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Abstract: A versatile and metal-free approach for the synthesis of carbocycles and of 

heterocycles bearing seven- and eight-membered rings is described. The strategy is based 

on ring expansion of 1-vinylcycloalkanols (or the corresponding silyl or methyl ether) 

mediated by the hypervalent iodine reagent HTIB (PhI(OH)OTs). Reaction conditions can 

be easily adjusted to give ring expansion products bearing different functional groups.  

A route to medium-ring lactones was also developed. 

Keywords: hypervalent iodine; ring expansion; rearrangement; seven-membered ring; 

antiproliferative activity 

 

1. Introduction 

The presence of seven-membered rings in compounds with remarkable biological activity continuously 

challenges organic chemists to develop efficient method for their preparation [1–14] (for examples of 
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natural or designed compounds, see Figure 1). Construction of seven-membered rings is relatively 

more difficult than the corresponding process for five- and six-membered rings, mainly because 

cyclization reactions have the inherent drawback of entropic factors and transannular  

interactions [1,3,15]. Nevertheless, a variety of different methodologies were envisioned to circumvent 

these problems, such as palladium-catalyzed intramolecular reactions, and radical and electrophilic 

cyclizations [1–4,7,9–12]. Besides the palladium-catalyzed processes, other metal-mediated reactions 

were investigated and ring-closing metathesis and cycloadditions are probably the most used in the 

synthesis of seven- and eight-membered rings [5–10,12,16]. Another approach is a ring expansion 

reaction [12,17–19], which has the main advantage to avoid entropic factors and high-diluted 

conditions [1,15]. One possible strategy to promote a ring expansion is an oxidative rearrangement that 

can be performed with transition metals, such as palladium(II) [17], mercury(II) [20], and  

thallium(III) [21,22]. An alternative to prevent the use of these metals is a hypervalent iodine reagent 

that promotes several different reactions in an efficient manner, such as formation of C–C bonds, 

stereoselective oxidations, and many important functional group transformations, including 

asymmetric reactions [23–30]. Although oxidative rearrangements mediated by hypervalent iodine 

have been reported in many publications, systematic studies regarding ring expansion reactions are 

scarce [27]. The ring expansion of methylene derivatives mediated by PhI(OH)OTs (HTIB or Koser’s 

Reagent) has been investigated by Justik and Koser for the synthesis of six-, seven-, and eight-membered 

ring carbocyclic compounds [31,32]. This protocol was subsequently applied in the total synthesis of 

both isomers of ar-himachalene (Figure 1) [33]. This article presents a versatile and metal-free 

approach for the synthesis of molecules bearing a seven-membered ring, through a ring expansion 

reaction [34]. 
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Figure 1. Compounds bearing seven-membered ring fused to aromatic ring.  

2. Results and Discussion 

The substrates required for the ring expansion reactions were prepared in an efficient manner. The 

reaction of 1-tetralone (1a) with CH2=CHMgBr gave the unsaturated 1-tetralol 2a, in 89% yield [35]. 

Considering the possible instability of the tertiary benzylic and allylic alcohol 2a, we decided to protect 

it as the trimethylsilyl (TMS) ether. The protocol using trimethylsilyl chloride/hexamethyldisilazane 

(TMSCl/HMDS) in reflux of hexane was applied to 2a, giving the desired product 3a in only 11% 

yield. However, using HMDS in the presence of a catalytic amount of I2, as reported by Karimi and 

Golshani [36], was possible to obtain cleanly 3a in 99% yield (Scheme 1). 
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Scheme 1. Preparation of the unsaturated TMS ether 3a. HMDS: hexamethyldisilazane and 

TMSCl: trimethylsilylchloride. 

The above two-step sequence was applied to several ketones, leading to 3b-l. We were also 

interested in the behavior of alkyl ethers. Thus, the methyl ether 4a was prepared treating 2a with 

KOH/MeI (Figure 2) [37]. 
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Figure 2. Structure of substrates 3b–l and 4a.  

We first performed a detailed investigation on the reactivity of the TMS-protected 1-vinylcycloalkanol 

3a. Thus, treatment of 3a with HTIB in CH3CN, in trimethylorthoformiate or without solvent [38] led 

to a complex mixture of compounds. Fortunately, when the unsaturated TMS-ether 3a was treated with 

HTIB in MeOH [31] in the presence of p-TsOH, thin layer chromatography (TLC) analysis indicated 

the cleavage of the labile TMS-group. Then, the alcohol 2a formed in the medium reacted with 

iodine(III), giving the ring expansion product 5a, in 60% yield (Table 1, Entry 1). The methoxy-ketone 5a 

would be originated from 3a in four steps. The first would be the acid-catalyzed deprotection of the 

TMS group, giving 2a, on which the electrophilic addition of iodine(III) to the double bond would give 

the cation 9. Migration of the aryl carbon would lead to 10. A reductive solvolysis on 10 would produce 

the methoxylated ketone 5a (Scheme 2). On this step occurs the highly favorable transformation of the 

hypervalent iodine into the normal valency compound PhI. Higher temperatures and longer reaction 

times promote an acid-catalyzed elimination of MeOH from 5a, furnishing the enone 6a, together with 

the dimer 7a (entry 2). TLC analysis showed that 7a is formed after the work-up. This result is slightly 

different from that using Tl(III), which gives only the enone 6a from 3a [22]. 
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Table 1. HTIB-Mediated Ring Expansion of 3a. HTIB: [Hydroxy(tosyloxy)iodo]benzene; 

p-TsOH: p-Toluenesulfonic acid. 

Entry Conditions Product (Yield) 

1 1.0 equiv HTIB, 20 mol% p-TsOH, MeOH, −72 °C to rt, 2 h 

2 1.0 equiv HTIB, MeOH, −72 to 30 °C, 2.5 h 

3 (1) 1.0 equiv HTIB, MeOH, −72 to 30 °C, 2.5 h; (2) 2 weeks 

4 2.5 equiv HTIB, MeOH, rt, 2 h 
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Scheme 2. Mechanism of the Ring Expansion of 2a. HTIB: [Hydroxy(tosyloxy)iodo]benzene. 

On standing, the mixture 6a/7a gave pure crystals of 7a, in 55% yield from 3a (Table 1, entry 3), 

whose structure was assigned by X-ray analysis [34]. The pentacyclic compound 7a is formed from the 

1-vinylcycloalkanol derivative 3a in a single operation through a tandem ring-expansion/ 

hetero-Diels-Alder reaction [39,40]. We envisioned that 7a could be used to obtain a medium ring 

lactone [41,42]. Indeed, the oxidative cleavage of the double bond of 7a could be performed with 

RuCl3/NaIO4, giving the eleven-membered ring keto-lactone 11a (Scheme 3). In summary, the 

commercially available 1-tetralone (1a) was transformed in only four steps into 11a, which bears a 

spiro seven-membered ring and a medium-ring lactone. Thus, in this short sequence of steps, the 

molecular complexity is greatly increased, because several reactions took place in a few operations. 
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Scheme 3. Preparation of the Medium-Ring Keto-Lactone 11a. 

Since the double bond of enone 6a is prone to further oxidation, we decided to investigate the 

reaction of 3a with excess of oxidant. When 3a was treated with 2.5 equiv of HTIB, a tandem ring 

expansion/addition of MeOH gave the dimethoxy-ketone 8a (Table 1, entry 4). An iodine(III)-mediated 

electrophilic addition of MeOH to the enone 6a would give 8a. In summary, different ring expansion 

products 5a–8a can be obtained from the same substrate (3a) by modification of the reaction conditions. 

After exploring the oxidation of 3a with iodine(III) under several conditions, we checked if the 

protection as a silyl ether was really required. The desired dimethoxy-ketone 8a was also obtained 

when either 2a or 4a were treated with HTIB (Scheme 4). In conclusion, the presence of the TMS 

group is not essential for the ring expansion, although higher yields of the desired product were 

observed from 3a (75%) than from 2a or from 4a (65%–67%). However, the protection of the tertiary 

benzylic and allylic alcohol 3a as a TMS ether greatly facilitate the storage of the substrate and we 

decide to do this for all substrates. 

O

MeO
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MeORO

2a or 4a

2.5 equiv HTIB
MeOH, rt

R=H: 67%
R=Me: 65%  

Scheme 4. Tandem Expansion/Addition of 2a and 4a by HTIB. HTIB: [Hydroxy(tosyloxy)iodo]benzene. 

A substituent in the aromatic ring can alter the migratory aptitude of the migrating carbon, which  

may influence the yield of the rearrangement product. For example, a correlation between yield of  

the product and migratory aptitude was noted by us in Tl(III)-mediated ring contraction of  

1,2-di-hydronaphthalenes [43]. Thus, we investigated the ring expansion of 3 with different groups in 

the aromatic ring. Alkyl groups in the aromatic ring can be problematic in reactions with hypervalent 

iodine [44,45]. Fortunately, the TMS-protected alcohol 3b, which bears methyl groups, gave the 

dimethoxy ketone 8b (Table 2, Entry 1) in a similar yield to the non-substituted substrate 3a. A 

methoxy group at the meta position could decrease the migratory aptitude of the migrating carbon. The 

value of the Hammett constant ρm for OMe is 0.11. Hence, a lower yield of the ring expansion product 

could be expected. However, the reaction of 3c–d with HTIB led to the corresponding ring expansion 

products 8c–d, respectively, in comparable yield (Entries 2 and 3). A methoxy group in the para 

position of the migrating carbon increases the migratory aptitude, which could accelerate the 

rearrangement. In our experience, this is usually a beneficial effect [43,46]. However, the reaction with 
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3e gave the ring expansion product 8e, in only 10% yield (entry 4). After some experimentation, we 

found that treating 3e with HTIB in a mixture of AcOEt/MeOH gave 8e, in 67% yield (Entry 5). 

Table 2. HTIB-Promoted Tandem Ring Expansion/Addition in MeOH. HTIB: 

[Hydroxy(tosyloxy)iodo]benzene; TMS: trimethylsilyl. 

Entry Substrate Products (Isolated Yield) 

1 

 

2 

 

3 

 

4 

 
5 a 3e 8e (67%) 

6 a 

 

7 b 
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Table 2. Cont. 

Entry Substrate Products (Isolated Yield) 

8 

 
 

9 

 
 

10 

 

 

11 

 

12 b 

 

a AcOEt/MeOH (2:1), −72 °C–rt; b MeOH, 0–50 °C. 

The same solvent mixture (AcOEt/MeOH) was also used in the reaction of 3f. In this case, a 

mixture of the seven-membered ring compounds 5f, 8f and 12f were isolated in very good overall yield  

(Entry 6). Compounds 5f and 8f could not be separated from each other by chromatography column or 

HPLC. The proposed mechanism for the formation of 12f was based on desaromatization reactions 

previously described in literature [47,48] (Scheme 5). The first step is the transformation of 3f into the  

seven-membered ring compound 5f, as shown in (Scheme 2), followed by the formation of the charge 

transfer complex 16 from 5f and HTIB. A single-electron-transfer (SET) oxidation of 16 yields the 

cation radical 17. Species 17 suffers a MeOH attack from the less hindered convex face and at less 

hindered carbon 4a (Figure 3), giving the radical 18. A second SET leads to carbocation 19, which 
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reacts with the solvent yielding 20. The enone 12f is formed after an acid hydrolysis of 20 catalyzed by 

acid. The relative configuration of 12f was assigned by NMR analysis, including NOESY, HMBC and 

HSQC (see Supplementary Informationfor details).  
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Scheme 5. Mechanism for the Formation of 12f. 

 

Figure 3. Structure of 17. 

The reaction of the bromo-substituted substrate 3 g with HTIB needed heating until 50 °C to furnish 

the ring expanded product in good yield (Table 2, Entry 7). As expected, a withdrawing group as 

bromide in meta position to migrating carbon decreases its aptitude to migration and, thus, more 

energetic conditions were necessary. Substrate 3h was exposure to HTIB giving 8 ha/b in 44 and 16%, 

respectively (Entry 8). The stereoselectivity is determined in the electrophilic addition of iodine(III) to 

the enone 22. This step occurs preferentially through the less hindered face (Scheme 6). 
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Scheme 6. Mechanism for the Formation of 8ha.  

The possibility of using a ring expansion reaction to prepare eight-membered rings was also 

investigated. Substrate 3i was treated with HTIB, giving the desired eight-membered ring compound 8i 

in 47% yield, together with the unsaturated ether 13i (entry 9). The relative configuration of 13i was 

assigned based on NMR data of related compounds [49]. This route can be useful to obtain  

eight-membered ring derivatives, because only three steps are necessary to obtain 8i from the 

commercially available benzosuberone. The first step in the formation of 20i (Scheme 7) is a ligand 

exchange from HTIB with 25, giving 26. A sequence of protonation of 26 and dehydration of 27 lead 

to 28, that participates in a SN2’ reaction with the solvent, yielding 20i. 
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Scheme 7. Mechanism for the Formation of 20i. 

The reactivity of heterocyclic substrates was also examined. When compound 3j was treated with 

HTIB, the ring expansion reaction also took place. However, an inseparable mixture of  

seven-membered ring O-heterocycles5j, 8j, and 14j was isolated (Table 2, Entry 10). The oxygen at 

the ortho position of the migrating carbon 8j change the reactivity, as observed in other oxidative 

rearrangements promoted by iodine(III) [50]. Treatment of the sulfur derivative 3k with HTIB gave 

exclusively the sulfoxide, in 75% yield (Table 2, entry 11). The first reaction is the oxidation of the 

sulfide moiety to the corresponding sulfoxide [51]. This electron-withdrawing group would decrease 

the migratory aptitude of the migrating carbon and the SN2’ reaction became the favorable pathway. 

The reaction of substrate 3l with HTIB furnished the benzazepine 8l in good yield (Table 2, Entry 12). 

Structures like 8l are present in many natural products [52] and have different biological  

activities [53–56], being important building blocks for drugs. Among the methodologies for the 

preparation of benzazepines [57–62], metals are involved in most of them and a metal free approach 

could be a useful alternative, specially for pharmaceuticals applications. 
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The antiproliferative activity of seven-membered rings products (5f + 8f, 8d, 8g, 12f and 8l) was 

evaluated against a panel of nine human tumor cell lines and one immortalized human cell line using a 

protocol described in the literature [63,64]. This methodology aims to evaluate a group of samples in 

many different tumor cell lines to find evidence of their antiproliferative profile. In order to prioritize 

further evaluations, a threshold for mean logTGI (Total Growth Inhibition) values (mean log  

TGI ≤ 1.50) was assumed [65].  

Compounds 5f + 8f, 8g and 8l can be classified as inactive considering the average antiproliferative 

effect (mean logTGI > 1.50) (Table 3). The mixture 5f + 8f (1:1) showed a selective growth inhibitory 

effect against glioma (U251, TGI = 4.8 µg·mL−1) and prostate (PC-3, TGI = 3.6 µg·mL−1) cell lines. 

Moreover, compounds 12f and 8d showed, respectively, a moderate (mean logTGI = 1.03) and a weak 

(mean logTGI = 1.35) citostatic effects. This suggests that the presence of methoxy groups in the ring 

fused to the seven-membered system can contribute to the antiproliferative activity and the inclusion of 

a methoxy group on the carbon of the ring fusion can increase this effect. 

Table 3. Antiproliferative activities (TGI, µg·mL−1) of ring expansion products a. 

 Doxorubicin  
    

5f and 8f (1:1) 8d 8g 8l 12f 

U251 0.20 4.8 8.2 43.2 50.7 5.2 

UACC-62 0.86 18.1 34.4 59.3 91.3 8.4 

MCF-7 1.2 14.0 25.9 52.8 70.1 6.0 

NCI-ADR/RES 3.5 19.8 42.0 57.9 79.9 6.5 

786-0 0.27 15.9 27.6 72.8 102.4 6.7 

NCI-H460 0.61 37.2 60.3 64.6 157.7 22.9 

PC-3 0.74 3.6 8.5 44.8 88.5 10.6 

HT29 11.4 17.5 24.4 55.7 124.6 34.6 

K562 0.96 >250 25.6 >250 167.6 46.3 

HaCat 0.16 7.5 11.8 48.1 206.0 4.1 

Mean LogTGI −0.081 >1.2 1.35 >1.8 2.02 1.03 
a Tumor human cell lines: U251 (glioma); UACC-62 (melanoma); MCF-7 (breast); NCI-ADR/RES (ovarian 

resistant to multiple drugs); 786-0 (kidney); NCI-H460 (lung, non small cells); PC-3 (prostate); HT29 

(colon); K562 (leukemia). Immortalized non-tumoral cell line: HaCat (human keratinocyte).  

3. Experimental Section 

General Information  

HTIB, HMDS and MeOH were used as received. THF (tetrahydrofuran) was freshly distilled from 

sodium/benzophenone, CH2Cl2 was distilled from CaH2 and stored with molecular sieves 3 Å. Vinyl 

magnesium bromide was purchased from Aldrich or prepared from vinyl bromide and magnesium 

turnings [66]. 1-Tetralone was distilled before used (bp: ~155 °C, 32 mmHg). Column chromatography 

was performed using silica gel 200–400 Mesh. TLC analyses were performed in silica gel 60 F254 

plates, using UV, I2, p-anisaldehyde, or phosphomolybdic acid solution for visualization. 1H- and  
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13C-NMR spectra were recorded on Bruker (Billerica, MA, USA) or Varian spectrometers (Palo Alto, 

CA, USA). IR spectra were measured on a Perkin-Elmer 1750-FT (Waltham, MA, USA). Gas 

chromatography analyses were performed in a HP-6890 series II (Agilent, Santa Clara, CA, USA) 

and/or Shimadzu-2010 (Kyoto, Japan). Melting points were done in Büchi Melting Point B-545 

(Flawil, Switzerland) and are uncorrected. HRMS analyses were performed on a Bruker Daltonics 

Microtof Eletrospray (Billerica, MA, USA). CHN analyses were performed with Perkin-Elmer CHN 

2400 equipment (Waltham, MA, USA). The percentage of bromine in the organic compounds was 

determined by volumetric titration using a solution of Hg(NO3)2 and diphenylcarbazone as indicator. 

The tests with KI paper were performed applying a drop of the reaction mixture in a filter paper 

previously impregnated with a solution of KI (10%), which was dried at 100 °C. The preparation of 

compounds 3b–c and 3h–k was reported in the previous communication [34]. 

1-Tosyl-2,3-dihydroquinolin-4(1H)-one (1l). To a mixture of 1,2,3,4-tetrahydroquinoline (3.7 mL, 4.0 g, 

30 mmol) in anhydrous pyridine (15 mL), was added TsCl (7.63 g, 40.0 mmol, 1.3 equiv) at rt. The 

mixture was stirred at 60 °C for 15.5 h. The temperature was increased to 110 °C and the mixture was 

stirred for 5.5 h. The reaction mixture was cooled to −5 °C and hot H2O (25 mL) was added, 

precipitating the crude product, which was filter under reduced pressure. The solid was washed with HCl 

(0.01 mol·L−1) and H2O, and dried in the air. The small and brownish crystals (9.808 g) were 

recrystallized with MeOH (200 mL), giving colorless crystals of 1-tosyl-1,2,3,4-tetrahydroquinoline [67] 

(7.15 g, 24.9 mmol, 83%). mp: 94.6–95.2 °C (lit.[67]: 91–92 °C).To a solution of 1-tosyl-1,2,3,4-

tetrahydroquinoline (1.56 g, 5.00 mmol) in acetone (22.5 mL) at 0 °C was added anhydrous MgSO4 

(1.51 g, 12.5 mmol, 2.5 equiv) and H2O (9.0 mL). Subsequently, KMnO4 (4.35 g, 27.5 mmol, 5.5 equiv) 

was added dropwise for 30 min. The mixture was stirred for 27 h at rt. The solid was filtered under 

reduced pressure, washed with CH2Cl2 and H2O. Saturated solution of K2S2O5 (50 mL) was added to 

the resulting solution. The solid was filtered under reduced pressure. The solution was extracted with 

CH2Cl2, washed with brine, and dried with anhydrous MgSO4. The solvent was removed under 

reduced pressure, giving 1l [68], as white crystals (1.18 g, 3.93 mmol, 79%). mp 141.1–141.9 °C (lit. [69] 

141–142 °C). 

5-Methoxy-1-vinyl-1,2,3,4-tetrahydronaphthalen-1-ol (2d). General Procedure for the Preparation of 

Allylic Alcohols. To a solution of 5-methoxy-1-tetralone (3.52 g, 20.0 mmol) in anhydrous THF (20 mL) 

in a Schlenk flask, was added CH2=CHMgBr in THF (1 mol·L−1, 50.0 mL, 50.0 mmol) at 0 °C. The 

mixture was stirred for 3–4 h at rt. Saturated solution of NH4Cl (32 mL) was added dropwise at 0 °C. 

The aqueous phase extracted with AcOEt, dried under anhydrous MgSO4, filtered, and the solvent was 

removed under reduced pressure. The crude product was purified by flash column chromatography 

(hexanes/AcOEt, 4:1), giving 2d (2.97 g, 14.6 mmol, 73%), as colorless oil. IR (film) ν/cm−1 1257, 

1467, 1583, 2938, 3430; 1H-NMR (300 MHz, CDCl3) δ 1.79–1.98 (m, 5H), 2.53–2.83 (m, 2H), 3.82 (s, 

3H), 5.19 (dd, 1H, J = 1.7, 10.8), 5.29 (dd, 1H, J = 1.7, 17.1), 6.04 (dd, 1H, J = 10.8, 17.1), 6.75 (dd, 

1H, J = 0.9, 8.1), 7.00–7.03 (m, 1H), 7.17 (t, 1H, J = 8.1); 13C-NMR (75 MHz, CDCl3) δ 18.5, 23.2, 

37.3, 55.4, 73.3, 108.5, 113.1, 119.7, 126.2, 126.4, 141.0, 144.8, 156.9; LRMS m/z (%) 63 (18), 115 

(98), 128 (54), 141 (58), 155 (65), 171 (55), 186 (100); HRMS (ESI) m/z, calcd for [C13H16O2+Na]+ 

227.1048, found: 227.1039. 
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((5-Methoxy-1-vinyl-1,2,3,4-tetrahydronaphthalen-1-yl)oxy)trimethylsilane (3d). General Procedure 

for the Protection with a TMS group. A solution of 2d (2.86 g, 14.0 mmol), I2 (a crystal) in anhydrous 

CH2Cl2 (56 mL) was added dropwise for 5 min to a solution of HMDS (2.4 mL, 11 mmol) in 

anhydrous CH2Cl2 (14 mL). This mixture was stirred for 30 min at rt and Na2S2O3 (4.2 g) was added. 

The mixture became clear and was stirred for 30 min. The mixture was filtered through a silica pad  

(5 × 2 cm) using CH2Cl2 as eluent. The solvent was removed under reduced pressure and the product 

was purified by flash column chromatography (hexanes/AcOEt, 17:3), giving 3d (1.60 g, 5.79 mmol, 

41%) as a slightly yellow oil. IR (film) ν/cm−1 837, 1046, 1257, 1457, 1584, 2941; 1H-NMR (300 MHz, 

CDCl3) δ −0.04 (s, 9H), 1.70–1.85 (m, 1H), 1.87–1.99 (m, 3H), 2.56–2.78 (m, 2H), 3.81 (s, 3H), 5.05 

(dd, 1H, J = 1.8, 16.8), 5.09 (dd, 1H, J = 1.8, 10.5), 6.04 (dd, 1H, J = 10.5, 16.8), 6.71 (dd, 1H,  

J = 1.2, 7.8), 7.04 (dd, 1H, J = 1.2, 7.8), 7.13 (t, 1H, J = 7.8); 13C-NMR (75 MHz, CDCl3) δ 2.2, 18.9, 

23.0, 37.4, 55.3, 76.4, 108.1, 113.0, 120.9, 125.7, 126.1, 141.4, 145.7, 156.6; LRMS m/z (%) 73 (100), 

115 (23), 128 (17), 158 (34), 171 (17), 186 (54), 276 (M+•, 11), 248 (40); HRMS (ESI) m/z, calcd for 

[C16H24O2Si+Na]+: 299.1443, found: 299.1442. 

((6,7-Dimethoxy-1-vinyl-1,2,3,4-tetrahydronaphthalen-1-yl)oxy)trimethylsilane (3f). The general 

procedure was followed using 6,7-dimethoxy-1-tetralone (2.12 g, 10.0 mmol), THF (17 mL), and 

CH2=CHMgBr (1 M in THF, 27.2 mL, 27.2 mmol). A solution of the crude product (2.69 g) in anhydrous 

CH2Cl2 (10 mL) was added dropwise for 5 min to a solution of HMDS (1.7 mL, 8.4 mmol) and of I2 (a 

crystal) in anhydrous CH2Cl2 (40 mL). This mixture was stirred for 30 min at rt and Na2S2O3 (3.11 g) 

was added. The mixture became clear and was stirred for 30 min. The mixture was filtered through a 

silica pad (5 × 2 cm) using CH2Cl2 as eluent. The solvent was removed under reduced pressure and the 

product was purified by flash column chromatography (hexanes/AcOEt, 3:2), giving 3f, as a white 

solid (1.81 g, 5.91 mmol, 59%). mp 48.5–49.7 °C; IR (film) ν/cm−1 840, 910, 928, 1032, 1049, 1116, 

1137, 1216, 1261, 1462, 1516, 2952, 3001; 1H-NMR (300 MHz, CDCl3) δ −0.03 (s, 9H), 1.71–1.84 

(m, 1H), 1.87–1.98 (m, 3H), 2.62–2.79 (m, 2H), 3.83 (s, 3H), 3.85 (s, 3H), 5.06 (dd, 1H, J = 1.8, 16.8), 

5.09 (dd, 1H, J = 1.8, 10.5), 6.02 (dd, 1H, J = 10.5, 16.8), 6.52 (s, 1H), 6.89 (s, 1H); 13C NMR (75 MHz, 

CDCl3) δ 2.2, 19.8, 29.1, 38.0, 55.7 (2C), 76.4, 110.7, 111.5, 112.9, 129.4, 132.0, 145.8, 146.8, 148.1; 

anal. calcd for C17H26O3Si: C, 66.62; H, 8.55, found: C, 67.03; H, 8.69 (% H); LRMS m/z (%) 45 (41), 

73 (100), 115 (21), 128 (16), 188 (16), 216 (17), 179 (39), 306 (M+•, 6); HRMS (ESI) m/z, calcd for 

[C17H26O3Si+Na]+: 329.1549, found: 329.1552. 

((5-Bromo-1-vinyl-1,2,3,4-tetrahydronaphthalen-1-yl)oxy)trimethylsilane (3g). The general procedure 

was followed using 5-bromo-1-tetralone (0.788 g, 3.50 mmol), THF (25 mL), and CH2=CHMgBr (1 M 

in THF, 8.8 mL, 8.8 mmol, 2.5 equiv). The crude product was protected with a TMS group following 

the general procedure, but using HMDS (0.7 mL, 3.2 mmol) in CH2Cl2 (4 mL), and a solution of the 

crude alcohol (1.01 g) and I2 (a crystal) in CH2Cl2 (16 mL). The mixture was filtered through a silica 

pad (5 × 2 cm) using hexanes/Et2O (97:3) as eluent, giving 3g (0.783 g, 2.50 mmol, 71%), as slightly 

yellow oil. IR (film) ν/cm−1 756, 840, 900, 915, 1048, 1251, 2948; 1H-NMR (300 MHz, CDCl3) δ 

−0.02 (s, 9H), 1.77–1.86 (m, 1H), 1.89–2.01 (m, 3H), 2.67–2.82 (m, 2H), 4.99 (dd, 1H, J = 1.5, 17.1), 

5.12 (dd, 1H, J = 1.5, 10.5), 6.02 (dd, 1H, J = 10.5, 17.1), 7.03 (t, 1H, J = 7.8), 7.40 (dd, 1H, J = 1.2, 

7.8), 7.44 (dd, 1H, J = 1.2, 7.8); 13C-NMR (75 MHz, CDCl3) δ 2.2, 19.2, 30.3, 37.1, 77.2, 113.9, 
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124,9, 126.7, 128.1, 131.3, 136.4, 143.0, 145.3; anal. calcd for C15H21BrOSi: C, 55.38; H, 6.51; Br, 

24.56, found: C, 55.61; H, 6.55; Br, 24.67; LRMS m/z (%) 45 (33), 73 (100), 115 (21), 128 (21), 155 

(34), 296/298 (26), 326/324 (M+•, 6).  

1-Tosyl-4-((trimethylsilyl)oxy)-4-vinyl-1,2,3,4-tetrahydroquinoline (3l). The general procedure was 

followed using 1l (2.41 g, 8.00 mmol), THF (25 mL), and CH2=CHMgBr (1 M in THF, 20.0 mL,  

20.0 mmol, 2.5 equiv). The crude alcohol was purified by flash column chromatography (CH2Cl2 as 

eluent), giving the alcohol (0.631 g, 2.00 mmol, 25%), as yellow oil. The alcohol was protected 

following the general procedure, but using HMDS (0.34 mL, 1.6 mmol, 0.8 equiv) in CH2Cl2 (2 mL) 

and a solution of the alcohol (0.631 g, 2.00 mmol) and I2 (a crystal) in CH2Cl2 (8 mL). Compound 3l 

(0.800 g, 1.99 mmol, 100%) was obtained as brown oil. IR (film) ν/cm−1 840, 1166, 1357, 2957;  
1H-NMR (300 MHz, CDCl3) δ −0.13 (s, 9H), 1.64–1.82 (m, 2H), 2.37 (s, 3H), 3.86–4.01 (m, 2H), 4.89 

(dd, 1H, J = 1.5, 16.8), 5.00 (dd, 1H, J = 1.5, 10.5), 5.66 (dd, 1H, J = 10.5, 16.8), 7.08 (td, 1H,  

J = 1.2, 7.5, 11.7), 7.19–7.22 (m, 2H), 7.23–7.27 (m, 1H), 7.32 (dd, 1H, J = 1.8, 11.7), 7.55 (dt, 2H,  

J = 1.8, 8.4), 7.87 (dd, 1H, J = 0.9, 8.4); 13C-NMR (75 MHz, CDCl3) δ 2.2, 21.5, 35.2, 43.4, 73.8, 

114.4, 122.6, 124.1, 127.2 (2C), 128.3, 129.4, 129.6 (2C), 131.8, 136.1, 136.7, 143.7, 143.8; LRMS 

m/z (%) 45 (10), 73 (54), 91 (27), 130 (20), 156 (100), 218 (9), 246 (18), 401 (M+•, 3); HRMS (ESI) 

m/z, calcd for [C21H27NO3SSi+Na]+: 424.1379, found: 424.1376. 

1,5-Dimethoxy-5-(methoxymethyl)-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-one (8d). General 

Procedure for the Ring Expansion of TMS-protected Allylic Alcohols. To a solution of 3d (0.138 g, 

0.500 mmol) in MeOH (2 mL) was added HTIB (0.490 g, 1.25 mmol) at 0 °C. The progress of the 

reaction was monitored by filter paper impregnated with a solution of KI (10%). The reaction was 

stirred for 1 h at this temperature and 1 h at rt. The reaction was quenched with saturated solution of 

NaHCO3 (3 mL). The aqueous phase was extracted with CH2Cl2 (3 × 5 mL). The organic phase was 

washed with H2O and with brine. The organic phase was dried with anhydrous MgSO4, filtered and the 

solvent was removed under reduced pressure. The residue was purified by flash column 

chromatography (hexanes/Et2O, 2:3), giving 8d (0.0676 g, 0.256 mmol, 51%), as yellow oil. IR (film) 

ν/cm−1 1079, 1098, 1469, 1581, 1718, 2834, 2935; 1H-NMR (300 MHz, CDCl3) δ 1.67–1.82 (m, 1H), 

2.06–2.18 (m, 1H), 2.40–2.47 (m, 1H), 2.96 (dtd, 1H, J = 3.3, 13.2), 3.19 (s, 3H), 3.34–3.20 (m, 2H), 

3.39 (s, 3H), 3.81 (s, 3H), 3.98 (d, 1H, J = 9.6), 4.21 (d, 1H, J = 9.6), 6.83–6.89 (m, 2H), 7.19 (t, 1H,  

J = 8.1); 13C-NMR (75 MHz, CDCl3) δ 21.6, 27.5, 39.5, 51.2, 55.9, 59.7, 72.4, 87.6, 111.3, 119.3, 

127.0, 129.9, 136.2, 157.0, 210.1; LRMS m/z (%) 45 (56), 77 (22), 91 (29), 115 (25), 144 (41), 159 

(61), 172 (37), 191 (100), 219 (36), 264 (M+•, 5); HRMS (ESI) m/z, calcd for [C15H20O4+Na]+: 

287.1259, found: 287.1258. 

Oxidation of 3f with HTIB. The general procedure for ring expansion was followed, using HTIB  

(0.490 g, 1.25 mmol), solution of 3f (0.153 g, 0.500 mmol) and of PTSA (0.020 g, 0.12 mmol, 20 mol %) 

in AcOEt/MeOH (2:1, 3 mL) at −72 °C. The residue was purified by flash column chromatography 

(hexanes/AcOEt, 3:7), giving a mixture of 5f and 8f (0.100 g, 0.424 mmol, 76%), as yellow oil and 12f 

(0.015 g, 0.054 mmol, 10%), as white solid. 2,3-Dimethoxy-5-(methoxymethyl)-5,7,8,9-tetrahydro-

6H-benzo[7]annulen-6-one (5f): 1H-NMR (500 MHz, CDCl3) δ 1.88–1.95 (m, 1H), 2.05–2.11 (m, 1H), 
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2.54–2.58 (m, 1H), 2.67–2.72 (m, 1H), 2.84–2.94 (m, 2H), 3.38 (s, 3H), 3.83 (dd, 1H, J = 6.0, 9.0), 

3.87 (d, 6H, J = 2.0), 4.00–4.02 (m, 1H), 4.12 (dd, 1H, J = 7.5, 9.0), 6.64 (s, 1H), 6.71 (s, 1H);  
13C-NMR (125 MHz, CDCl3) δ 28.0, 32.6, 43.5, 55.9, 56.1, 56.6, 59.2, 71.2, 111.5, 113.1, 126.6, 

133.0, 147.6, 147.8, 209.3; HRMS (ESI) m/z, calcd for [C15H20O4+Na]+: 287.1259, found: 287.1259. 

2,3,5-Trimethoxy-5-(methoxymethyl)-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-one (8f): 1H-NMR 

(500 Hz, CDCl3) δ 1.80–1.87 (m, 1H), 2.12–2.19 (m, 1H), 2.44 (quin, 1H, J = 5.5), 2.63 (ddd, 1H, J = 3.5, 

6.5, 14.0), 3.19 (s, 3H), 3.24–3.32 (m, 2H), 3.42 (s, 3H), 3.88 (d, 6H, J = 2.0), 3.98 (d, 1H, J = 10.0), 4.20 

(d, 1H, J = 9.5), 6.62 (s, 1H), 6.67 (s, 1H); 13C-NMR (125 MHz, CDCl3) δ 28.9, 33.2, 39.4, 51.0, 55.8, 

56.1, 59.7, 72.1, 87.5, 110.8, 114.2, 126.3, 134.5, 147.3, 148.6, 209.9; HRMS (ESI) m/z, calcd for 

[C16H22O5+Na]+: 317.1365, found: 317.1364. trans-3,4a-Dimethoxy-9-(methoxymethyl)-4a,5,6,7-

tetrahydro-2H-benzo[7]annulene-2,8(9H)-dione (12f): mp 160.4–161.0 °C; IR (film) ν/cm−1 1091, 

1170, 1227, 1392, 1451, 1669, 1700, 2937; 1H-NMR (300 MHz, CDCl3) δ 1.46–1.55 (m, 1H), 1.67–1.76 

(m, 1H), 2.30–2.60 (m, 4H), 3.62 (dd, 1H, J = 7.2, 9.6), 3.71 (s, 3H), 3.98 (dd, 1H, J = 6.6, 9.6), 4.34 (t, 

1H, J = 6.9), 5.64 (s, 1H), 6.23 (d, 1H, J = 0.9); 13C-NMR (75 MHz, CDCl3) δ 17.8, 42.6, 42.9, 50.9, 

52.6, 55.1, 59.2, 69.9, 77.4, 118.7, 128.6, 151.7, 158.0, 180.1, 205.1; LRMS m/z (%) 39 (49), 51 (76), 

65 (44), 77 (84), 91 (100), 103 (42), 115 (57), 131 (42), 149 (51), 161 (54), 177 (65), 192 (40), 205 (60), 

220 (96), 233 (26), 248 (43); HRMS (ESI) m/z, calcd for [C15H20O5+Na]+: 303.1208, found: 303.1207. 

1-Bromo-5-methoxy-5-(methoxymethyl)-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-one (8g). To a solution 

of 3g (0.193 g, 0.481 mmol) and of PTSA (0.020 g, 0.12 mmol, 24 mol %) in MeOH (3 mL) was 

added HTIB (0.471 g, 1.20 mmol) at 0 °C. The mixture was stirred for 1 h. The temperature was 

increased to rt and the mixture was stirred for 2 h. The temperature was increased to 50 °C and the 

mixture was stirred for 3 h. The reaction was quenched with saturated solution of NaHCO3 (5 mL). 

The aqueous phase was extracted with CH2Cl2 (3 × 5 mL). The organic phase was washed with H2O 

and with brine. The organic phase was dried with anhydrous MgSO4, filtered and the solvent was 

removed under reduced pressure. The residue was purified by flash column chromatography 

(hexanes/AcOEt, 9:1), giving 8g (0.102 g, 0.325 mmol, 65%), as slightly yellow oil. IR (film) ν/cm−1 

744, 790, 1119, 1437, 1719, 2828, 2932; 1H-NMR (300 MHz, CDCl3) δ 1.78–2.14 (m, 2H), 2.38–2.48 

(m, 1H), 2.99–3.14 (m, 1H), 3.21 (s, 3H), 3.24–3.30 (m, 2H), 3.35 (s, 3H), 3.93 (d, 1H, J = 9.6), 4.12 

(d, 1H, J = 9.9), 7.11 (t, 1H, J = 7.8), 7.31 (dd, 1H, J = 1.2, 7.8), 7.57 (dd, 1H, J = 1.2, 7.8);13C-NMR 

(75 MHz, CDCl3) δ 26.0, 30.1, 38.6, 51.6, 59.7, 72.3, 86.5, 125.9, 126.9, 127.7, 133.4, 137.7, 139.4, 

209.1. LRMS m/z (%) 45 (62), 89 (18), 115 (34), 128 (100), 209 (16), 220 (17), 239/241 (33), 267/269 

(21), 312/314 (M+•, 5); HRMS (ESI) m/z, calcd for [C14H1779BrO3+Na]+: 335.0259, found: 335.0261, 

calcd for [C14H1781BrO3+Na]+: 337.0238, found: 337.0230. 

5-Methoxy-5-(methoxymethyl)-1-tosyl-1,2,3,5-tetrahydro-4H-benzo[b]azepin-4-one (8l). The reaction 

was performed as described for 8g, using a solution of 3l (0.197 g, 0.490 mmol) and of PTSA (0.020 g, 

0.12 mmol, 24 mol %) in MeOH (3 mL), and HTIB (0.481 g, 1.23 mmol). The residue was purified by 

flash column chromatography (hexanos/AcOEt/CH2Cl2, 5:1:4), giving 8l (0.135 g, 0.346 mmol, 69%), as 

slightly yellow solid.mp 100.4–100.7 °C; IR (film) ν/cm−1 1159, 1348, 1454, 1487, 1720, 2827, 2930; 
1H-NMR (300 MHz, CDCl3) δ 2.45 (s, 3H), 2.51–2.58 (m, 1H), 3.06–3.14 (m, 1H), 3.23 (s, 3H), 3.31 

(s, 3H), 3.73 (d, 1H, J = 10.8), 3.83 (bs, 2H), 4.19 (d, 1H, J = 10.5), 7.29–7.38 (m, 5H), 7.55–7.57 (m, 
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1H), 7.77 (dt, 2H, J = 1.8, 3.9, 8.4); 13C-NMR (75 MHz, CDCl3) δ 21.6, 38.8, 48.6, 52.5, 59.6, 72.5, 

85.4, 127.5, 127.7 (2C), 128.1, 129.3, 129.5, 129.8 (2C), 137.3 (2C), 144.0 (2C), 205.4; LRMS m/z 

(%) 45 (100), 65 (52), 77 (27), 91 (87), 130 (33), 389 (M+•, 1); HRMS (ESI) m/z, calcd for 

[C20H23NO5S+Na]+: 412.1195, found: 412.1182. 

The compounds 5f + 8f (1:1), 8d, 8g, 12, 15 and 22l were evaluated in vitro against a panel of nine 

cell lines [U251 (glioma); UACC-62 (melanoma); MCF-7 (breast); NCI-ADR/RES (ovarian resistant 

to multiple drugs); 786–0 (kidney); NCI-H460 (lung, non small cells); PC-3 (prostate); HT29 (colon); 

K562 (leukemia)] kindly provided by Frederick MA (National Cancer Institute, Bethesda, MD, USA) and 

the immortalized human keratinocytes (HaCat) cell line kindly provided by Prof. Dr. Ricardo Della Coletta 

(University of Campinas, UNICAMP, Campinas, Brazil). Stock and experimental cultures were grown 

in medium containing 5 mL RPMI 1640 (GIBCO BRL) supplemented with 5% fetal bovine serum 

(GIBCO BRL). Penicilin/Streptomicin mixture (1000 Um·L−1:1000 μg·mL−1, 1 mL L−1 RPMI) was added 

to the experimental cultures. Cells in 96-well plates (100 μL cells well−1) were exposed to sample 

concentrations in DMSO/RPMI (0.25, 2.5, 25, 250 μg·mL−1) in triplicate at 37 °C, 5% of CO2 in air for 

48 h. The final DMSO concentration did not affect cell viability. Doxorubicin (0.025 to 25 µg·mL−1) 

was used as positive control. Before (T0 plate) and after the sample addition (T1 plates), cells were 

fixed with 50% trichloroacetic acid, and cell proliferation was determined by spectrophotometric 

quantification (540 nm) of cellular protein using the sulforhodamine B assay. Using the dose-response 

curve for each cell line, the concentration that totally inhibits cell growth (TGI, expressed in µM) was 

determined through non-linear regression analysis using ORIGIN software version 8.0 (OriginLab 

Corporation, Northampton, MA, USA, 2007) [63,70]. 

4. Conclusions 

In conclusion, a metal-free approach for the synthesis of seven- and eight- membered rings through 

an iodine(III)-mediated ring expansion reaction was described. The substrates can be easily obtained 

from readily available starting materials. The amount of the oxidizer and the reaction conditions can be 

managed to obtain different products. Moreover, a short route to the synthesis of medium-ring lactones 

was developed. The antiproliferative activity of new seven-membered ring compounds was evaluated, 

and the results showed compound 12f as having a moderated citostatic effect. The results herein 

described have great potential for application in the chemical synthesis of seven-membered rings. 
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