Supporting Information

Contents

Table S1. Heck coupling reactions of aryl halides and <i>n</i> -butylacrylate with different bases .	S2
Table S2. Heck coupling reactions of aryl halide and styrene with different bases	S2
Experimental	S3
Figure S1. ¹ H-NMR of 3-phenylacrylic acid <i>n</i> -butyl ester	S4
Figure S2. ¹ H-NMR of 3-(4-nitrophenyl)acrylic acid <i>n</i> -butyl ester.	S5
Figure S3. ¹ H-NMR of 3-(4-cyanophenyl)acrylic acid <i>n</i> -butyl ester	S6
Figure S4. ¹ H-NMR of 3-(4-methoxyphenyl)acrylic acid <i>n</i> -butyl ester	S7
Figure S5. ¹ H-NMR of stilbene	S8
Figure S6. ¹ H NMR of 4-methoxystilbene.	S9
Figure S7. ¹ H NMR of 4-cyanostilbene.	S10
Figure S8. GC-MS data of 3-phenylacrylic acid <i>n</i> -butyl ester	S11
Figure S9. GC-MS data of 3-(4-methoxyphenyl)acrylic acid <i>n</i> -butyl ester	S12
Figure S10. GC-MS data of 3-(4-cyanophenyl)acrylic acid <i>n</i> -butyl ester	S13
Figure S11. GC-MS data of 3-(4-nitrophenyl)acrylic acid <i>n</i> -butyl ester.	S14
Figure S12. GC-MS data of 4-methoxystilbene.	S15
Figure S13. GC-MS data of stilbene.	S16
Figure S14. GC-MS data of 4-cyanostilbene.	S17

	X R +		Pd Ca Base,	talyst Δ , Solvent \blacktriangleright	R	0 	~
Entry	Χ	R	Solvent	Base	Time/h	Temp/°C	Yield(%) ^b
1	Ι	Н	DMF	Cs_2CO_3	20	140	0
2	Br	Н	DMF	Cs_2CO_3	20	140	0
3	Br	<i>m</i> -MeO	DMF	Cs_2CO_3	20	140	0
4	Br	o-MeO	DMF	Cs_2CO_3	20	140	0
5	Br	<i>m</i> -Me	DMF	Cs_2CO_3	20	140	0
6	Br	<i>m</i> -Cl	DMF	Cs_2CO_3	20	140	0
7	Ι	Н	DMF/H ₂ O *	Cs_2CO_3	5	145	0
8	Ι	Н	MeOH	LiOH·H ₂ O	5	65	0
9	Br	Н	DMF	Cy ₂ NMe	15	140	0
10	Br	Н	NMP ⁺	Cs_2CO_3	12	100	0
11	Ι	Н	DMF/H ₂ O *	Cs_2CO_3	14	145	0
12	Ι	Н	DMF	Cy ₂ NMe	5	145	0
13	I ^a	Н	DMF	NBu ₃	5	140	96

Table S1. Heck coupling reaction of aryl halides with *n*-butylacrylate with different solventsand bases using 0.005 mol % catalyst.

 a reaction with 0.05 mol % catalyst; b GC-MS yield; * Solvent mixture was in 4 (DMF):1 (H₂O) ratio; $^{+}$ *N*-Methyl-2-pyrrolidone.

Table S2. Heck coupling reaction of aryl halides with styrene with different bases using 0.005 mol % catalyst.

$\begin{array}{c} X \\ \\ R \end{array} + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$									
Entry	Χ	R	DMF/H ₂ O (v/v)	Base	Time/h	Temp/°C	Yield(%) ^c		
1	Ι	Н	DMF	Cs_2CO_3	20	140	33		
2	Ι	Н	4:1	Cs_2CO_3	4	140	51		
3	Br	Н	4:1	Cs_2CO_3	4	140	0		
4	Br	<i>m</i> -Cl	4:1	Cs_2CO_3	4	140	0		
5	Br	<i>m</i> -MeO	4:1	Cs_2CO_3	4	140	0		
6	Br	Н	4:1	Cs_2CO_3	12	80	0		
7	Br	<i>m</i> -MeO	DMF	K_2CO_3	12	70	0		
8	Br	Н	DMF	NaOAc	12	100	0		
9	Br ^a	Н	4:1	Cs_2CO_3	14	140	0		
10	Br	Н	4:1	Cy ₂ NMe	15	140	0		
11	Ι	p-NO ₂	7:1	Cs_2CO_3	4	150	0		
12	Ι	<i>p</i> -MeO	4:1	Cs_2CO_3	4	150	0		
13	I ^b	Н	DMF	NBu ₃	5	140	55		

^{*a*} reaction with 0.05 mol % catalyst; ^{*b*} reaction with 0.01 mol % catalyst; ^{*c*} GC-MS yield.

Experimental

3-Phenylacrylic acid n-butyl ester (**1a**). Yellow oil. ¹H-NMR: δ 0.97 (t, *J* = 7.4 Hz, 3H), 1.40–1.49 (m, 2H), 1.66–1.73 (m, 2H), 4.21 (t, *J* = 6.8 Hz, 2H), 6.44 (d, *J* = 8.0 Hz, 1H), 7.37–7.39(m, 3H), 7.51–7.54 (m, 2H), 7.68 (d, *J* = 16.4 Hz, 1H)

3-(4-Nitrophenyl)acrylic acid n-butyl ester (**1b**). Yellow solid. ¹H-NMR: δ 0.97 (t, *J* = 7.4 Hz, 3H), 1.40–1.49 (m, 2H), 1.67–1.74 (m, 2H), 4.24 (t, *J* = 6.8 Hz, 2H), 6.56 (d, *J* = 16.0 Hz, 1H), 7.66–7.72 (m, 3H), 8.25 (d, *J* = 9.2 Hz, 2H)

3-(4-Cyanophenyl)acrylic acid n-butyl ester (**1c**). Yellow oil. ¹H-NMR: δ 0.96 (t, *J* = 7.4 Hz, 3H), 1.39–1.48 (m, 2H), 1.66–1.71 (m, 2H), 4.23 (t, *J* = 6.8 Hz, 2H), 6.52 (d, *J* = 16 Hz, 1H), 7.60–7.69 (m, 5H)

3-(4-Methoxyphenyl)acrylic acid n-butyl ester (1d). Yellow oil. ¹H-NMR: δ 0.96 (t, *J* = 7.4 Hz, 3H), 1.39–1.48 (m, 2H), 1.65–1.72 (m, 2H), 3.84 (s, 3H), 4.20 (t, *J* = 6.7 Hz, 2H), 6.31 (d, *J* = 16.0 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.64 (d, *J* = 16.0 Hz, 1H)

Stilbene (1e). Colorless solid. ¹H-NMR: δ 7.12 (s, 2H), 7.29 (t, *J* = 6.6 Hz, 2H), 7.36(t, *J* = 7.6 Hz, 4H), 7.52 (dd, *J* = 8.2 Hz, 4H)

4-Methoxystilbene (**1f**). Colorless solid. ¹H-NMR: δ 3.83 (s, 3H), 6.90 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 16.3 Hz, 1H), 7.07 (d, J = 16.3 Hz, 1H), 7.21–7.25 (m, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.44–7.50 (m, 4H)

4-Cyanostilbene (**1g**). Colorless solid. ¹H-NMR: δ 7.09 (d, *J* = 16.3 Hz, 1H), 7.22 (d, *J* = 16.3 Hz, 1H), 7.30–7.34 (m, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.52–7.65 (m, 6H)

Figure S1. ¹H-NMR of 3-phenylacrylic acid *n*-butyl ester.

Figure S2. ¹H-NMR of 3-(4-nitrophenyl)acrylic acid *n*-butyl ester.

Figure S3. ¹H-NMR of 3-(4-cyanophenyl)acrylic acid *n*-butyl ester.

Figure S4. ¹H-NMR of 3-(4-methoxyphenyl)acrylic acid *n*-butyl ester.

Figure S5. ¹H-NMR of stilbene.

Figure S6. ¹H-NMR of 4-methoxystilbene.

Figure S7. ¹H-NMR of 4-cyanostilbene.

Figure S1. GC-MS data of 3-phenylacrylic acid *n*-butyl ester. m/z = 204.

Figure S9. GC-MS data of 3-(4-methoxyphenyl)acrylic acid *n*-butyl ester. m/z = 234.

Figure S10. GC-MS data of 3-(4-cyanophenyl)acrylic acid *n*-butyl ester. m/z = 229.

Figure S2. GC-MS data of 3-(4-nitrophenyl)acrylic acid *n*-butyl ester. m/z = 249.

Figure S12. GC-MS data of 4-methoxystilbene. m/z = 210.

Figure S13. GC-MS data of stilbene. m/z = 180.

