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Abstract: Grape and wine phenolics are structurally diverse, from simple molecules to 

oligomers and polymers usually designated as tannins. They have an important impact on 

the organoleptic properties of wines, that’s why their analysis and quantification are of 

primordial importance. The extraction of phenolics from grapes and from wines is the first 

step involved in the analysis. Then, several analytical methods have been developed for the 

determination of total content of phenolic, while chromatographic and spectrophotometric 

analyses are continuously improved in order to achieve adequate separation of phenolic 

molecules, their subsequent identification and quantification. This review provides a 

summary of evolution of analysis of polyphenols from grapes, wines and extracts. 

Keywords: phenolics; anthocyanins; tannins; extraction; global analyses; HPLC/UPLC; 

spectroscopy; DPm 

 

1. Introduction 

Phenolic compounds are the most abundant secondary metabolites present in the plant kingdom. 

They possess a common structure comprising an aromatic benzene ring with one or more hydroxyl 

substituents. They represent a large and diverse group of molecules including two main families: the 

flavonoids based on common C6-C3-C6 skeleton and the non-flavonoids. In plant, they play a role in 

OPEN ACCESS



Molecules 2013, 18 1077 

 

 

growth, fertility and reproduction and in various defence reactions to protect against abiotic stress like 

UV-light or biotic stresses such as predator and pathogen attacks [1,2]. They also constitute basic 

components of pigments, essences and flavors. 

Many of phenolic compounds (resveratrol, quercetin, rutin, catechin, proanthocyanidins) have  

been reported to have multiple biological activities, including cardioprotective, anti-inflammatory,  

anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant and 

antiradical activity [3–6]. 

Phenolic compounds are essential for the quality of plant-derived food products through their 

contribution to oxidative stability and organoleptic characteristics. Indeed, wine organoleptic properties 

are largely related to phenolic compounds extracted from the grape during the winemaking process. 

Among them, flavonoids, including anthocyanins and flavan-3-ols, are the most important for wine 

quality. Anthocyanins are pigmented compounds responsible for the red wine colour and they are 

essentially located in grape skins. Flavan-3-ols exist not only as monomers but also as oligomers and 

polymers, called condensed tannins or proanthocyanidins. Condensed tannins are grape-derived 

compounds of great importance to red wine quality due to their astringent, bitter properties [7,8] and 

their role in the long-term color stability [9,10]. Astringency and bitterness are two major 

characteristics in grape and wine quality definition. Astringency is a tactile sensation, whereas 

bitterness is a taste. The molecular size of proanthocyanidins affects their relative bitterness and 

astringency level [7,8,11,12]. Overall, monomers are more bitter than astringent, whereas the reverse is 

true in the case of large molecular weight derivatives. For grape seed tannin, reducing the degree of 

galloylation only decreases astringency [11]. 

The determination of the quantitative composition and the investigation of the factors affecting the 

composition of these bioactive substances, using robust, sensitive and reliable methods are considered 

a priority. Some common structures (catechin, proanthocyanidin, anthocyanins, etc.) have been already 

identified and quantified in wines but others ones such as high molecular mass phenolics or new 

formed compounds during wine ageing still remain to study. Many different methods have been 

improved through years. General approaches allow the determination of a global index (e.g., “total 

polyphenols”) mainly achieved by spectrophotometric detection and are opposed to more specific 

analyses based on separation of the individual polyphenolic species typically by high-performance 

liquid chromatography or capillary electrophoresis and their subsequent detection by different 

detectors, UV-vis, mass spectrometry. 

This review is aimed to take stock on the different methods developed in the last years and the 

development of new ones. Examples of the new molecules they allowed to identify and quantify in 

grapes and wines will be given. 

2. Structures of Main Polyphenols from Gapes and Wines 

Wine phenolic composition depends on the grape used and on winemaking processes that determine 

their extraction into the must and subsequent reactions. Structures of phenolic compounds include 

simple aromatic ring with low molecular weight to complex high molecular weight tannins. Two 

groups of phenolic compounds are classically distinguished: flavonoids based on common C6-C3-C6 

skeleton and non flavonoids. 
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Among non-flavonoids, principal compounds are phenolic acids (hydroxybenzoic acids), 

hydroxycinnamic acids and stilbens. Hydroxybenzoic acids are based on a C6-C1 structure, a benzene 

ring with one carbon aliphatic chain substituent. The various acids are differentiated by the substitution 

of their benzene ring. Vanillic, syringic and gallic acids are the main compounds from this sub-class 

(Figure 1). Several hydroxycinnamic acids (C6-C3) are present in grapes and wines (Figure 1). They 

have been identified in small quantities in the free form, but are mainly esterified, in particular with tartaric 

acid [13]. They may also be simple glycosides of glucose. Another family of more complex polyphenols 

is also present in grapes, wine and oak wood. Stilbenes have two benzene rings, generally bonded by 

an ethane, or possibly ethylene, chain. Among these trans-isomer compounds, resveratrol, or 3,5,4-

trihydroxystilben (Figure 1), is thought to be produced by vines in response to a fungal infection [14]. 

Figure 1. Structures of important monomeric phenolic compounds in grapes and wines. 

 

Flavonoids, the most abundant phenolic compounds in grapes and wines, possess a common  

C15-skeleton, composed of three rings (A, B, C). This molecules family is constituted by different  

sub-categories, flavones, flavonols, flavanones, flavanols and anthocyanins differing by the ring C 

insaturation degree and substituents (Figure 1). 

In this review, we will pay particular attention on anthocyanins and flavanols or proanthocyanidins. 

Anthocyanins are specific to red varieties and localized in berry skins except in teinturier varieties that 
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have colored flesh. Their structure, flavylium cation, includes two benzene rings bonded by an unsaturated 

cationic oxygenated heterocycle, derived from the 2-phenyl-benzopyrylium nucleus (Figure 1). They 

are glucosylated derivatives of five aglycones or anthocyanidins: cyanidin, peonidin, petunidin, 

delphinidin and malvidin. Further diversity results from acylation of the glucose by acetic, p-coumaric 

and caffeic acids. Flavan-3-ols formed the more complex flavonoid sub-family (Figure 1). These 

compounds include simple monomers such as (+)-catechin and (−)-epicatechin but also oligomers or 

polymers called proanthocyanidins because they release anthocyanidins when heated in acidic 

solutions (Figure 2). Proanthocyanin structures vary in the nature of their constitutive sub-units, mean 

degree of polymerization (mDP) and linkage position. 

Figure 2. General structures of proanthocyanidins: flavan-3-ol monomers are linked 

through C4-C8 or C4-C6 linkages. 

 

They are located in all the parts of a grape cluster but skins contain lower amounts of proanthocyanidins 

than seeds and their structural characteristics also differ. Grape seed proanthocyanidins comprise only 

procyanidins [subunits constituted of (+)-catechin (C) and (−)-epicatechin (EC)], whereas grape  

skin proanthocyanidins include both procyanidins and prodelphinidins [subunits constituted of  

(−)-epigallocatechin (EGC)] [15]. Skin proanthocyanidins have a higher mDP and a lower proportion 

of galloylated subunits than seed ones. Condensed tannins are grape-derived compounds of great 

importance to red wine quality due to their astringent, bitter properties [7,8] and their role in the  

long-term color stability [9,10]. 

3. Extraction from Grapes 

For characterizing phenolic compound structures, the anthocyanins or tannins need first to be 

extracted from grape. Regarding wine, some authors estimate that sample don’t need any particular 

preparation and can be directly injected or experimented while others indicate a great benefit on 

separation/quantification/identification after a purification step (this point will be considered in the 

analysis part). 

3.1. Liquid-Solid Extraction 

In several studies, grape seeds and skins are first separated before being separately extracted with 

solvents such as aqueous acetone and sometimes following by a second extraction with aqueous 

methanol [16–18]. Anthocyanins/anthocyanidins are usually extracted from skins or pomaces with 

acidified organic solvents, commonly methanol. More and more, these “manual” solid-liquid extractions 
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are replaced by alternative extractions with pressurized liquid, ultrasound, electrical and microwaves-

assisted extractions. These “mechanical” techniques are explored in recent scientific studies in order to 

shorten the extraction time, decrease the solvent consumption, increase the extraction yield and 

enhance the quality of extracts [19–26]. The pressurized liquid extraction (PLE) commercially known 

as accelerated solvent extraction (ASE) enables rapid extraction of analytes in a closed and inert 

environment under high pressure (3.3–20.3 MPa) and temperatures (40–200 °C). The major advantage 

of this technique is that pressurized solvent remain in liquid state well above their boiling points, 

allowing for high-temperature extraction improving analyte solubility and desorption kinetics from the 

matrices. Hence, extraction solvents including water that are inefficient in extracting phytochemicals at 

low temperatures may be much more efficient at elevated PLE temperatures. Indeed, Ju and Howard 

showed that high-temperature (80–100 °C) PLE using acidified water was as effective as acidified 

60% methanol in extracting anthocyanins from grape skins [24]. In other works, high yields of total 

polyphenols and total flavonoids from Pinot noir grape skins were obtained working at 150 °C  

even though flavonoids have the tendency to degrade when extraction time is prolonged (more than  

210 min) [22]. Pineiro et al. showed that PLE extraction of grape seeds using methanol as solvent 

produces results in terms of recovery of catechin and epicatechin, notably higher than those ones 

obtained by magnetic stirring or ultrasound-assisted extraction [23]. 

A second alternative extraction technique concerned electrically assisted extraction. Boussetta and 

co-workers showed that extraction of Chardonnay grape skins by pulsed electric field (PEF) and 

particularly high-voltage electrical discharge (HVED) treatments allowed acceleration of the extraction 

kinetics of the soluble matter and polyphenols in water at 20 °C [21]. HVED application introduces 

complex phenomena like shock waves and cavitation, which cause mechanical damage of grape tissues 

and disintegration of cell walls. Thus, an increase in polyphenol concentration reflecting the 

enhancement of diffusion between the cells at the inner surface of grape skins during the PEF or 

HVED treatment was also noticed by Boussetta and co-workers. However, these authors underlined a 

noticeable selectivity in polyphenol extraction and mentioned the necessity of further studies on this 

topic to improve this promising technique. Effectively, some parameters such as the number of 

discharges have to be optimized because too long treatments can impact negatively polyphenol 

extraction (decrease in concentration) possibly linked to their degradation [19]. Moreover, these two 

studies were performed on catechin or total phenolic content and questions concerning extraction of 

more sensitive oxidative molecules such as anthocyanins have been raised. 

Finally microwave-assistance provided to be another very rapid and efficient mean of extraction [20]. 

This technique offers a rapid delivery of energy to a total volume of solvent and liquid with subsequent 

heating of the solvent and solid matrix, efficiently and homogeneously [27]. Application of optimal 

conditions to grape seed from Cabernet-Sauvignon, Shiraz, Sauvignon blanc and Chardonnay revealed 

that approximately 92% of the total polyphenols were extracted which was comparable or better than 

other extraction methods (ultrasounds, …) [26]. 

3.2. Extract Purification 

These solid-liquid extractions lead to a “crude” extract which purity and specificity can still be 

improved. Thus, further fractionation by means of liquid/liquid extraction can be achieved to purify 
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and to separate different procyanidins molecular weight fractions. Thus, after removing lipophilic materials 

by chloroform, Lorrain and co-workers employed ethyl acetate to obtain a monomeric/oligomeric 

proanthocyanidin fraction in the organic phase while polymers were concentrated in aqueous fraction [28]. 

More distinctive fractions (seven fractions from DPm 3 to 12) can be obtained by successive liquid/liquid 

extraction with increasing percentages of chloroform in methanol [29]. Alternatively, it is possible to 

enrich and fractionate crude extracts by semi-preparative normal phase LC (C18) [30] or by solid phase 

extraction employing diverse sorbents such as C18, XAD or PVPP [31–33]. These aspects will be 

further discussed, in the part “Techniques to establish tannin structures (mean degree of polymerization)”. 

3.3. Phenolic Extraction from Grape to Wine: Methods for Prediction 

Both the quantity and the extractability of anthocyanins and tannins increase throughout the grape 

ripening. A great number of different methods have been proposed to determine the phenolic ripening 

of grapes and to predict the wine phenolic composition of wines but up to now, none universal method 

was accepted [34–38]. The main variables that influence the yield and rate of phenolic extraction from 

grapes are particle size, temperature, maceration time, pH, solvent-to-solid ratio and type of solvent 

used. Indeed, Glories suggested a rapid, fairly simple method, giving results that are both comprehensive 

and easy to interpret [34]. The principle of this assay consists of rapidly extracting (4 h) the 

anthocyanins from the skins, in condition approximately comparable to that occurring in fermentation 

vats at pH 3.2 (solution with 5 g/L tartaric acid) and then under more extreme conditions, where all of 

the anthocyanins are then extractable and solubilized at pH 1. This method conducts in several 

parameters, ApH 1, the total potential in anthocyanins, ApH 3.2, the total potential in extractible 

anthocyanins, EA, the anthocyanin extractability, RPT, the total polyphenolic richness of the grapes 

and MP%, the seed maturity, representative of the contribution of seed tannins. More recently, FT-MIR 

spectroscopy combined with PLS statistical analyses was shown to be a fast and reliable technique for 

monitoring the phenolic ripening in grapes during the harvest period [37]. The same authors also 

presented a fast and simple extraction method of red grapes making possible to obtain good correlations 

between phenolic parameters of the grape extracts and those of their corresponding wines [35]. 

4. Analyses of Wines and Extracts 

They are two general approaches to examine and to quantify the polyphenolic content in extracts 

and in wines. The determination of a total index by spectrophotometric detection or the separation of 

the individual phenol species and their subsequent detection. 

4.1. Global Phenolic Determination Methods 

A number of spectrophotometric methods for quantification of phenolic compounds in plant 

materials have been developed. These assays are based on different principles and are used to 

determine different structural groups present in phenolic compounds. They are well described in 

several reviews [31,39]. Briefly, the easiest method for a quickly estimation of the total phenolic 

compound in a wine or an extract is the measurement of absorption at 280 nm (with an appropriate 

sample dilution). This value is based on the characteristic absorption of the benzene cycles of the 
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majority of phenols at 280 nm. This test presents a number of advantages, including speed and 

reproducibility. However, certain molecules, such as cinnamic acids and chalcones, have no maximum 

absorption at this wavelength. However, as they are present in wine at very low concentrations, any 

error in the value will be very small. Reversely other non phenolic molecules can possess a benzene 

ring (amino acid) and absorb at 280 nm conducting in interference absorption. A second method for a 

global phenolic content determination is the Folin-Ciocalteu assay which acts on the phenols due to 

their reductive properties. Indeed, it consists in the reduction of phosphomolybdic acid to a blue 

colored complex by phenolic compounds in alkaline conditions. However, this method remains not 

specific since some phenolic groups found in extractable proteins or reducing substances such as 

ascorbic acid can also participate in the reduction reaction. More specific assay such as vanillin assay, 

DMACH assay, Bate-Smith assay have been proposed for determining the content of proanthocyanidic 

tannins. Vanillin and DMACH assays rely on the formation of coloured products from the reaction 

between tannins and the aldehyde reagent while Bate-Smith principle is based on proanthocyanidin 

depolymerization through the breakdown of their intra-flavonols bonds in an acidic heat medium [40]. 

This results in carbocations formation partially converted into red cyanidins (with a specific absorption 

at 550 nm) if the medium is sufficiently conducive to oxidation [41]. Other methods are based on the 

selective precipitation of tannin by proteins (e.g., bovine serum albumin) or by other reagents such as 

polymers (polyethyleneglycol, polyvinylpyrrolidone, …). Methyl cellulose, a form of polysacharride, was 

also used to develop a method by precipitation for the quantification of condensed tannins in red wines 

or grape extracts, referred to as the MCP (methyl cellulose precipitation) tannin assay [42]. This assay 

is based on polymer-tannin interactions, resulting in an insoluble complex which precipitates. It is a 

substractive method since measurements are performed at 280 nm before and after precipitation. In 

general, all these assays are dependent on many variables including pH, isoelectric point, ionic 

strength, protein conformation and temperature. However, these methods lack of specifity and 

reproducibility because they are hindered by our inability to measure directly the removed tannins as 

the ideal absorption for spectral quantification at 280 nm suffers interference from the added protein 

precipitant [31]. Finally, regarding anthocyanins quantification, the chemical methods are based on the 

specific properties of anthocyanins: color variation according to pH and bleaching by sulfur dioxide [43]. 

Traditional spectroscopic assays may lead to overestimation of polyphenols contents of crude 

extracts because of the possible interference by UV-absorbing substances. Moreover, they can be time 

and solvent consuming (Folin, Bate-Smith). New approaches are being studied in order to develop 

novel, easy, reliable and robust global methods. Among them, electroanalytical techniques and infrared 

spectroscopy appeared to be the most promising. 

In recent times, different electrochemical methods have been proposed for the characterization and 

quantification of polyphenols in wine on the basis that practically all polyphenolic compounds present 

in wines are electrochemically active. Indeed, the antioxidant properties of these compounds are 

related to their ability to donate electrons. Thus, most of them present native electroactivity and their 

electrochemical oxidation at moderate potentials has been exploited for their detections. These 

characteristics allow selective detection of polyphenols with good sensitivity, even in very complex 

samples, such as wine, and responses are independent of the optical path length or their turbidity [44]. 

Cyclic voltametry (CV) was the first electrochemical method used for characterization of polyphenols 

and determination of total polyphenols content in wine. Indeed, Kilmartin and co-workers first 
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employed this technique in order to characterize a range of phenolic acids and flavonoids, ascorbic 

acid and sodium metabisulfite, which make an important contribution to the antioxidant properties of 

wine [45]. These authors indicate that glassy carbon electrode was the best one for this purpose 

because it minimizes interferences from ethanol which oxidizes at inert metal electrods such as 

platinum and gold. They showed that the presence of voltammetric signals at low overpotentials was 

correlated with the presence of polyphenolics of high antioxidant activity, whereas those compounds 

with low antioxidant power showed electrochemical activity at more positive potentials. Effectively, 

easily oxidized ortho-diphenols yield a low potential peak around 400 mV, the anthocyanins in red 

wine yield a peak at 650 mV, and harder-to-oxidize functional groups produce higher potential peaks, 

providing facile discrimination between these types of substrates [45,46]. In another study, De Beer et al. 

attempted to compare the phenolic compounds determination obtained by different methods [47]. They 

used CV under the same conditions as the Kilmartin group and calculated the total phenol content for 

wines from integrating the area under the peak to 500 mV (Q500) in comparison with the response of 

catechin standards at 0.01, 0.02 and 0.05 mM. The authors mentioned that using CV to measure total 

phenols using Q500 presented the disadvantages by only reflecting the total content of phenolic 

compounds containing pyrogallol, gallate, and catechol groups in monomers, oligomers or polymers 

such as flavanols, proanthocyanidins, flavonols and phenolic acids. Indeed, major anthocyanins but 

also white wine phenols only produce anodic peaks at potentials higher than 500 mV and are not 

included in this measurement. However, it is complicated to quantify these phenols at higher potentials 

since products of polyphenol oxidation accumulate at the electrode surface at higher potentials. A 

mean to overcome this technical difficulty may be necessary to quantify total current at higher voltage. 

Nevertheless, they found that CV provided qualitative and semi-quantitative information about 

polyphenols content and good correlations between the different methods were achieved (Folin 

Ciocalteu, RP-HPLC and CV). Recently, Sanchez Arribas and co-workers presented an improvement 

of CV by modification of glassy carbon electrodes with a multi-walled carbon nanotube and coupling 

with a flow injection analysis [48]. They showed the excellent performance of their modified electrodes 

under dynamic regime, allowing higher sensitivity and stability as illustrated by the amperometric 

detection of total polyphenols in wines. Authors mentioned that it is actually possible to use this device 

for real application in routine analysis where stable and robust responses are required during long 

period of time [48]. Differential pulse voltametry (DPV) has also been explored in the analytical 

detection of polyphenols in foods until Seruga et al. attempted to apply it to wines [49]. They 

performed a complete study by DPV, HPLC and spectrophotometric methods in 11 Croatian red 

wines. By DPV, they noticed three major oxidation anodic peaks on the wine voltammograms (P1; P2; 

P3) (Figure 3). The first oxidation peak was very well pronounced and it was proven to be the most 

reversible, reproducible and linear towards catechin standard. The current density of this peak was 

used for quantification of the total polyphenol content. The second and third oxidation peaks were 

more or less pronounced and related to the wine origin regions. Finally, Seruga and co-workers 

showed that DPV was a very sensitive and very selective method for the determination of total 

polyphenol content of red wines and is a notable improvement for total polyphenol determination in 

comparison to the cyclic voltametry (CV) and Folin Ciocalteu methods. To put in a nutshell, 

voltametry techniques have become alternatives to traditional spectrophotometric tests and appear to 
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be very rapid compared with traditional method. However, more experience is required to ensure 

reproducible and consistent results. 

Figure 3. Differential pulse voltammograms of red wines: (a) Frankovka, (b) Pinot noir, 

(c) Zweigelt, (d) Plavac Hvar, (e) Ivan Dolac, diluted 1/400 in acetate buffer solution 

pH3.6, measured at the GC electrode. Scan rate, 5 mV s−1, from Seruga et al. [49]  

(with permission from Elsevier). 

 

Infrared (IR) spectroscopy is another powerful, fast, accurate and non-destructive technique. This is 

an alternative to conventional chemical analyses particularly interesting for real-time monitoring of 

various components during winemaking process as well as for the following of grape maturity. Thus, 

several studies performed on different grape varieties have shown that Near Infrared (NIR) and Mid 

Infrared (MIR) spectroscopies combined with multivariate analyses were suitable to evaluate the 

evolution of the main chemical parameters involved in wine fermentation as well as phenolic 

compounds (total phenolic, total tannins and total anthocyanins) independently of the constant changes 

of matrixes during winemaking conditions and giving crucial information about the quality of the final 

product [38,50–52]. 

Use of NIR spectroscopy was also performed for determining phenolic compounds in skins, seeds 

or intact berries. For examples, Ferrer-Gallego et al. recently determined the concentrations of the 

main phenolic families (flavanols, anthocyanins, flavonols and phenolic acids) and total phenolic 

compounds in grape skins and intact red grapes during ripening [53]. They managed to develop models 

with chemometric tools allowing accurate concentration determination and mentioned that the best 

results were generally obtained directly recording the spectra of intact grapes attributable to the 

practical absence of manipulation of the sample that is needed [53]. The same authors have also 

published an interesting study on the possibility of using NIR to evaluate the monomeric and 

oligomeric flavanol composition of seeds [54]. In the same perspective, Rolle and co-workers 

attempted to develop a rapid method for evaluation of total phenol content in intact grape seed by 

Fourier Transform-Near Infrared spectroscopy (FT-NIR). They obtained promising results but 

underlined the need to improve their prediction models. Finally, infra red spectroscopy has been used 

directly in grape berries in order to determine total anthocyanins as well as extractable anthocyanins 

(pH 1 and 3.2) and total phenols [55]. They reported conflicted data between grapes varieties; 

anthocyanins extractable at pH 1.0 and pH 3.2 were well predicted by the NIR spectra of intact whole 

berries in the case of Syrah grapes, whereas they cannot be predicted in other varieties like  
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Cabernet-Sauvignon, Merlot and Carmenère. Furthemore, Cozzolino et al. also showed unsuitable low 

values of R for the estimation of total anthocyanins in intact grape berries [56]. To conclude, the 

development and application of infrared technique could become an accurate and efficient tool to aid 

decision making at harvest time and to follow wine process. Nonetheless, harmonization of statistical 

treatment and chemical methods used for calibration as well as the collection of an important diversity 

of grapes or wines (various production area, various grape varieties, different maturity stages, different 

vintages for wines) used for calibration appeared to be primordial to acquire a constant robustness. 

4.2. Separation and Analysis of Phenolic Compounds (Chromatographic Techniques) 

HPLC techniques are widely used for both separation and quantification of phenolic compounds. 

Various supports, mobile phases, columns and detectors are available for the analysis of anthocyanins, 

procyanidins, flavonols, flavan-3-ols, and phenolic acids. Several reviews have already focused on 

these aspects in foods [31,39,57–59] and we will pay more attention to recent advances concerning 

grape and wine analyses. 

4.2.1. Sample Preparation 

In wines, a prior sample preparation step is sometimes necessary because of the great complexity of 

chromatograms. Liquid-liquid extraction and solid phase extraction are the most widely used to 

simplify the chromatograms of wines sample. Porgaly and Büyüktuncel have showed that liquid-liquid 

extraction of wine with ethyl acetate at pH 2 really improved their data [60]. On the contrary, in many 

works, wines are filtered and injected without any other preparation. The resolution of the principal 

compound peaks always appeared really acceptable [18,47,49,61]. Concerning grape or pomace 

extracts, a simple solubilization of dry powders in appropriate solvents, followed by a filtration is 

required before injection [28,32]. 

4.2.2. Columns 

Reversed-phase (RP) LC on C18 or equivalent stationary phase is the most common method used 

for the separation of anthocyanins as well as major phenolic compounds (proanthocyanidins, flavonols, 

phenolic acids) [16,57,59,62]. These columns are generally packed with spherical particles of silica 

bonded with octadecyl chain (C18). Unfortunately, chromatographic analyses often take excessive time 

and sometimes must be preceded by a time-consuming cleanup step. In this perspective, non-conventional 

monolithic supports (continuous bed) for column packings have been proposed in phenolic analyses [63]. 

The characteristic feature of non-particulate materials is a continuous character of the skeleton, which 

fulfils the separation chamber. Due to their rigid and porous structure, they enable higher solvent 

flows, shorter assay times and fast column re-equilibration between runs. Several studies evidenced the 

advantages of such kind of columns. For instance, Castellari et al. reported that monolithic column 

could operate at a higher flow-rate than a conventional RP column with a reduced pressure drop and 

shorter washing and re-equilibration time [64]. A faster separation (36 min) of the monomeric phenolic 

compounds and an improvement in signal/noise ratio was achieved. Later, Liazid et al. developed a 

more rapid method (8 min) allowing the separation and quantification of 13 common wines 
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polyphenols by using a RP-18e monolithic column [65]. They showed that their method provided 

reliable, high resolution and reproducible results and could be applied to real samples containing 

different families of phenolics. 

Reversed-phase LC methods can provide specific information on various classes of phenolic in red 

wines but are limited in their ability to analyze high-molecular mass material. Kennedy and 

Waterhouse have proposed the use of normal-phase chromatography method (NP-LC) that enables the 

analysis of high-molecular proanthocyanidins in presence of the anthocyanins [30]. They developed a 

new method using a silica normal phase column and gradient elution with mobile phase of methylene 

chloride, methanol, formic acid and heptanesulfonic acid, without extension purification. Based on the 

elution order of proanthocyanidins and anthocyanins, phenolics elute in order increasing molecular 

mass. In their comparison of diverse analytical methods of phenolics determination, De Beer and  

co-workers underlined that NP-HPLC was the most common method for polymer quantification, as 

polymers for different molecular mass can be separated [47]. On the other hand, for specific favan-3-ols 

analysis, this technique is less appropriate since the “monomer” peak also includes many nonflavanol 

monomers. The same limits are shown for anthocyanins monomer determination for the reason that 

individual compounds are altogether included in one peak. Nevertheless, NP-HPLC can be a useful 

tool for discriminating age of wines since both monomer and low molecular weight polyphenols 

contents were noticed to decrease in relation with wine age [47]. 

The use of a novel mixed-mode ion exchange reversed phase column was also reported by  

Vergare et al. [66]. These particular columns, constituted by a basic group with positive charge 

embedded in a hydrophobic chain showed promising results for the separation of anthocyanins, 

including pyranoanthocyanidins in young and aged Cabernet-Sauvignon wines and other varieties [66]. 

In this study, Vergara et al. showed that anthocyanins and pyranoanthocyanins presented different 

elution order and selectivity in comparison to those obtained in C-18 stationary phase. In spite of a 

time of analysis nearly twice as long as classical analysis, this technique enables a clear separate 

elution of first the anthocyanins monoglucosides, then their acetyl-derivates, followed by their coumaroyl-

derivates. Pyranoanthocyanins eluted between the coumaroyl-derivates and finally the peak of 

polymeric compounds, which appears to be correlated with wine age and variety [66]. 

Finally, core-shell columns have been experimented in order to analyze the phenolic profile of 

juices and wines produced from interspecific hybrid grape cultivars [67]. As an alternative to UHPLC 

(ultra high performance liquid chromatography), core-shell column technology is designed to operate 

on standard HPLC instruments under most operational circumstances. In these works, several methods 

via core-shell column were assessed to reach the best analyses of atypical phenolic components such as 

diglucoside-modified anthocyanins found in hybrid cultivars. They showed that C18 and PFP 

(pentafluorophenyl) core-shell columns resulted in a dramatically improved selectivity, resolution and 

throughput in each matrix tested. Thus, for anthocyanin/anthocyanidin, monomeric non-anthocyanins 

compounds or condensed tannins after phloroglucinolysis, the core-shell protocols offer a rapid 

throughput design, lower solvent consumption, low detection levels and high reproducibility [67]. 
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4.2.3. Detection-Identification of Phenolic Compounds 

Various detection methods have been applied in conjunction with HPLC for phenolic compounds 

determination. Wine phenolics are commonly detected using UV-vis (ultra violet visible), photodiode 

array (DAD), fluorescence and mass detectors but UV detection remains the most commonly  

used [59,62] because of the natural absorbance of phenolic compounds in the UV region. Indeed, 

anthocyanins show two bands absorption maxima in the 265–275 nm and 465–560 nm regions while 

flavanols show two bands at 210 nm and 278 nm [57]. These properties are used and detection and 

quantification of these compounds is currently done between 520 nm and 546 nm for anthocyanins and 

at 280 nm for flavanols [32,59]. However, UV detection is not specific for proanthocyanidin in the 

presence of other polyphenols. 

Alternative methods include fluorescence detection have been proposed. By combining 

absorptiometric and fluorimetric detectors, Porgaly and Büyüktuncel managed to simultaneously 

determine 14 phenolic compounds in red wine and to discriminate overlapping peaks which are 

frequent in wine analysis [60]. Guerrero also used a combination of UV-detection (320 nm) and 

fluorescence signals (excitation wavelength = 290 nm, emission wavelength = 320 nm) for their 

specifity towards hydroxycinnamic acids and flavan-3-ols, respectively [25]. In our team, Silva et al. 

presented a rapid and simple method for the quantification of flavan-3-ols in wine. By fluorimetry, 

they were able to quantify flavanol monomer, dimer and trimer (excitation wavelength = 280 nm, 

emission wavelength = 320 nm) as well as (−)-epicatechin gallate and procyanidin B2-gallate, two 

compounds never quantified by this detection until now with others excitation/emission wavelenghts 

(270 nm/ 377 nm) (Figure 4) [61]. 

Figure 4. HPLC-Fluo chromatograms of a Merlot and a Sauvignon blanc wine. C:  

(+)-catechin, EC: (−)-epicatechin, ECG (−)-epicatechin-3-O-gallate, B1: procyanidin dimer 

B1, B2: Procyanidin B2, B3: Procyanidin dimer B3, B4: Procyanidin dimer B4, C1: 

Procyanidin trimer C1, B2G: procyanidin dimer B2 gallate. Adapted from Silva et al. 

(2012) [61]. 
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Structural information for identification of phenolic compounds can be obtained using mass 

spectrometry (MS). The development and the availability of effective liquid chromatography-mass 

spectrometry (LC-MS) and the multiple mass spectrometry (MS/MS and MSn) systems supplied very 

useful tools to study the polyphenol structures as well as the mechanisms in which they are involved in 

winemaking and aging [58]. ESI (electrospray ionization) is a particular effective and the most used 

technique for the analysis of flavan-3-ols and anthocyanins in the positive or negative-ion modes. This 

ionization mode has become a good alternative to FAB (fast atom bombardment) used at the beginning 

of the 1990s, demanding necessarily pre-purification and dissolution of sample in a polar matrix [31]. 

Thus, in 1997, Cheynier et al. studied tannins (oligomers and polymers of flavan-3-ols) in grape seed 

extracts by LC-MS system equipped with an ESI source operated in the negative-ion mode and a 

quadrupole mass analyzer [68]. They determined a series of peaks attributed to non-substituted 

procyanidins from trimers to hexadecamers and their acylated derivates that contained one, two  

or three gallic acid residues. Recently, NP-HPLC-ESI-MS allowed to Nunez et al. to identify  

non-galloylated and monogalloylated flavan-3-ols up to octamers, and di- and trigalloylated flavan-3-

ols up to heptamers in seed extracts from grapes of Graciano, Tempranillo and Cabernet-Sauvignon [69]. 

They observed 10-fold lower concentrations of monogalloylated flavan-3-ols than non-galloylated 

flavan-3-ols: this apparent lower response was consistent across samples but it could result from a 

decreased ionization efficiency of the galloylated forms as compared to the non-galloylated forms. 

However, because of the lack of galloylated standards, this hypothesis cannot be tested. Based on 

relative comparisons of the levels found, it was shown that the distribution of flavan-3-ols in seeds was 

largely determined by genetic factors, and also influence by climatic conditions [69]. Other recent 

works combining ESI-MS and ESI-tandem (MS/MS) were performed on the identification/quantification 

of galloylated procyanidins in grape seeds [70]. Indeed, tandem mass spectrometry enables to obtain 

more specific structural information on a particular compound by a two stages procedure of mass 

analysis. The ions of interest, issued from the first ionization step are isolated by their characteristic 

m/z values and then re-fragmented and examined in a second step. Tandem MS can be done in two 

mass spectrometers assembled in tandem (ex: two quadrupoles) or in a single mass analyzer capable of 

storing ion (ex: quadrupole ion trap) [71]. In Guerrero et al.’s works, MS-MS fragmentation was 

effective for differentiating some compounds such as quercetin-3-glucuronide and isorhamnetin-3-

glucoside which present the same mass and the same first parent ion (m/z = 477) but were 

distinguished by the ion after MS2 (301 for quercetin-3-glucuronide and 315 for isorhamnetin-3-

glucoside) [25]. Really recent (2012) work from Delcambre and Saucier evidenced the performance of 

UHPLC in combination with ESI and Q-TOF (quadrupole time of flight) in targeted mode MS/MS for 

determining new structures [18]. Time-of-flight mass spectrometry is based on a simple mass 

separation principle. Considering ionized species starting from the same position at the same time and 

being accelerated by means of a constant homogeneous electrostatic field, their velocities are 

unambiguously related to their mass-to-charge ratio and times of arrival at a detector directly indicate 

their masses. The time-of-flight instrument possesses a number of extraordinary advantages over most 

other types of mass analyser. Theoretically, this technique presents unlimited mass range since it needs 

no ion beam scan, allowing the obtaining of a complete mass spectrum for each ionisation event. High 

transmission, sensitivity and the necessity of extremely small sample amounts (<10–18 mol in the 

most modern instruments) are the others known advantages of this technique [72]. Thus, Delcambre 



Molecules 2013, 18 1089 

 

 

and Saucier partially identified for the first time 14 monomeric flavanol glycosylated compounds 

based on four aglycons ((+)-catechin-, (−)-epicatechin-,(−)-epigallocatechin- and epicatechin gallate 

monoglycosides) in red wine and grape seed extracts by targeted ESI-MS/MS [18]. The targeted 

MS/MS mode provided additional information about the structures of these compounds. The fragments 

resulting from the fragmentation of these compounds provide a specific signature that allows a better 

identification. Nevertheless, this method, based on exact mass and specific fragmentation pattern could 

not provide information on the exact position of glucose. 

The coupling of HPLC with mass spectrometry was also a key development to gain structural 

information and structure elucidation of anthocyanins, anthocyanidins and new coloured class of 

anthocyanin derivates. The five common anthocyanins in the grape from Vitis vinifera are delphinidin 

(Dp), cyanidin (Cy), petunidin (Pt), peonidin (Pn) and malvidin (Mv), present at 3-O-monoglucosides, 

3-O-acetylmonoglucosides and 3-O-(6-O-p-coumaroyl)monoglucosides. In 2010, He et al. confirmed 

the existence of a sixth anthocyanin skeleton, pelargonidin-3-O-glucoside in non-teinturier V. vinifera 

grapes (Cabernet Sauvignon and Pinot Noir) [73]. In the not Vitis vinifera, anthocyanins with a second 

glucose linked to the C-5 hydroxyl group may be present [74]. Recently, De Freitas and Mateus have 

reported the diversity of pyranoanthocyanins in wines. The formation of these anthocyanin-derived pigments 

naturally occurs in red wine aging and a variety of structures (namely carboxypyranoanthocyanins, 

methylpyranoanthocyanins, pyranoanthocyanin-flavanols, pyranoanthocyanin-phenols, portisins, oxovitisins 

and pyranoanthocyanidin dimmers) was identified in the two last decades [75]. Operating generally in 

the positive ion mode and in acidic medium, anthocyanins are detected as flavylium cations, M+ to 

provide signals of high intensity [58]. By coupling HPLC and an electrospray interface with a mass 

detector, sixty-six different anthocyanins were detected in a Vitis vinifera Dornfelder red wine from 

1997 vintage [76]. These anthocyanins were assigned to the well-known mono- and diglucosides 

(acetyl- and coumaryl-forms) of wines. In addition, the acetic acid esters and coumaric acid esters of 

the 3-glucosides were detected. Aging products such as vitisin A (m/z = 561) and vitisin B (m/z = 517) 

and acetylvitisinA (m/z = 603) and B (m/z = 559), already identified in other works were also identified 

in this wine [77]. Fulcrand et al. showed that vitisin A resulted from cyclization between carbon 4 and 

the 5-hydroxyl group of the original anthocyanin flavylium moiety with the double bond of the enolic 

form of pyruvic acid, followed by dehydratation and rearomatization steps [78]. Finally, by applying 

an acidic hydrolysis to the wine, Heier et al. indicated that all pigments detectable at 525 nm were 

derived from the skeleton of delphinidin, cyanidin, peonidin, petunidin, malvidin and their derivates of 

pyruvic acid and acetaldehyde [76]. More recently, Xu and co-workers attempted to develop a rapid 

and accurate method for anthocyanidin quantification in grapes and grape juices through an assisted 

hydrolysis using LC/MS [79]. Under optimized conditions, the five major anthocyanidins (Dp, Cy, Pt, 

Pn, Mv) were fully separated within 25 min and successfully quantified. This method was proposed as 

a global approach to quantify anthocyanidins in order to avoid the difficulties of separation/identification 

of the wide variety of anthocyanins present in grape matrices and wines. After fractionation of the 

pigment material of red wine, the existence of dimeric anthocyanins (A-A+), previously detected in 

grape skin was shown by Alcalde-Eon et al. [80]. Thanks to the employment of mass detection in 

series (MSn; n = 1–4), new oligomers were detected in wine. They consisted of a flavanol (catechin, 

epicatechin, gallocatechin or epigallocatechin), linked through its C4 position to the nucleophilic 

positions of the upper units of a dimeric anthocyanin (F-A-A+). All the identified compounds contain 
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malvidin as one of the anthocyanin subunits, whereas the other anthocyanin moiety could be either Dp, 

Cy, Pt, Pn or Mv. This study was an interesting example of the utility and power of ESI/MSn analysis 

coupled or not to HPLC [80]. 

In de Villiers et al.’s study, optimal chromatographic conditions were developed and applied to a 2-

year old Pinotage wine, to allow the separation and identification of more than one hundred anthocyanins 

and derived pigments in a single run [81]. Thus, by this procedure, these authors tentatively identified 

17 common anthoycanin-glucosides and -diglucosides, seven oligomeric anthocyanins, 24 direct 

anthocyanin-tannin adducts such as Mv-glc-(epi)gallocatechin (A-Ttype), nine acetaldehyde-mediated 

tannin aducts, 10 anthocyanin-vinylflavanol condensation products, eight anthocyanin-vinylphenol 

condensation products (pyranoanthocyanins), 12 anthocyanin-pyruvic acid products (vitisin A derivatives), 

five anthocyanin-acetaldehyde derivatives (vitisin B derivatives) and 2 anthocyanin-acetone derivatives. 

Acevedo de la Cruz and co-workers have recently shown the efficiency of combination of mass 

spectrometry and NMR spectroscopy resulting in the identification of 33 anthocyanins in four different 

Vitis species [82]. In particular, newly reported cis isomers of p-coumaric-derivatives were identified 

(petunidin-, peonidin- and malvidin-3-(6-p-coumaroyl)-5-diglucoside). Finally, really recent works 

porposed an alternative to classical positive ionization mode by applying negative mode for 

characterization of anthocyanins [83]. In positive mode, flavonol glycosides, e.g. quercetin glycosides, 

possess the same molecular ions and fragmentation patterns as the corresponding anthocyanins, e.g., 

delphinidin glycosides ([M]+ of anthocyanins and [M+H]+ of flavonol glycosides) are the same. 

Reversely, the MS spectra acquired in the negative ionization mode proved to be a valuable tool for 

differentiation of anthocyanins from non anthocyanin polyphenols (Figure 5). Specifically, the doublet 

ions of [M−2H]− and [M−2H+H2O]− were unique to anthocyanins while a single molecular ion 

[M−H]− dominated the spectra of non-anthocyanin polyphenols [83]. 

Figure 5. Comparison of the full scan and MS2–3 scan of delphinidin-3-O-glucoside and 

quercetin-3-O-glucoside in positive and negative ionization mode. Adapted from Sun et al. 

2012 [83]. 

 

Full Scan [M+H]+ (m/z) 465 465

MS2 scan main MS2 ion (m/z) 303 303

MS3 scan main MS3 ion (m/z) 257 257

Full Scan [M-H]- (m/z) 463 463

MS2 scan main MS2 ion (m/z) 300 301

MS3 scan main MS3 ion (m/z) 271 179

Positive ionization mode

Delphinidin 3-O -glucoside Quercetin 3-O -glucoside

Negative ionization mode
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5. New Separation Techniques 

Still motivate by gaining time, new systems such as UPLC (ultra-high performance liquid 

chromatography) appeared recently to overcome some of the LC drawbacks and offering some clear 

benefits in terms of analysis time, resolving power, solvent consumption, and to a better extent 

sensitivity [18,81,83]. Indeed, after a polyphenol extraction from wines by SPE on a new  

hydrophilic-lipophilic balanced sorbent, Silva et al. managed to separate and analyzed, in five minutes, 

fifteen phenolic compounds mainly belonging to flavonols, flavanols and phenolic acids [84]. 

Capillary electrophoresis (CE) has received significant attention as an alternative liquid-based 

separation method to HPLC since the 1990s. It is especially suitable for the separation and 

quantification of low to medium molecular weight polar and charged compounds, the resultant 

separations being often faster and more efficient than the corresponding HPLC separations. CE permits 

the simultaneous analysis of analytes with different nature in a single run. In wines, the most 

representative revised compounds are phenolic compounds, amino-acids, proteins, elemental species, 

mycotoxins and organic acids [85]. However CE methods generally suffer from lower sensitivity and 

robustness compared to standard HPLC methods, and partially for these reasons, the technique has 

primarily found application in certain niche-areas where CE provides clear benefits compared to HPLC 

(for example chiral separation) [62]. Concerning analysis of phenolic compounds in wines, the 

comparison of capillary zone electrophoresis-UV-vis-MS with RP-LC-UV-ESI-MS for the analysis of 

monomeric phenolic compounds in extracts of red wines showed that RP-LC remains the method of 

choice for phenolic analysis [85,86]. Very few reports have appeared on the application of CE methods 

for the separation of anthocyanins and no direct application onto wines was reported probably because 

of the absence of improvement of the separation of complex samples in comparison with LC 

techniques [59]. 

Because of the importance of developing clean chemistry procedures, emerging methods for food 

matrices are based on solvent-free procedures. In this perspective, Vinas and co-workers paid attention 

to the development of a solid-phase microextraction (SPME) GC-MS method for the analysis of some 

polyphenols in wine and grapes [87]. Direct immersion SPME was used for the adsorption of 

polyphenols and then the fiber was placed in the headspace of the derivatizing reagent, BSTFA 

bis(trimethylsilyl)trifluoroacetamide, necessary to convert the polar non-volatile compounds into 

volatile derivates. These authors developed a new sensitive method for the determination of both cis- 

and trans- resveratrol isomers, piceatannol, catechin and epicatechin. Nevertheless, this technique can 

be only useful for such low molecular weight compounds even if interpretation of fragments patterns 

appears more difficult because of the derivatization. Indeed, the derivatization, required for this 

technique, increase the molecular weight of phenolic compounds and this could results in high 

molecular weight exceeding the mass rank available for the most common GC/MS systems, thus 

making this approach ineffective. 

6. Techniques to Establish Tannin Structures (Mean Degree of Polymerization) 

Interest in the characterization of condensed tannins has increased in the last decades. Proanthocyanidic 

tannins may differ by the nature and the number of constitutive units, by the type and location of 
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interflavanic linkages connecting the monomeric unit (C4-C8 or C4-C6) and lastly by their conformation 

(linear versus branched) of polymers. The characterization of condensed tannins by depolymerisation 

is often employed [31]. Treatment of a condensed tannin with acid, in the presence of a nucleophile 

such a thiol or less putrid and therefore much preferred phloroglucinol allows the subunit profile to be 

analysed by HPLC and the average molecular mass (expressed as “mean degree of polymerization, 

mDP”) to be calculated [88,89] (Figure 6). Indeed, proanthocyanidins become depolymerized, 

releasing terminal subunits as flavan-3-ol monomers and extension subunits as electrophilic flavan-3-

ol intermediates. The electrophilic intermediates can be trapped by the nucleophilic reagent to generate 

analyzable adducts. Most of our current knowledge about general composition and structure of grape 

and wine tannins has been obtained by depolymerization. Grape seeds proanthocyanidins comprise 

only procyanidins (sub-units constituted of (+)-catechin and (−)-epicatechin) whereas grape  

skins proanthocyanidins include both procyanidins and prodelphinidins (sub-units constituted of  

(−)-epigallocatechin) [15,90]. 

Figure 6. Reaction pathway of phloroglucinolysis. 

 

Skin proanthocyanidins have a higher mDP and a lower proportion of galloylated sub-units than 

seeds ones in major of the varieties [16,28,91,92]. Some authors have applied these depolymerization 

methods to the wines [93–95]. Especially, Drinkine et al. adapted the phloroglucinolysis to ethylidene-
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bridged flavan-3-ols analysis which result from chemical modifications of flavan-3-ols occurring 

during wine making and aging. By this method, the authors showed that flavan-3-ol ethylidene bridges 

represented less than 4% of flavan-3-ol bonds and that the proportion of these linkages relative to 

native interflavan bonds increased with wine age. Nevertheless, Herderich and Smith underlined that this 

technique is limited for the characterization of wine tannins since the vast majority of wine tannins resists 

the acid mediated depolymerization, allowing only a minor portion of tannin to be characterized [31]. 

These depolymerization methods are difficult to implement and do not give information about the 

polymer distribution of a tannin fraction because all the polymers contained in the fraction are cleaved 

into monomer units in the course of the reaction. For example, when studied the depolymerization of a 

sample containing a mix of 50% of small tetrameric tannins and 50% larger octametric tannins, will 

yield an mDP of six, the same as considering a sample consisting of 100% hexameric tannins. 

Several studies have focused on the separation of tannins according to their size for analytical and 

preparative purposes. Concerning the analytical aspect, convenient separation can be achieved by NP 

HPLC as previously described [30]. For preparative aspects, gel chromatography with different gels 

such as TSK HW-40 have been used [33,96]. Unfortunately, only oligomers up to five are easily 

separated with these methods. Saucier et al. proposed a rapid fractionation of grape seed 

proanthocyanidins based on liquid/liquid extraction and relative solubility of these compounds in 

different solvents (water, ethyl acetate, methanol, and chloroform) [29]. By this method, they were 

able to obtain 6 fractions having mDP varying between three and 13, approximately, and they can be 

easily obtained in gram quantities which may be useful to study the properties of each fraction. 

Recently, Hanlin et al. employed semi-preparative liquid chromatography on a diol phase column to 

fractionate grape seed, skin and wine proanthocyanidins [97]. They obtained an effective fractionation 

conducted in interesting trends of proanthocyanidins distribution in Cabernet-Sauvignon and Shiraz 

varieties. The extensive fractionation leads to the obtention of some skin fraction up to mDP of 76 for 

Cabernet-Sauvignon skins. Recently, mass spectrometry (MS) was proved to be an interesting 

alternative technique allowing condensed tannins to be detected without sample pre-treatment. Mouls 

et al. attempted to better define the difficulties encountered in the MS analysis of tannins [98]. For this 

purpose, they compared mDP values obtained after chemical depolymerization and mass spectra data 

processing of tannin extracts from apple cultivars. They assessed the impact of several analytical 

parameters (solvent acidity, ionization mode, cone voltage) and showed that they strongly affected the 

mass spectrometric responses of tannins. Nevertheless, the mDP values calculated from mass spectra 

were still underestimated in comparison to mDP for depolymerization, underlining the difficulties in 

detecting high mDP tannin. They concluded that ESI-MS was suitable for mDP estimation of fractions 

with low molecular weight, displaying a narrow polymer distribution with standard mDP below 20. 

7. Conclusions 

Hundreds of publications on the analysis of grape and wine phenolic compounds have already 

appeared over the past four decades. New analytical techniques have unraveled some structures 

derived from tannins and anthocyanins in wine and determined how they are formed. Thus, the 

diversity of methods and experimental procedures reflects the complexity of phenolic analytes in grape 

and in wine. Improvement is still pursued since each species is present in very small amounts and too 



Molecules 2013, 18 1094 

 

 

many unidentified compounds still remain, especially with the polymeric fraction. Considering 

environmental problems, several novel extraction and analyses techniques have been developed as an 

alternative to conventional extraction and analyses procedures, offering advantages with respect to 

analysis time, solvent consumption, extraction yields and reproducibility. Nonetheless, there is still no 

available standardize procedure for sample preparation, extraction and analyses. Each method provides 

specific advantages, detections towards some particular phenolic compounds and these aspects have to 

be thought before analysis. Choosing an appropriate phenolic assay depends on what information is 

required. Depending on the needs of an experiment, using some combination of assays is currently the 

best approach to properly characterize the phenolic composition of a sample. 
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