Supplementary Materials

Identification Data of Compounds 6–10

Compound 6: sapindoside B

White amorphous powder; $[a]_D^{22}$ +10.0 (*c* 0.08, MeOH); ESI-MS (pos. ion mode) *m/z* 905 [M+Na]⁺; ESI-MS (neg. ion mode) *m/z* 881 [M–H]⁻, 917 [M+Cl]⁻; ESI-MS/MS (neg. ion mode, parent ion at *m/z* 881) *m/z* 749 [881–132]⁻, 603 [749–146]⁻, 471 [603–132]⁻. ¹H-NMR (500 MHz, pyridine-*d*₅) δ : 0.90, 0.91, 0.97, 0.99, 1.10, 1.22 (each 3H, s, CH₃), 1.53 (3H, d, *J* = 6.2 Hz, CH₃ of rha), 3.26 (1H, dd, *J* = 13.8, 4.0 Hz, H-18), 5.04 (1H, d, *J* = 6.7 Hz, H-1 of ara), 5.32 (1H, d, *J* = 7.6 Hz, H-1 of xyl), 5.44 (1H, br s, H-12), 6.31 (1H, br s, H-1 of rha); ¹³C-NMR data, see Table S1.

Compound 7: pulsatilla saponin D

White amorphous powder; $[\alpha]_D^{22}$ +16.4 (*c* 0.11, MeOH); ESI-MS (pos. ion mode) *m/z* 935 [M+Na]⁺; ESI-MS (neg. ion mode) *m/z* 911 [M–H]⁻, 947 [M+Cl]⁻; ESI-MS/MS (neg. ion mode, parent ion at *m/z* 911) *m/z* 765 [911–146]⁻, 749 [911–162]⁻, 603 [749–146]⁻, 471 [603–132]⁻. ¹H-NMR (500 MHz, pyridine-*d*₅) δ : 0.90, 0.91, 0.97, 0.99, 1.06, 1.20 (each 3H, s, CH₃), 1.63 (3H, d, *J* = 6.1 Hz, CH₃ of rha), 3.25 (1H, dd, *J* = 13.7, 3.4 Hz, H-18), 4.95 (1H, d, *J* = 6.8 Hz, H-1 of ara), 5.09 (1H, d, *J* = 7.9 Hz, H-1 of glc I), 5.44 (1H, br s, H-12), 6.24 (1H, br s, H-1 of rha); ¹³C-NMR data, see Table S1.

Compound 8: 3β -O-{ β -D-xylopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl-(1 \rightarrow 4)-[β -D-glucopyranosyl-(1 \rightarrow 4)]- α -L-arabinopyranosyl} oleanolic acid

White amorphous powder; $[\alpha]_D^{22}$ +14.4 (*c* 0.11, MeOH); ESI-MS (pos. ion mode) *m/z* 1051 [M+Na]⁺; ESI-MS (neg. ion mode) *m/z* 1027 [M–H]⁻; ¹H-NMR (500 MHz, pyridine-*d*₅) δ : 0.81, 0.94, 0.97, 0.99, 1.14, 1.29, 1.30 (each 3H, s, CH₃), 1.55 (3H, d, *J* = 6.2 Hz, CH₃ of Rha), 3.23 (1H, dd, *J* = 4.2, 13.9 Hz, H-3), 3.28 (1H, dd, *J* = 4.4, 11.8 Hz, H-18), 4.72 (1H, d, *J* = 7.1 Hz, H-1 of Ara), 5.10 (1H, d, *J* = 7.8 Hz, H-1 of Glc I), 5.34 (1H, d, *J* = 7.5 Hz, H-1 of Xyl), 5.44 (1H, br s, H-12), 6.32 (1H, s, H-1 of Rha); for ¹³C-NMR spectroscopic data, see Table S1.

Compound 9: sieboldianoside B

White amorphous powder; $[\alpha]_D^{22} -25.5$ (*c* 0.20, MeOH); ESI-MS (pos. ion mode) *m/z* 1359 [M+Na]⁺; ESI-MS (neg. ion mode) *m/z* 1335 [M–H]⁻; ¹H-NMR (500 MHz, pyridine-*d₅*) δ : 0.87 (6H, s, 2 × CH₃), 0.85, 1.06, 1.14, 1.23, 1.27 (each 3H, s, CH₃), 1.51 (3H, d, *J* = 6.1 Hz, CH₃ of 3-*O*-Rha), 1.67 (3H, d, *J* = 6.1 Hz, CH₃ of 28-*O*-Rha), 3.15 (1H, dd, *J* = 3.8, 13.2 Hz, H-18), 3.26 (1H, dd, *J* = 4.2, 11.7 Hz, H-3), 4.83 (1H, d, *J* = 7.0 Hz, H-1 of Ara), 4.97 (1H, d, *J* = 7.8 Hz, H-1 of 28-*O*-Glc III), 5.33 (1H, d, *J* = 7.8 Hz, H-1 of Xyl), 5.37 (1H, br s, H-12), 5.83 (1H, s, H-1 of 28-*O*-Rha), 6.22 (1H, d, *J* = 8.2 Hz, H-1 of 28-*O*-Glc III), 6.38 (1H, s, H-1 of 3-*O*-Rha); for ¹³C-NMR spectroscopic data, see Table S1.

Compound 10: 3-*O*- α -L-arabinopyranosyl gypsogenin 28-*O*- α -L-rhamnopyranosyl- $(1\rightarrow 4)$ - β -D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl ester

White amorphous powder; $[\alpha]_D^{22}$ +8.2 (*c* 0.25, MeOH); ESI-MS (pos. ion mode) *m/z* 1095 [M+Na]⁺; ESI-MS (neg. ion mode) *m/z* 1071 [M–H]⁻, 939 [1071–132]⁻, 601 [1071–146–162–162]⁻; ¹H-NMR (500 MHz, pyridine-*d*₅) δ : 0.85, 0.87, 0.89, 1.05, 1.21, 1.30 (each 3H, s, CH₃), 1.68 (3H, d, *J* = 6.1 Hz, CH₃ of Rha), 3.14 (1H, dd, *J* = 3.3, 13.4 Hz, H-18), 4.90 (1H, d, *J* = 7.0 Hz, H-1 of Ara), 4.97 (1H, d, *J* = 7.7 Hz, H-1 of Glc III), 5.39 (1H, br s, H-12), 5.82 (1H, s, H-1 of Rha), 6.21 (1H, d, *J* = 8.1 Hz, H-1 of Glc II); for ¹³C-NMR spectroscopic data, see Table S1.

С	6	7	8	9	10	С	6	7	8	9	10
1	38.9	38.9	38.8	38.8	38.2	3	82.9	72.4	82.9	82.8	
2	26.3	26.2	26.7	26.6	25.4	4	72.9	74.1	72.9	72.9	
3	81.0	81.0	88.6	88.6	81.5	5	69.7	69.6	69.6	69.6	
4	43.5	43.4	39.5	39.5	55.4	6	18.4	18.6	18.5	18.4	
5	47.6	47.7	56.0	55.9	47.8	Xyl					
6	18.0	18.1	18.5	18.5	20.7	1	107.5		107.5	107.5	
7	32.8	32.8	33.1	33.1	32.5	2	75.1		75.7	75.6	
8	39.7	39.7	39.7	39.8	40.2	3	78.3		78.5	78.4	
9	48.1	48.1	48.0	48.0	48.1	4	71.0		71.1	71.1	
10	36.8	36.8	37.0	37.0	36.3	5	67.3		67.4	67.4	
11	23.6	23.6	23.7	23.7	23.4	Glc I					
12	122.5	122.5	122.4	122.8	122.5	1		106.7	106.6		
13	144.7	144.8	144.8	144.0	144.0	2		75.4	75.4		
14	42.1	42.1	42.1	42.1	42.2	3		78.5	78.4		
15	28.3	28.3	28.3	28.2	28.2	4		71.1	71.2		
16	23.8	23.8	23.7	23.3	23.5	5		78.7	78.8		
17	46.6	46.6	46.7	47.0	47.0	6		62.4	62.5		
18	41.9	41.9	42.0	41.6	41.6	28-O-sugar					
19	46.3	46.3	46.5	46.2	46.1	Glc II					
20	30.9	30.9	30.9	30.7	30.7	1				95.6	95.5
21	34.1	34.1	34.2	33.9	33.9	2				73.8	73.8
22	33.1	33.2	33.2	32.5	32.4	3				78.7	78.6
23	63.9	63.8	28.1	28.1	206.4	4				70.8	70.7
24	14.1	14.0	17.2	17.2	10.4	5				78.0	78.0
25	16.0	16.0	15.5	15.6	15.6	6				69.1	69.1
26	17.4	17.4	17.4	17.4	17.4	Glc III					
27	26.1	26.1	26.1	26.0	26.1	1				104.8	104.8
28	180.2	180.2	180.3	176.5	176.6	2				75.3	75.3
29	33.2	33.2	33.3	33.1	33.0	3				76.4	76.4
30	23.7	23.7	23.7	23.6	23.7	4				78.2	78.1
3-0	9-sugar					5				77.1	77.1
Ara	ı					6				61.2	61.2

Table S1. ¹³C-NMR (125 MHz) chemical shifts of saponins 6–10 in pyridine- d_5 .

С	6	7	8	9	10	С	6	7	8	9	10
1	104.6	104.4	105.2	105.2	105.3	Rha II					
2	75.6	76.2	75.5	75.0	72.4	1				102.7	102.7
3	75.1	75.0	74.7	74.7	74.3	2				72.5	72.5
4	69.5	80.4	80.2	69.3	69.2	3				72.7	72.7
5	66.2	65.4	65.2	65.7	66.7	4				73.9	73.9
Rha I						5				70.2	70.2
1	101.3	101.6	101.4	101.3		6				18.5	18.5
2	71.9	72.2	71.8	71.9							

Table S1. Cont.

Figure S1. Key NOESY and HMBC correlations for compound 2.

Figure S2. Key NOESY and HMBC correlations for compound 3.

Figure S3. Key NOESY and HMBC correlations for compound 4.

