, found m/z 299.0937. 

Ethyl 5-(chloromethyl)-3-(4-methoxyphenyl)oxazolidine-2-carboxylate (3a2) Light yellow liquid; Rf = 0.36 

(1:5 ethyl acetate:petroleum ether); 4% yield (pure 3a2). 1H-NMR (400 MHz, CDCl3) δ 6.84 (d, J = 6.8 Hz, 

2H), 6.67 (d, J = 6.8 Hz, 2H), 5.46 (s, 1H), 4.92–4.88 (m, 1H), 4.22–4.16 (m, 2H), 3.78–3.69 (m, 5H), 

3.65–3.60 (m, 1H), 3.43–3.39 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 169.3, 

152.6, 138.3, 114.5, 114.0, 88.3, 77.6, 60.9, 55.2, 49.6, 44.3, 13.7. HRMS (EI+) exact mass calculated 

for C14H18ClNO4 [M]+ requires m/z 299.0924, found m/z 299.0937. 

Ethyl 5-(chloromethyl)-3-(4-chlorophenyl)oxazolidine-2-carboxylate (3b1) Light yellow liquid; Rf = 0.57 

(1:5 ethyl acetate:petroleum ether); 46% yield (pure 3b1). The enantiomeric excess (ee) was determined by 

HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 1 mL/min, λ = 254 nm), 

tR = 12.13 min (major), tR = 8.09 min (minor), 61.1% ee (minor); 1H-NMR (400 MHz, CDCl3) δ 7.19 

(d, J = 6.8 Hz, 2H), 6.59 (d, J = 6.8 Hz, 2H), 5.45 (s, 1H), 4.63–4.59 (m, 1H), 4.19–4.17 (m, 2H), 

3.83–3.79 (m, 2H), 3.76–3.71 (m, 1H), 3.56–3.52 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H). 13C-NMR (100 

MHz, CDCl3) δ 169.8, 142.695, 129.4, 124.5, 115.0, 88.5, 78.8, 61.9, 50.5, 44.7, 14.2. HRMS (EI+) 

exact mass calculated for C13H15Cl2NO3 [M]+ requires m/z 303.0429, found m/z 303.0424. 

Ethyl 5-(chloromethyl)-3-(4-chlorophenyl)oxazolidine-2-carboxylate (3b2) Light yellow liquid; Rf = 0.46 

(1:5 ethyl acetate:petroleum ether); 4% yield (pure 3b2). 1H-NMR (400 MHz, CDCl3) δ 7.21 (d, J = 6.8 

Hz, 2H), 6.62 (d, J = 6.8 Hz, 2H), 5.48 (s, 1H), 4.97–4.94 (m, 1H), 4.23–4.21 (m, 2H), 3.79–3.72 (m, 
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2H), 3.68–3.64 (m, 1H), 3.45–3.42 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 

170.8, 144.2, 130.7, 125.3, 115.6, 89.4, 79.3, 63.1, 50.9, 45.8, 15.5. HRMS (EI+) exact mass calculated 

for C13H15Cl2NO3 [M]+ requires m/z 303.0429, found m/z 303.0424. 

Ethyl 5-(chloromethyl)-3-(4-ethoxyphenyl)oxazolidine-2-carboxylate (3c1) Light yellow liquid; Rf = 0.48 

(1:5 ethyl acetate:petroleum ether); 47% yield (3c1). The enantiomeric excess (ee) was determined by 

HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, λ = 254 nm), 

tR = 7.79 min (major), tR = 8.57 min (minor), 39% ee; 1H-NMR (400 MHz, CDCl3) δ 6.83 (d, J = 6.8 Hz, 

2H), 6.65 (d, J = 6.8 Hz, 2H), 5.45 (s, 1H), 4.93–4.87 (m, 1H), 4.20–4.16 (m, 2H), 4.00–3.94 (m, 2H), 

3.79–3.69 (m, 2H), 3.64–3.61 (m, 1H), 3.43–3.39 (m, 1H), 1.38 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 

3H). 13C-NMR (100 MHz, CDCl3) δ 169.9, 152.5, 138.8, 115.9, 114.6, 88.9, 78.1, 64.2, 61.5, 50.2, 44.7, 

15.1, 14.3. HRMS (EI+) exact mass calculated for C15H20ClNO4 [M + H]+ requires m/z 314.1154, found 

m/z 314.1155. 

Ethyl 5-(isopropoxymethyl)-3-(4-methoxyphenyl)oxazolidine-2-carbo-xylate (3d) (diastereoisomers): Light 

yellow liquid; Rf = 0.33 (1:5 ethyl acetate:petroleum ether); 56% yield. The enantiomeric excess (ee) was 

determined by HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, 

λ = 254 nm), tR = 18.40 min (major), tR = 19.12 min (minor), 41.5% ee (minor); 1H-NMR (400 MHz, 

CDCl3) δ 6.85–6.81 (m, 2H[2Hʹ]), 6.66–6.63 (m, 2H[2Hʹ]), 5.39 (s, 1H) and 5.42, (s, 1Hʹ)], 4.84–4.80 

(m, 1H[1Hʹ]), 4.21–4.13 (m, 2H[2Hʹ]), 3.75 (s, 3H), 3.68–3.60 (m, 2H), 3.59–3.55 (m, 2H), 3.43–3.25 

(m, 1H[1Hʹ]), 1.25 (t, J = 7.2 Hz, 3H), 1.21–1.15 (m, 6H). 13C-NMR (100 MHz, CDCl3) δ 170.2 153.0, 

139.3 115.0 and [115.4, (1Cʹ)], 114.3 88.7 and [88.8, (1Cʹ)], 78.0, 72.5, 69. and [69.8 (1Cʹ)], 61.3, 55.8, 

49.6 and [49.8, (1Cʹ)], 22.1, 14.2 HRMS (EI+) exact mass calculated for C17H25NO5 [M]+ requires m/z 

323.1733, found m/z 323.1743.  

Ethyl 5-(butoxymethyl)-3-(4-methoxyphenyl)oxazolidine-2-carboxylate (3e) (diastereoisomers): Light 

yellow liquid; Rf = 0.44 (1:5 ethyl acetate:petroleum ether); 46% yield. The enantiomeric excess (ee) was 

determined by HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, 

λ = 254 nm), tR = 19.49 min (major), tR = 22.00 min (minor), 71% ee; 1H-NMR (400 MHz, CDCl3) δ 

6.876.83 (m, 2H[2Hʹ]), 6.68–6.66 (m, 2H[2Hʹ]), 5.41 (s, 1H) and 5.44 (s, 1Hʹ), 4.874.50 (m, 1H[1Hʹ]), 

4.224.15 (m, 2H[2Hʹ]), 3.77 (s, 3H), 3.68–3.62 (m, 2H[2Hʹ]), 3.543.50 m, 2H[2Hʹ]), 3.43–3.27 (m, 

2H[2Hʹ]), 1.68–1.57 (m, 4H), 1.42–1.35 (m, 3H), 1.29–1.21 (m, 3H[3Hʹ]). 13C-NMR (100 MHz, 

CDCl3) δ 169.7, 152.3, 138.9, 114.4 and [115.0, (1Cʹ)], 113.8, 88.1 (1C) and [88.6, (1Cʹ)], 77.2, 70.9, 

60.7, 55.2, 50.4 and [49.8, (1Cʹ)], 48.9, 43.780, 31.3, 18.7, 13.4. HRMS (EI+) exact mass calculated for 

C18H27NO5 [M]+ requires m/z 337.1889, found m/z 337.1886. 

Ethyl 5-(butoxymethyl)-3-(4-ethoxyphenyl)oxazolidine-2-carboxylate (3f) (diastereoisomers): Light 

yellow liquid; Rf = 0.43 (1:5 ethyl acetate:petroleum ether); 53% yield. The enantiomeric excess (ee) was 

determined by HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 1 mL/min, 

λ = 254 nm), tR = 7.94 min (major), tR = 8.47 min (minor), 34.5% ee (minor); 1H-NMR (400 MHz, 

CDCl3) δ 6.84–6.80 (m, 2H[2Hʹ]), 6.64–6.61 (m, 2H[2Hʹ]), 5.38 (s, 1H) and [5.41, (s, 1Hʹ)], 4.84–4.45 

(m, 1H[1Hʹ]), 4.21–4.16 (m, 2H[2Hʹ]), 3.99–3.93 (m, 2H), 3.68–3.60 (m, 2H[2Hʹ]), 3.51–3.47 (m, 2H), 

3.40–3.25 (m, 2H[2Hʹ]), 1.59–1.54 (m, 4H), 1.40–1.33 (m, 6H), 1.27–1.1837 (m, 3H[3Hʹ]). 13C-NMR 
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(100 MHz, CDCl3) δ 170.37, 152.2, 139.4, 115.8, 114.2, 88.7 and [88.7, (1Cʹ)], 77.8, 71.5, 64.13, 61.3, 

51.0 and [50.4, (1Cʹ)], 49.4, 44.4, 31.7, 19.3, 15.0, 14.0. HRMS (ESI+) exact mass calculated for  

[M + Na]+ requires m/z 374.1944, found m/z 374.1935.  

Ethyl 3-(4-ethoxyphenyl)-5-(isopropoxymethyl)oxazolidine-2-carboxylate (3g) (diastereoisomers): Light 

yellow liquid; Rf = 0.43 (1:5 ethyl acetate:petroleum ether); 53% yield. The enantiomeric excess (ee) was 

determined by HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 1 mL/min, 

λ = 254 nm), tR = 6.59 min (major), tR = 7.90 min (minor), 72% dr; 1H-NMR (400 MHz, CDCl3) δ 

6.85–6.81 (m, 2H[2Hʹ]), 6.66–6.62 (m, 2H[2Hʹ]), 5.40 (s, 1H) and [5.42, (s, 1Hʹ)], 4.82–4.81 (m, 

1H[1Hʹ]), 4.22–4.14 (m, 2H[2Hʹ]), 4.00–3.94 (m, 2H[2Hʹ]), 3.69–3.65 (m, 2H[2Hʹ]), 3.64–3.55 (m, 

2H[2Hʹ]), 3.29–3.26 (m, 1H[1Hʹ]), 1.38 (t, J = 7.2 Hz, 3H), 1.27–1.23 (m, 3H), 1.20–1.16 (m, 6H). 
13C-NMR (100 MHz, CDCl3) δ 169.8, 151.6, 138.9, 115.3, 113.7, 88.1 and [88.2, (1Cʹ)], 77.4, 71.9, 

68.4 and [69.2, (1Cʹ)], 63.6, 60.7, 49.0 and [50.0, (1Cʹ)], 21.5, 14.5, 13.6. HRMS (EI+) exact mass 

calculated for C18H27NO5 [M]+ requires m/z 337.1889, found m/z 337.1881. 

Ethyl 5-(butoxymethyl)-3-(4-chlorophenyl)oxazolidine-2-carboxylate (3h) (diastereoisomers): Light 

yellow liquid; Rf = 0.57 (1:5 ethyl acetate:petroleum ether); 48% yield. The enantiomeric excess (ee) was 

determined by HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 1 mL/min, 

λ = 254 nm), tR = 4.74 min (major), tR = 6.18 min (minor), 69.4% ee (major); 1H-NMR (400 MHz, 

CDCl3) δ 7.20–7.17 (m, 2H[2Hʹ]), 6.59–6.54 (m, 2H[2Hʹ]), 5.40 (s, 1H) and [5.44, (s, 1Hʹ)], 4.87–4.53 

(m, 1H[1Hʹ]), 4.23–4.15 (m, 2H[2Hʹ]), 3.67–3.61 (m, 2H[2Hʹ]), 3.52–3.47 (m,2H), 3.41–3.28 (m, 

2H[2Hʹ]), 1.60–1.53 (m, 4H), 1.40–1.31 (m, 3H), 1.28–1.20 (m, 3H[3Hʹ]). 13C-NMR (100 MHz, CDCl3) 

δ 169.8, 143.3, 129.2, 123.5 and [123.9, (1Cʹ)], 114.1 and [114.7, (1Cʹ)], 87.1 and [88.0, (1Cʹ)], 77.8, 

71.8, 71.2, 61.6, 48.8 and [49.5, (1Cʹ)], 31.7, 19.3, 14.2, 14.0. HRMS (EI+) exact mass calculated for 

C17H24ClNO4 [M]+ requires m/z 341.1394, found m/z 341.1397. 

Ethyl 3-(4-chlorophenyl)-5-(isopropoxymethyl)oxazolidine-2-carboxylate (3i) (diastereoisomers): Light 

yellow liquid; Rf = 0.52 (1:5 ethyl acetate:petroleum ether); 54% yield. The enantiomeric excess (ee) was 

determined by HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 95/5, flow rate 1 mL/min,  

λ = 254 nm), tR = 6.73 min (major), tR = 7.82 min (minor), 90% ee; 1H-NMR (400 MHz, CDCl3) δ 

7.20–7.17 (m, 2H[2Hʹ]), 6.59–6.54 (m, 2H[2Hʹ]), 5.40 (s, 1H) and [5.43, (s, 1Hʹ)], 4.86–4.82 (m, 

1H[1Hʹ]), 4.22–4.15 (m, 2H[2Hʹ]), 3.75–3.64 (m, 2H[2Hʹ]), 3.63–3.57 (m, 2H[2Hʹ]), 3.31–3.27 (m, 

1H[1Hʹ]), 1.31–1.24 (m, 3H[3Hʹ]), 1.22–1.16 (m, 6H[6Hʹ]), 13C-NMR (100 MHz, CDCl3) δ 169.8, 

143.4, 129.2, 123.5, 114.1 and [114.7, (1Cʹ)], 87.9 and [88.0, (1Cʹ)], 78.0, 72.6, 68.7 and [69.6, (1Cʹ)], 

61.6, 49.0 and [49.7, (1Cʹ)], 22.1, 14.2. HRMS (ESI+) exact mass calculated for [M + Na]+ requires 

m/z 350.1130, found m/z 350.1131. 

Ethyl 3-(4-methoxyphenyl)-5-phenyloxazolidine-2-carboxy-late (3j) (diastereoisomers): Light yellow 

solid; M.P.: 53–56 °C; Rf = 0.50 (1:5 ethyl acetate:petroleum ether); 42% yield. The enantiomeric excess 

(ee) was determined by HPLC on a Chiralcel OD-H column (n-hexane/isopropanol = 99/1, flow rate 

0.30 mL/min, λ = 254 nm), tR = 28.61 min (major), tR = 30.667 min (minor), 84.6% ee; 1H-NMR  

(400 MHz, CDCl3) δ 7.50–7.48 (d, 2H), 7.33–7.32 (m, 3H), 6.79–6.73 (m, 2H), 6.71–6.66 (m, 2H), 

5.50 (s, 1H) 4.36–4.27 (m, 2H), 4.24–4.16 (m, 2H), 4.05–4.02 (m, 1H), 3.72 (s, 3H) 1.40–1.37 (m, 
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3H), 13C-NMR (100 MHz, CDCl3) δ 170.70, 153.06,139.84, 139.19, 128.91, 127.83, 126.52, 114.88, 

114.65, 90.85, 75.37, 63.75, 61.53, 55.59, 14.21. HRMS (EI+) exact mass calculated for C19H21NO4 

[M]+ requires m/z 327.1471, found m/z 327.1471. 

4. Conclusions 

In conclusion, we disclosed an efficient asymmetric three-component reaction of anilines, ethyl 

glyoxalates, and epoxides, yielding 1,3-oxazolidine derivatives with high diastereo and enantioselectivities 

(up to 20:1 d.r., 90% ee) by cascade process. This reaction provides a convenient method to synthesize 

multi-substituted 1,3-oxazolidine compounds of high optical purity. The plausible mechanism was 

suggested and a kinetic resolution process was confirmed. All of the products in this paper were  

well-characterized and the absolute configuration of the chiral center from epoxides was determined. We 

believe this study will enrich the methodologies for the synthesis of five-membered oxacycles and natural 

products. Further studies are underway and other synthetic applications will be reported in a due time. 
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