Supplementary Materials: Novel Polycarbo-Substituted Imidazo[1,2-c]quinazolines: Synthesis and Cytotoxicity Study

Tebogo Ankie Khoza, Tshepiso Jan Makhafola and Malose Jack Mphahlele

S1: Percentage cell viability (± standard deviation) and linear regression plots (used to calculate LC₅₀ values) of doxorubicin hydrochloride and compounds 3-6.

S2: ¹H-NMR and ¹³C-NMR spectra of compounds 3–6.

Table S1. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of doxorubicin hydrochloride.

			oride.		
Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
20	1.30103	22.59	0.87	4.78	0.75
10	1.0	25.98	0.68	4.96	0.91
5	0.69897	29.35	0.41	6.04	0.20
2	0.30103	33.58	0.39	19.92	0.92
1	0.0	34.97	0.94	47.38	0.62
0.5	-0.30103	54.97	0.45	50.73	0.59
0.1	-1.0	65.96	0.90	67.60	0.27

-**L**-1 · · .1

Figure S1. Linear regression plots used to calculate LC50 values of doxorubicin hydrochloride.

Table S2. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **3a**.

Figure S2. Linear regression plots used to calculate LC50 values of compound 3a.

Table S3. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **3b**.

3b

Figure S3. Linear regression plots used to calculate LC50 values of compound 3b.

Table S4. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **3c**.

3c

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	26.15	0.42	29.35	0.18
10	1.0	32.15	0.54	46.25	0.99
1	0.0	44.50	0.40	56.83	0.95
0.1	-1.0	65.442	0.80	95.64	1.20

Figure S4. Linear regression plots used to calculate LC50 values of compound 3c.

Table S5. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **4a**.

4a

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	39.37	0.23	29.32	0.48
10	1.0	41.20	0.43	51.54	0.13
1	0.0	50.57	0.62	84.57	0.49
0.1	-1.0	59.37	0.35	98.12	0.90

Figure S5. Linear regression plots used to calculate LC50 values of compound 4a.

Table S6. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **4b**.

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	40.95	0.18	32.26	0.20
10	1.0	52.10	0.75	36.99	0.61
1	0.0	73.56	0.32	73.61	0.98
0.1	-1.0	100	0.75	91.52	1.06

4b

Figure S6. Linear regression plots used to calculate LC50 values of compound 4b.

Table S7. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **4c**.

%Viability MCF-7 %Viability HeLa Conc. (µg/mL) Log conc. SD SD 100 2.0 36.99 0.17 25.77 0.96 10 1.0 56.480.06 42.36 1.65 1 0.0 58.87 0.25 78.51 1.81 0.1 85.32 0.20 89.51 -1.0 0.86

4c

MCF-7

Figure S7. Linear regression plots used to calculate LC50 values of compound 4c.

Table S8. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound 4d.

4d

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	19.39	0.38	17.87	0.65
10	1.0	39.29	0.52	33.58	1.4
1	0.0	48.83	0.65	47.23	0.1
0.1	-1.0	75.91	1.4	50.52	0.43

Figure S8. Linear regression plots used to calculate LC50 values of compound 4d.

Table S9. Percentage cell viability (\pm standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound 4f.

4f

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	35.83	0.05	21.71	0.03
10	1.0	49.36	0.70	25.74	0.14
1	0.0	61.95	0.13	51.58	0.10
0.1	-1.0	77.01	0.10	8831	0.43

Figure S9. Linear regression plots used to calculate LC50 values of compound 4f.

Table S10. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **4g**.

4g

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	21.49	0.23	29.60	0.77
10	1.0	53.00	0.09	53.74	0.29
1	0.0	60.69	0.27	85.67	0.30
0.1	-1.0	65.20	0.15	87.25	0.40

Figure S10. Linear regression plots used to calculate LC_{50} values of compound 4g.

Table S11. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **4i**.

	٠
/	1
	1
_	-

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	33.84	0.71	33.47	0.11
10	1.0	49.90	0.11	52.13	0.36
1	0.0	62.70	0.30	92.79	0.34
0.1	-1.0	73.50	0.15	100.00	0.24

Figure S11. Linear regression plots used to calculate LC50 values of compound 4i.

Table S12. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **5a**.

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	38.36	0.04	24.55	0.01
10	1.0	48.59	0.08	27.66	0.11
1	0.0	53.66	0.05	52.20	0.09
0.1	-1.0	64.15	0.20	77.01	0.42

Figure S12. Linear regression plots used to calculate LC50 values of compound 5a.

Table S13. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **5b**.

5b

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	9.68	0.30	21.43	0.04
10	1.0	17.54	0.41	22.26	0.13
1	0.0	20.12	0.56	45.47	0.19
0.1	-1.0	37.76	0.76	64.06	0.28

Figure S13. Linear regression plots used to calculate LC50 values of compound 5b.

Table S14. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound 5c.

5c

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	35.52	0.08	38.23	0.09
10	1.0	41.87	0.07	38.85	0.13
1	0.0	42.69	0.06	47.98	0.16
0.1	-1.0	43.07	0.09	56.31	0.30

Figure S14. Linear regression plots used to calculate LC50 values of compound 5c.

Table S15. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **5e**.

5	e
---	---

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	30.55	0.14	22.19	0.05
10	1.0	51.15	0.09	37.03	0.08
1	0.0	55.00	0.26	47.19	0.13
0.1	-1.0	79.92	0.15	60.65	0.07

MCF-7

Figure S15. Linear regression plots used to calculate LC50 values of compound 5e

Table S16. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **5f**.

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	24.76	0.02	17.07	0.03
10	1.0	51.85	0.04	35.69	0.13
1	0.0	69.31	0.08	44.70	0.14
0.1	-1.0	83.94	0.13	85.41	0.31

Figure S16. Linear regression plots used to calculate LC50 values of compound 5f

Table S17. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **5g**.

5	g
	~

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	36.71	0.02	25.74	0.05
10	1.0	52.28	0.05	38.88	0.08
1	0.0	63.89	0.03	63.53	0.21
0.1	-1.0	82.07	0.17	77.47	0.16

Figure S17. Linear regression plots used to calculate LC50 values of compound 5g

Table S18. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **5h**.

		51			
Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	21.75	0.13	17.78	0.01
10	1.0	32.03	0.04	31.90	0.04
1	0.0	40.01	0.2	33.37	0.2
0.1	-1.0	59.54	0.10	58.45	0.09

MCF-7

Figure S18. Linear regression plots used to calculate LC50 values of compound 5h.

Table S19. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **5i**.

. 7	т
~	-

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	47.59	0.10	32.33	0.08
10	1.0	54.45	0.09	62.68	0.26
1	0.0	58.06	0.11	82.43	0.19
0.1	-1.0	59.68	0.04	91.70	0.39

Figure S19. Linear regression plots used to calculate LC50 values of compound 5i.

Table S20. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **6a**.

6a

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	37.48	0.03	67.67	0.29
10	1.0	39.85	0.18	74.62	0.38
1	0.0	55.40	0.09	93.20	0.70
0.1	-1.0	73.55	0.12	97.92	0.28

MCF-7

HeLa

Figure S20. Linear regression plots used to calculate LC₅₀ values of compound 6a.

Table S21. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **6b**.

6b

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	45.55	0.08	24.79	0.02
10	1.0	86.04	0.10	34.53	0.19
1	0.0	87.81	0.05	39.53	0.42
0.1	-1.0	93.31	0.13	97.92	0.24

MCF-7

MCF-7

HeLa

Figure S21. Linear regression plots used to calculate LC50 values of compound 6b

Table S22. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **6c**.

6c

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	55.43	0.06	27.06	0.07
10	1.0	60.13	0.08	29.36	0.13
1	0.0	64.45	0.07	3.27	0.17
0.1	-1.0	69.07	0.14	58.80	0.46

Figure s22. Linear regression plots used to calculate LC50 values of compound 6c

Table S23. Percentage cell viability (± standard deviation) of MCF-7 and HeLa cells exposed to different concentrations of compound **6e**.

Conc. (µg/mL)	Log conc.	%Viability MCF-7	SD	%Viability HeLa	SD
100	2.0	5.69	0.01	2.39	0.01
10	1.0	48.85	0.08	38.56	0.38
1	0.0	87.6	0.07	66.39	0.24
0.1	-1.0	90.30	0.14	69.75	0.36

Figure 23. Linear regression plots used to calculate LC50 values of compound 6e.

S2: ¹H-NMR and ¹³C-NMR spectra of compounds 2–6.

Figure S24. ¹H and ¹³C-NMR spectra of 2a in DMSO-d₆ at 500 and 125 MHz, respectively.

Figure S25. ¹H and ¹³C-NMR spectrum of **2b** in DMSO-*d*₆ at 500 and 125 MHz, respectively.

2c

Figure S26.¹H and ¹³C-NMR spectrum of 2c in DMSO-*d*₆ at 500 and 125 MHz, respectively.

3a

Figure S27. ¹H and ¹³C-NMR spectrum of 3a in DMSO-d₆ at 500 and 125 MHz, respectively.

3b

Figure S28. ¹H and ¹³C-NMR spectrum of 3b in DMSO-d₆ at 500 and 125 MHz, respectively.

Figure S29. ¹H and ¹³C-NMR spectrum of 3c in DMSO-*d*₆ at 500 and 125 MHz, respectively.

Figure S30. ¹H and ¹³C-NMR spectrum of 4a in CDCl₃ at 500 and 125 MHz, respectively.

4b

Figure S31. ¹H and ¹³C-NMR spectrum of 4b in CDCl₃ at 500 and 125 MHz, respectively.

Figure S32. ¹H and ¹³C-NMR spectrum of 4c in CDCl₃ at 500 and 125 MHz, respectively.

Figure S33. 1 H and 13 C-NMR spectrum of 4d in CDCl₃ at 500 and 125 MHz, respectively.

4f

Figure S34. ¹H and ¹³C-NMR spectrum of 4f in CDCl₃ at 500 and 125 MHz, respectively.

4g

Figure S35. 1 H and 13 C-NMR spectrum of 4g in CDCl₃ at 500 and 125 MHz, respectively.

Figure S36. ¹H and ¹³C-NMR spectrum of 4h in CDCl₃ at 500 and 125 MHz, respectively.

Figure S37. ¹H and ¹³C-NMR spectrum of 4i in CDCl₃ at 500 and 125 MHz, respectively.

Figure S38. ¹H and ¹³C-NMR spectrum of 5a in CDCl₃ at 500 and 125 MHz, respectively.

Figure S39. ¹H and ¹³C-NMR spectrum of 5b in CDCl₃ at 500 and 125 MHz, respectively.

Figure S40. ¹H and ¹³C-NMR spectrum of 5c in CDCl₃ at 500 and 125 MHz, respectively.

Figure 41.¹H and ¹³C-NMR spectrum of 5d in CDCl₃ at 500 and 125 MHz, respectively.

Figure S42.¹H and ¹³C-NMR spectrum of 5e in CDCl₃ at 500 and 125 MHz, respectively.

Figure S43.¹H and ¹³C-NMR spectrum of 5f in CDCl₃ at 500 and 125 MHz, respectively.

5g

Figure S44.¹H and ¹³C-NMR spectrum of 5g in CDCl₃ at 500 and 125 MHz, respectively.

5h

Figure S45.1H and 13C-NMR spectrum of 5h in CDCl3 at 500 and 125 MHz, respectively.

Figure S46.¹H and ¹³C-NMR spectrum of 5i in CDCl₃ at 500 and 125 MHz, respectively.

6a

Figure S47.¹H and ¹³C-NMR spectrum of 6a in CDCl₃ at 500 and 125 MHz, respectively.

Figure S48.¹H and ¹³C-NMR spectrum of 6b in CDCl₃ at 500 and 125 MHz, respectively.

6c

Figure S49.¹H and ¹³C-NMR spectrum of 6c in CDCl₃ at 500 and 125 MHz, respectively.

Figure S50.¹H and ¹³C-NMR spectrum of 6d in CDCl₃ at 500 and 125 MHz, respectively.

Figure S51.¹H and ¹³C-NMR spectrum of 6e in CDCl₃ at 500 and 125 MHz, respectively.