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Abstract: The past decade has seen growing interest in the investigation of peptides with 

antimicrobial activity (AMPs). One approach utilized in infection control is incorporation 

of antimicrobial agents conjugated with the polymers. This review presents the recent 

developments on polymeric AMP carriers and their potential applications in the biomedical 

and pharmaceutical fields. 
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1. Introduction 

In the past years, technology of natural, semi- and synthetic polymeric materials with antimicrobial 

activity represents one of the most rapidly advancing areas in pharmacy, medicine and biomedicine. 

According to WHO data, the number of deaths caused by infectious illnesses is still increasing. 

Generally, infectious diseases are responsible for deaths of more people than any other single cause. 

The infections are usually triggered by bacteria, viruses, fungi, and protozoa. Polymeric materials with 

antimicrobial activity are used in many fields, particularly in medical device technology, drug delivery 

systems, health care products, hygienic applications, textiles, water purification systems, food 

packaging, etc. [1–8]. 
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One of the most problematic issues faced by modern medicine are resistant microorganisms that 

mutate rapidly and easily, making their elimination difficult. Antibiotic-resistant bacteria are an 

important threat to public health due to the slow development of new antibiotics to replace those that 

become ineffective [1–8]. Therefore, polymer or bioorganic chemists are still actively involved in 

designing and obtaining new effective drugs with antimicrobial activity and biocides or drug delivery 

systems containing those active substances. One particular approach towards an improved use of drugs 

and biocides for therapeutic applications is use of polymeric carriers or polymer-active substance 

conjugate systems. The polymeric carriers and macromolecular conjugates of substances with 

antimicrobial activity exhibit unique pharmacokinetics, distribution, and pharmacological efficacy [9]. 

There are currently two main methods for obtaining polymeric systems with antimicrobial 

substances (AS). The first method consists of using AS-immobilized polymeric matrices. AS can be 

immobilized via incorporation into a variety of polymeric materials or adsorption onto a variety of 

surfaces where they still retain their ability to bind and kill germs [10]. The rate of AS release depends 

on the hydrophilic-hydrophobic properties, molecular weight and polydispersity of the polymer as well 

as the process conditions (pH, temperature, presence of enzymes, etc.) [9]. The second method 

involves linking of an AS onto a polymer via covalent bonds. There are several types of labile bonds 

(e.g., carbonate, ester, urethane, orthoester, amide, ether, anhydride) that can be used to form 

biodegradable or bioresorbable polymeric AS conjugates [9]. 

The most promising group of substances which could be used in AS carrier technology are 

biodegradable and bioresorbable polymers. These polymers are considered to be very attractive 

because they can undergo hydrolysis to produce non-toxic compounds metabolized in vivo and in the 

environment [9]. Moreover, they exhibit unique kinetics of AS release and distribution and efficacy. 

A lot of biodegradable or bioresorbable natural (e.g., alginic acid, chitosan, collagen, fibrin, gelatin, 

hyaluronic acid, polyhydroxyalkanoates, starch), semi-synthetic (e.g., pulp modified derivatives, 

cyclodextrins) and synthetic polymers (e.g., aliphatic polyesters or polycarbonates, aliphatic 

polyurethanes, polyorthoesters, poly(ethylene oxide), copolymers of cyclic esters and carbonates) are 

used as AS carriers [9–17]. Synthetic biodegradable polymers appear to be a highly attractive option 

due to their versatility, flexibility and molecular parameters compared to natural biodegradable 

biopolymers or their modified derivatives. Polyesters (e.g., polylactide (PLA), polyglycolide (PGA), 

poly(ε-caprolactone) (PCL) and poly(γ-valerolactone) (PVL), or copolymers of rac-lactide, L-lactide, 

ε-caprolactone and glycolide) are representatives of a family of polymers widely utilized in AS 

delivery systems due to their biodegradability and biocompatibility features [9–17]. 

The antimicrobial peptides (AMPs) are an important group of antimicrobial substances. The term 

“AMPs” is used to denote a large number of small proteins that can kill or inhibit growth of various 

microorganisms. Many different AMPs from various families have been discovered in non-vertebrates 

and vertebrates. They are characterized by a broad spectrum of antimicrobial activity against bacteria 

(both Gram-positive and Gram-negative ones), viruses, and fungi [18–23]. AMPs are characterized by 

their small size (12–50 amino acids), the arginine and lysine residues responsible for their positive 

charge, and an amphipathic structure that enables them to interact with microbial membranes [18]. 

There are several hypotheses describing the mechanism of antimicrobial, antiviral or antifungal 

activity of AMPs [18]. Four distinct groups of AMPs have been discovered: β-sheet peptides stabilized 

by two to four disulfide bridges (e.g., human α- and β-defensins, plectasin or protegrins), α-helical 
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peptides (e.g., LL-37, cecropins or magainins), extended structures rich in glycine, proline,  

tryptophan, arginine or histidine (e.g., indolicidin), and loop peptides with one or disulfide bridge  

(e.g., bacteriocins) [24,25]. AMPs can be synthesized nonribosomally (e.g., gramicidins, polymyxins, 

bacitracins, glycopeptides) or ribosomally [24]. The practical applications of AMPs are highly 

interesting. About 1,000 natural AMPs may serve as lead compounds in future development although 

currently only a few AMPs are approved for clinical use [18,26]. 

Peptidomimetic systems with antimicrobial activity are interesting and perspective promising 

groups of antimicrobial materials. AMP mimetics are constructed from peptoids, β-peptides, 

arylamides, oligomers, or phenylene ethynylenes. These substances are designed to capture the central 

physicochemical features of their natural AMP archetypes thereby mimicking peptide activity and 

function [20,27–30]. Peptoids are active against e.g., against Mycobacterium bovis bacille Calmette–Guérin 

(BCG), Mycobacterium tuberculosis, Pseudomonas aeruginosa biofilms [31–33]. Oligo-acyl-lysine 

derivatives are active in vitro and in vivo against Gram-negative bacteria, with no haemolytic activity [34]. 

Phenylalkyne and arylamide compounds express antibacterial, antifungal, and anti-inflammatory 

activities [35,36]. A number of recent review papers have been devoted to describing the potential and 

mechanisms of action of peptidomimetic systems [10,37,38]. 

Recently, many studies have focused on AMPs and AMP polymeric systems due to their  

unique properties. In the coming years, the number of AMPs’ applications will certainly increase. The 

new developments will probably concern AMP delivery systems (mainly transdermal therapeutic 

systems) [39–42]. Many peptides are already used in medicine, e.g., daptomycin (Cubicin®, Cubist 

Pharmaceuticals, Lexington, MA, USA), dermicydin 1 (University of Eberharda Karola, Tübingen, 

Germany), gramicidin (many manufacturers), human β-defensin 3 (Harvard Medical School, Boston, 

MA, USA), lactoferrin (Pet King Brands, Westmont, IL, USA), lysostaphin (Biosynexus, Gaithersburg, 

MD, USA), lizozyme (Neova Technologies Inc, Abbotsford, BC, Canada), Nisin A (Biosynexus), 

pexiganan (Genaera Corporation, New Hope, PA, USA), plectasin (Novozymes, Bagsværd, Denmark), 

polymyxin E (many manufacturers), psoriazyna (Christiana-Albrechta University, Kiel, Germany),  

P-113 (Demegen, Pittsburgh, PA, USA). However, there are a lot of new antimicrobial peptides 

displaying interesting properties, which are currently under development, such as plectasin NZ2114. It 

has yet to enter clinical development, but pre-clinical studies suggest that it possesses potent 

bactericidal activity against Gram-positive pathogens. 

As the therapeutic efficacy and safety of ASs administered by conventional methods is regrettably 

limited, drug delivery systems (also AMPs) have been a centre of considerable attention and 

development efforts. The application of the polymer carriers characterized with the required kinetics of 

AMP release (constant time, delayed time, or pulsating release) becomes possible. In this article, we 

aim to demonstrate some of the needs and current directions in developing polymeric AMP carriers 

and their potential applications in the biomedical or pharmaceutical fields.  

2. Polymeric Systems of Peptides with Antimicrobial Activity 

There are many methods for obtaining polymeric AMP systems. AMPs could be immobilized via 

incorporation into a variety of materials or adsorption onto a variety of surfaces and still retain their 

ability to bind and kill bacteria [10]. AMPs can be targeted through loading them in nanoparticulate 
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systems with selective delivery capacities. These include dendritic polymers, liposomes, hydrogels, 

nanospheres, nanocapsules, and carbon nanotubes [43,44]. Peptide encapsulation or adsorption on 

micro- and nanocarriers has been achieved by various methods like emulsion polymerization, 

interfacial polymerization, solvent evaporation, salting out, coacervation, combination of sonication 

and layer by layer technology, solvent displacement, or solvent diffusion etc. [45,46]. 

The release of AMPs from the degradable delivery systems can be governed by several mechanisms: 

pure peptide diffusion through the polymer matrix, degradation of the polymer (erosion) and influence 

of the osmotic pressure (Table 1). However, many biodegradable polymer-AMP delivery systems are 

very complex and drug release is often the result of a combination of several mechanisms [47]. The 

kinetic release of AMPs can be different and depends on many factors, e.g., molecular mass  

and polydispersity of polymer, morphology, environment, presence of enzymes, etc. For example, the 

zero-order release profile depicts the constant release of AMPs from the device over time. However, 

the first-order release profile is typical of diffusion-controlled systems and is characterized by a 

decreasing release rate with time [47]. 

Table 1. Polymeric carriers of peptides. 

Release Mechanism Polymer Examples 

bulk and  

surface erosion mechanism 

copolymers of lactide and glycolide, polylactide, poly(lactic acid),  

gelatin, copolymers of poly(ethylene glycol) and lactide or glycolide,  

polyanhydrides, poly(ortho ester)s 

blends of poly(ethylene glycol) and poly(lactic acid), poly(ethylene glycol)-b-

poly(propylene glycol)-b-poly(ethylene glycol) and poly(lactic acid),  

poly(vinyl alcohol), and copolymers of lactide and glycolide  

diffusion mechanism 

hydrogel systems: poly(ethylene glycol), poly(ethylene glycol)-b-poly(propylene 

glycol)-b-poly(ethylene glycol), polyvinylpyrrolidone, poly(vinyl alcohol), 

copylymers of maleic anhydride and alkyl vinyl ether, cellulose, hyaluronic acid 

derivatives, alginate, collagen, gelatin, albumin, starches, dextrans 

osmotic pressure polyurethanes, polysiloxanes 

Incorporation is the most popular method for preparing immobilized AMPs. In [48] the 

incorporation and release of ponericin G1 (amino acid sequence: GWKDWAKKAGGWLKKKGPG 

MAKAALKAAMQ) from hydrolytically degradable matrixes (composed of poly(β-amino ester), 

chondroitin sulfate, alginic acid and dextran sulfate)) was described. The films were effective in 

inhibition of the growth of Staphylococcus aureus, which commonly causes infections. Additionally, 

the film-coated substrates inhibited S. aureus attachment, a necessary step in preventing the formation 

of biofilms on surfaces. 

The mixture of simvastatin hydroxyacid (SIM), parathyroid hormone (1–34) (PTH(1–34)), and the 

antimicrobial peptide cecropin B (CB) was also incorporated using a complexation polymer system 

composed of cellulose acetate phthalate (CAP) and Pluronic F-127 (PF-127) (blend ratio, 7:3). It was 

found that with CAP/PF-127 microspheres loaded with CB and SIM, CB and PTH(1–34), or SIM and 

PTH(1–34), intermittent release with five distinguishable peaks for each of the two molecules was 

achieved [49]. 
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Recently, a WLBU2 peptide antibiotic, a 24-aminoacid peptide derived from lentivirus lytic peptide 

with broad activity against both Gram-positive and Gram-negative bacteria, was incorporated into a 

bioerodible polymer capable of localized drug delivery [50–52]. Furthermore, WLBU2 has been 

shown to be effective against oral bacteria [53]. The interaction of WLBU2A with bioerodible 

association polymer comprising of cellulose acetate phthalate (CAP) and Pluronic® F-127 (PF-127) 

was also examined [44]. The intrinsic antimicrobial activity of CAP/PF-127 and the combined effects 

of the polymer and WLBU2 were examined using Streptococcus gordonii, a species involved in early 

colonisation of tooth surfaces. It was found that interaction between the WLBU2 and the CAP/PF-127 

polymer blend reduced the bactericidal effect of the peptide on the oral bacterium S. gordonii, even 

though the polymer itself is bacteriostatic [44]. 

AMPs can be incorporated into polymeric films to retard spoilage and increase food preservation 

times [10]. In polyethylene film, nisin inhibits the growth of Brochothrix thermosphacta on beef 

surfaces at 4 °C for up to 21 days [54]. In polyelectrolyte multilayer films, AMPs (like the defensin 

from Anopheles gambiae mosquitoes) reduces the growth of Escherichia coli by about 79% and 

Micrococcus luteus by about 86% in growth assays. Insect defenses are members of a widely 

distributed family of AMPs (containing from 36 to 46 amino acids) with a typical pattern of six 

cysteine residues and three disulfide bridges [10,55]. In polyelectrolyte multilayer films on silicon 

wafers, gramicidin A both prevents the growth of Enterococcus faecalis and lyses the microbial cells 

that do attach [10,56]. 

AMPs can also be incorporated into resins or brush layers and used as contact-active cationic 

antimicrobial surfaces [10,57,58]. The model peptide KLAL and magainin-derived peptide MK5E 

immobilized on resins have antimicrobial activity towards E. coli and Bacillus subtilis [10,57]. It was 

found that the immobilized peptides reduce the antimicrobial activity but not the spectrum of activity. 

Longer spacers between the resin surface and KLAL or MK5E and the chain position of immobilization 

are more important to antimicrobial activity than the surface density of the peptides [10,57]. Magainin I 

incorporated into 2-(2-methoxyethoxy)ethyl methacrylate and hydroxyl-terminated poly(ethylene 

glycol) methacrylate retains antibacterial activity against the food-borne disease-inducing microorganisms 

Listeria ivanovii and Bacillus cereus [10,59]. 

Recently, we found that aliphatic polyesters or poly(ester-carbonate)s are satisfactory carriers for 

citropin. The biodegradable or bioresorbable polymeric carriers have been obtained by the ring-opening 

polymerization of ε-caprolactone (CL), rac-lactide (rac-LA), L-lactide (LLA), glycolide (GLY), and 

trimethylene carbonate (TMC). The degree of degradation of polyester- and poly(ester-carbonate)s 

carriers of citropin has been tested in vitro under different conditions. The results obtained demonstrate 

that the homo- and copolymers of CL, rac-LA, LLA, GLY and TMC are interesting materials for  

the controlled release of citropin. Extra experimental details and arguments will be given in our  

subsequent papers. 

Adsorption is the second method for obtaining immobilized AMPs. AMPs can be adsorbed to surfaces 

with proposed uses as contact-active cationic antimicrobial surfaces [10]. Nisin adsorbed e.g., onto 

poly(ethylene terephthalate) and rubber surfaces inhibits the growth of Enterococcus hirae. Nisaplin—a 

congener of nisin—adsorbed onto surfaces reduces the attachment of Listeria monocytogenes [10,60]. 

Microbial counts of skim milk in nisin-adsorbed poly(ethylene terephthalate) bottles are significantly 

lower after 24 days of refrigerated storage [10,60]. 
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Encapsulation is another method for producing polymeric AMPs systems. AMPs (e.g., LL-37) can 

be encapsulated within silica or titania nanoparticles to create bionanocomposite materials with 

antimicrobial activity for use as broad-spectrum antifouling materials or cosmetics with antimicrobial 

and sunscreen properties [10,61]. Lysozyme catalysed the precipitation of silica from tetramethoxysilane 

to form interconnected nanospheres entrapping the biologically active substances. LL-37 (amino acid 

sequence: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) in silica precipitated from tetraethyl 

orthosilicate is slowly released and has high antimicrobial activity against E. coli and S. aureus, low 

haemolytic activity for erythrocytes and low cytotoxicity against keratinocytes [10,62]. 

Immobilized AMPs can be also used as biosensors. Cecropin A (amino acid  

sequence: KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK-NH2), magainin I (amino acid 

sequence: GIGKFLHSAGKFGKAFVGEIMKS), and parasin (amino acid sequence: H-KGRG 

KQGGKVRAKAKTRSS-OH) immobilized on silanised glass slides with bifunctional  

N-(-maleimidobutyryloxy) succinimide ester spacers binds E. coli O157:H7 and Salmonella enterica 

serovar Typhimurium (detection limits were 0.5–5.0 × 105 colony-forming units (CFU)/mL for E. coli 

and 0.1–5.0 × 106 CFU/mL for S. enterica serovar Typhimurium) [10,63,64]. 

AMPs can be immobilized and their proposed uses include denture materials, which could form 

preventive biofilms. AMPs immobilized to titanium surfaces may serve to shorten the period of 

osseointegration of implants and reduce colonization of periodontopathogens on implant surfaces [10,65–67]. 

Immobilised histatin 5 (amino acid sequence: DSHAKRHHGYKRKFHEKHHSHRGY), immobilised 

conjugated peptides of histatin 5/titanium-binding peptide and lactoferricin/titanium-binding peptide 

reduces colonisation of Porphyromonas gingivalis and enhance the mRNA expression of Runx-2, OPN 

and ALPase in osteoblastic cells [10,65–67]. 

Polymeric gels can be used as controlled release media for AMP systems. For example, 

poly(methacrylic acid) (PMAA) ultrathin hydrogel coatings that release antimicrobial agents (AmAs) 

in response to pH variations have been obtained by Libera et al. AmAs included gentamicin and an 

antibacterial cationic peptide L5. It was found that L5 retained its antibacterial activity toward 

planktonic Staphylococcus epidermidis after released from PMAA hydrogels [68–70]. 

AMPs can be immobilized onto polymeric solid supports either physically (adsorption or  

“layer-by-layer” assembly) or chemically (covalent bonds) [71]. In the “layer-by-layer” method, AMPs 

are sandwiched between two polyionic polymers. The diffusion process of the embedded AMPs in the 

multilayer materials is more complex than diffusion in solutions. Additional factors such as the 

tortuosity of the diffusion pathway, assembly thickness and peptide-polymer interactions can 

significantly influence the diffusion process [71–74]. The multilayer assembly is effective in 

preventing bacterial growth through controllable and continuous release of AMPs to the interface, but 

the long-term stability of these assemblies is still largely undocumented [57,71,73,75,76]. 

3. Macromolecular Peptide Conjugates with Antimicrobial Activity 

As mentioned above, AMPs may be also delivered in the form of covalent conjugates with 

polymers. In 1975, Ringsdorf proposed a model for the rational design of polymeric prodrugs [9,77]. 

His model is based on the covalent link between the drug and a macromolecular backbone through a 

labile bond. Figure 1 shows a scheme of the Ringsdorf model, where a biostable or a biodegradable 
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polymer backbone carries three different units. The macromolecule consists of the first region-devices 

controlling physicochemical properties; the second region in which the drug is linked to the polymer 

chain, and the third area that incorporates a transport system whose function is to carry the whole 

polymer to the target cells or site of pharmacological action [77]. In general, the molecule of an 

antimicrobial substance could be incorporate into polymer chain, might be end-capped or may form a 

pendant group of the macromolecular chain (Figure 2). 

Figure 1. Ringsdorf model of synthetic polymer prodrugs. 

polymer chain

molecule of active substance 

linker

homing device

device for controlling
physicochemical properties

 

Figure 2. Structure of macromolecular conjugates of active substances. 

antimicrobial substance polymer chain

 

Different strategies for the preparation of AMP-polymer conjugates are known, namely the 

coupling method (peptide segments are coupled to the preformed polymer blocks using one or multiple 

reactive sites), the polymerization method (the synthetic polymer block is grown in situ from the 

peptide segment), the inverse conjugation method (the peptide is sequentially assembled on a 

preformed synthetic polymer), and the macromonomer method (the polymerization of short peptide 

segments that possess a polymerizable functionality and lead to comb structures). The different 

methods can be performed using solution-phase chemistry or in a solid-phase supported manner [19,23]. 
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Polymer candidates for AMPs-macromolecular conjugate preparation should fulfil a number of 

requirements: the availability of suitable functional groups for the covalent coupling with peptides, 

biocompatibility, biodegradability or a molecular weight below the renal excretion limit [9]. 

Poly(ethylene glycol) (PEO) or copolymers of ethylene glycol and propylene glycol are the most 

often used substances in the synthesis of macromolecular conjugates of AMPs. PEO-b-PPO-b-PEO 

triblock copolymers were covalently linked with nisin (a polycyclic antibacterial peptide with 34 

amino acid residues used as a food preservative; in addition, it is a rare example of a “broad-spectrum” 

bacteriocin effective against many Gram-positive organisms, including lactic acid bacteria, L. monocytogenes, 

S. aureus, B. cereus, Clostridium botulinum, etc.) [78]. Thiolated-nisin prepared as mentioned above 

was reacted with an end-group-activated PluronicR F108 (MW = 14 600 g/mol, HO-(CH2CH2O)129 

(CH(CH3)CH2O))56-(CH2CH2O)129H) that had been modified by the conversion of terminal hydroxyl 

groups of the PEO chains to pyridyl disulfide groups (Figure 3) [78,79]. The antibacterial activity  

of the modified-nisin copolymer was determined by an agar well diffusion assay against  

Pediococcus pentosaceus bacteria. It was found that the nisin linked to the modified copolymer showed 

activity similar to that observed in a simply blended sample [8,78]. 

Figure 3. Synthesis scheme of polymeric conjugates of nisin. 
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Brushes of 2-(2-methoxyethoxy)ethyl methacrylate and hydroxy-terminated poly(ethylene glycol) 

methacrylate statistical copolymer were functionalized with magainin I. The antibacterial activity of 

these materials was tested against the bacteria L. ivanovii and B. cereus. The results have indicated a 

strong biocidal effect, even for the low degree of peptide incorporation [8]. 
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Polystyrene resin beads with surface-grafted poly(ethylene glycol) (PEG) were covalently linked 

with an antimicrobial peptide with amino sequence HOOC-LKLLKKLLKLLKKL-NH3. The AMP 

was composed of eight lysine and seven leucine (6K8L) residues. The peptide was synthesized by the 

Fmoc method (solid-phase peptide synthesis SPPS) at the terminal end of the PEG spacer after the 

PEG had been attached to the PS. The carboxyl end of the first amino acid residue (Leu) was  

esterified to the free end of the PEG. Coupling of each subsequent amino acid was accomplished using 

2-(H-benzotriazole-1-yl)-1,1,3,3 tetramethyluronium tetrafluoroborate, 1-hydroxybenzotriazole and  

N-methylmorpholine. The received materials were tested against B. subtilis, E. coli, L. monocytogenes, 

Pseudomonas fluorescence, Salmonella typhimurium, Serratia liquefaciens, S. aureus, and 

Kluyveromyces marxianus yeast, showing an antimicrobial activity directly related to the concentration 

of the modified PS, pH medium and the exposure time [80]. 

Synthesis of a triblock bioconjugate with a different arrangement of the blocks was described by 

Becker [81]. The macromolecular conjugate consisted a terminal tritrpticin (amino acid sequence: 

VRRFPWWWPFLRR) segment with an amphiphilic copolymer. The tritrpticin-b-poly(acrylic acid)-b-

poly(styrene) assembled in water into micellar aggregates, mainly driven by the amphiphilicity of the 

block copolymer. The self-assembly of the triblock macromolecular conjugate led to the positioning of 

the antimicrobial tritrpticin segment of the micellar surface, making it easily accessible from the water 

phase. The poly(acrylic acid) segment of the conjugate was used to cross-link the shell of the micellar 

construct, which stabilizes the functional nanoparticles. The preliminary study of the antimicrobial 

properties of the received materials was compared to their activity [81]. The minimum inhibitory 

concentration (MIC) was determined for S. aureus and E. coli. The tritrpticin was effective against  

S. aureus and E. coli at 17 and 33 μg/mL, respectively. In comparison, the micellar aggregates 

exhibited reduced MIC values of 13 μg/mL for both S. aureus and E. coli [23,81]. 

A highly biocompatibile polydimethylsiloxane (PDMS) were used in the synthesis of polymeric 

conjugates of AMPs. The salivary peptide histatin 5 and two synthetic variants (Dhvar 4 and Dhvar 5) 

were used to prepare peptide-functionalized PDMS using 4-azido-2,3,5,6-tetrafluorobenzoic acid 

(AFB) as an inter-linked molecule [8,82]. Polylysine-, polyarginine- and polyhistidine-PDMS surfaces 

were also prepared. The results have shown that Dhvar 4-functionalized PDMS yielded the highest 

reduction of the number of Candida albicans biofilm cells. It was also found that inhibition of  

C. albicans biofilm formation is highly depended on the nature of the immobilized AMP, its molecular 

weight, and stereochemistry. For example, poly(D-lysine)-PDMS with molecular weight lower than 

15,000 Da and Dhvar 4-PDMS are able to reduce ca. 90% of live cells in a 106 CFU/mL broth culture 

after 24 h [8,82]. 

The covalent immobilization of AMPs onto biomaterial surfaces is recommended for health 

applications as antimicrobial coatings of medical devices [83]. In the covalent coupling, AMPs react 

chemically with a given surface to form stable antimicrobial coatings [57,58]. The concentration of 

bound peptides may vary significantly from one surface to another, depending on the density of the 

reactive groups on the surface (alcohol, aldehyde, amine, carboxylic acid, epoxide, maleimide, 

isothiocyanate, or thiol surface), in addition to other factors such as coupling conditions and steric 

hindrance effects [71]. The length of the spacer can be varied from one to several carbon atoms, 

depending on the significance of spacer length effect on AMP activity. The spacer length is more 

critical in influencing the activity of bound AMPs than surface concentration. Additionally, the 
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orientation of bound AMP can be controlled through the utilization of suitable chemo-selective 

coupling reactions enabling detailed study of the effect of peptide orientation on their biological 

activity [71,84,85]. 

The development of a specially structured infection-resistant coating for implants based on 

covalently grafted hydrophilic polymer brushes conjugated with an optimized series of tethered  

AMPs has been described [86]. Primary amino-functionalized copolymer brushes containing  

N,N-dimethylacrylamide and aminopropyl meacrylamide hydrochloride were obtained, using aqueous 

surface-initiated atom transfer radical polymerization (Figure 4). A titanium deposited silicon wafer 

was used as a model surface for the optimization of the surface chemistry, and for the determination of 

the polymerization conditions and polymer brush properties. Tet-213 (amino acid sequence: KRWW 

KWWRRC), 1010cys (amino acid sequence: IRWRIRVWVRRIC), Tet-20 (amino acid sequence: 

KRWRIRVRVIRKC), Tet-21 (amino acid sequence: KKWKIVVIKWKKC), Tet-26 (amino acid 

sequence: WIVVIWRRKRRRC), HH2 (amino acid sequence: VNLRIRVAVIRAC), MXX226 (amino 

acid sequence: ILRWPWWPWRRKC) were used as AMPs. It was found that the polymer brush 

tethered AMPs showed an excellent broad spectrum of antimicrobial activity as well as biofilm 

resistance in vitro and it depended on the types of AMPs used [86]. 

Figure 4. Synthesis of AMPs immobilized copolymer brushes on surfaces. 
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Magainin 2 and the several synthetic amphipathic peptides covalent immobilized onto a polyamide 

resin retained lethal activity against several Gram-positive and Gram-negative bacteria. It was found 

that the interaction of magainin 2 with the outer membrane of the bacteria is sufficient for the lethal 
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activity, since the potential peptide penetration depth is very low due to the short spacer (2 or 6 carbon 

chain linkers) used [58]. The prevention of bacterial colonization and formation of bacterial biofilms 

on implant surfaces has been a challenge in orthopedic surgery. AMP-eluting coatings on implants are 

one of the most promising strategies that have been attempted. 

4. Summary 

Polymeric delivery systems for peptides with antimicrobial activity have been described in this 

review. These systems seem to be an interesting and promising developmental direction for medicine, 

pharmacy, food technology, etc. due to their unique peptide release kinetics. The described systems 

included types in which the peptide is dispersed throughout the polymer matrix or peptide-polymer 

conjugates and those where the active substance is covalently bound to the polymer chain. The 

development of new and effective polymeric systems as well as the preparation and application of 

specific controlled delivery formulations offers enormous possibilities for the present and the future 

advanced technology of AMP systems. 
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