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Abstract: In the presence of trifluoromethanesulfonic acid (TfOH) or bis(trifluoromethane- 

sulfonyl)imide (Tf2NH), iodosobenzene (PhI=O) efficiently promoted the reactions of 

dicarbonyl compounds as well as monocarbonyl compounds with nitriles to give  

2,4-disubstituted and 2,4,5-trisubstituted oxazole in a single step under the mild conditions. 
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1. Introduction 

The synthesis of oxazole compounds has attracted a great deal of attention due to the widespread 

application of oxazole derivatives in biologically active compounds as well as versatile building blocks 

in organic synthesis [1–3]. For the purpose of synthesizing highly substituted oxazole compounds, an 

intramolecular reaction, the so-called Robinson-Gabriel cyclocondensation of -acylamino ketones in 

the presence of dehydrating reagents [H2SO4, POCl3, (CF3SO2)2O, and so on] has been commonly 

employed [4–6]. As for the intermolecular approaches to highly substituted oxazoles, -diazo  

ketones [7–9], -halo ketones [10,11], -sulfonyloxy ketones [12], and iodonium ylides of ketones [13] 

have been used as a reactive synthetic intermediate. The preparation of -acylamino ketones or these 

intermediates, however, requires a multi-step synthesis and/or the harsh reaction conditions. Although 
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the direct synthesis of oxazoles from simple ketones and nitriles with oxidants based on Tl(III) [14], 

Hg(II) [15], Fe(III) [16], or Cu(II) [17] have been developed as a convenient procedure, these 

procedures have met with the drawbacks including the limitation of the substrates and/or the use of 

toxic oxidants. 

Hypervalent iodine(III) reagents have gained increasing popularity in organic syntheses due to their 

low toxicity, mild reactivity, high stability, easy handling, and so on [18]. Among them, [hydroxyl-

(tosyloxy)iodo]benzene (Koser’s reagent) and related reagents have been reported to work well for the 

-sulfoxylations of ketones [19,20]. [Hydroxy(2,4-dinitrobenzenesulfonyloxy)iodo]benzene (HDNIB) 

has been used in the stepwise and one-pot synthesis of oxazoles via the formation of -sulfonyloxy 

ketones as intermediate from simple ketones [21]. In addition, phenyliodine(III) diacetate (PIDA) with 

trifluoromethanesulfonic acid (TfOH) [22] or the iodoarene-oxone-TfOH system [23] efficiently 

promoted the direct synthesis of oxazoles from monocarbonyl compounds, such as alkyl aryl ketones 

with nitriles. To the best of our knowledge, however, there is no report about the direct synthesis of 

oxazoles from simple dicarbonyl compounds and nitriles [21,24,25]. As a part of our study on the 

iodine(III)-mediated synthesis of heterocycles [26,27], we carried out research on iodine(III) reagents 

for the direct synthesis of oxazoles from monocarbonyl or dicarbonyl compounds. In this article, we 

describe a single-step synthesis of highly substituted oxazoles by the reaction of ketones with nitriles 

in the presence of iodosobenzene (PhI=O) and a Brønsted acid. 

2. Results and Discussion 

2.1. Evaluation of Oxidants for the Direct Synthesis of Oxazole 

At the outset, we focused on the investigation of reactive oxidants for the reaction of monocarbonyl 

compounds with nitriles as shown in Table 1. In the presence of PIDA (1.2 equiv.) with TfOH (4.5 equiv.), 

the reaction of acetophenone (1a) in acetonitrile (MeCN) afforded the oxazole 2a in 94% yield at  

80 °C for 2 h (entry 1) [23], albeit low yield (22%) at ambient temperature for 3 h (entry 2). Exploring 

milder conditions, we examined the oxidants which were prepared from miscellaneous Brønsted acids 

(1.5–3.0 equiv.) and PhI=O (1.5 equiv.) [28,29], in the reaction of 1a in MeCN (entries 3–8). Although 

the use of p-toluenesulfonic aicd (TsOH) gave -tosyloxy ketone 3 as a main product (entry 3), the other 

acids led to the desired formation of oxazole compound 2a (entries 4–8). Thus, 3.0 equiv. TfOH 

showed the similar results to entry 1 (entry 7) and 3.0 equiv. bis(trifluoromethane-sulfonyl)imide 

(Tf2NH) produced a good yield of 2a (86%) after 3 h at ambient temperature (entry 9). It should be 

mentioned that the use of 10 equiv. of MeCN in 1,2-dichloroethane instead of MeCN solvent 

decreased the yield of 2a, even under the similar conditions mediated by PhI=O with TfOH or Tf2NH. 

For the formation of oxazole 5a from -keto ester 4a in MeCN, PhI=O/Tf2NH system turned out to 

display superior activity to iodine(III) reagents/TfOH (Table 2). Thus, PhI=O (1.5 equiv.) with Tf2NH 

(3.0 equiv.) improved the yield of 5a to 51% at 80 °C for 16 h (entry 4), compared to the use of  

1.5 equiv. PIDA or 1.5 equiv. PhI=O in the presence of TfOH (3.0–4.5 equiv.), in which 4a were 

converted to 5a in only 4–7% yields even at 80 °C for 24–25 h (entries 1 and 2). In the case of the 

extension of the reaction time (72 h) or the increase in the amount of Tf2NH (6.0 equiv.), 5a was 

obtained in 79–81% yields (entries 5 and 6). 
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Table 1. Evaluation of oxidants for the reaction of acetophenone (1a) in MeCN. 

 

Entry Oxidant (equiv) Acid (equiv.) Temp. (°C) Time (h) 2a (%) [a]  

1 [b] PIDA (1.2) TfOH (4.5) 80 2 94  
2 PIDA (1.2) TfOH (4.5) rt 3 22  
3 PhI=O (1.5) TsOH (1.5) 80 18 - (3 69) 
4 PhI=O (1.5) HBF4/Et2O (1.5) 80 18 54  
5 PhI=O (1.5) TfOH (1.5) 80 18 69  
6 PhI=O (1.5) Tf2O (1.5) 80 18 21 [c]  
7 PhI=O (1.5) TfOH (3.0) 80 3 94  
8 PhI=O (1.5) Tf2NH (1.5) 80 3 40 (1a 16) 
9 PhI=O (1.5) Tf2NH (3.0) rt 3 86  

[a] Yields were determined by 1H-NMR analysis; [b] Ref. [21]; [c] 2,4-Dimethyl-6-phenylpyrimidine 
was obtained in 38% yield. 

Table 2. Evaluation of oxidants for the reaction of benzoylacetate 4a in MeCN. 

 

Entry Oxidant Acid  Time (h) 5a (%) [a]  

1 PIDA TfOH [b]  24 4  
2 PhI=O TfOH  25 7  
3 PhI=O TfOH  115 41  
4 PhI=O Tf2NH  16 51  
5 PhI=O Tf2NH  72 79  
6 PhI=O Tf2NH [c]  3 81  
[a] Yields were determined by 1H-NMR analysis; [b] TfOH: 4.5 equiv.; [c] TfOH: 6.0 equiv. 

2.2. Scope of the Direct Synthesis of Oxazoles Using PhI=O with TfOH or Tf2NH 

The scope of monocarbonyl compounds 1 and dicarbonyl compounds 4 by means of the PhI=O  

(1.5 equiv.)-mediated procedure A (acid: 3.0 equiv. TfOH), B (acid: 3.0 equiv. Tf2NH), or C (acid:  

6.0 equiv. Tf2NH) was shown in Tables 3 and 4 and Scheme 1. Procedure A could be applied to the 

reactions of monocarbonyl compounds 1a–g in MeCN, and the corresponding oxazoles 2a–g were 

obtained in 53–94% yields at 80 °C (Table 3, entries 1, 3–6, 8, and 9). Furthermore, procedure B 

brought about the formation of 2a or 2e at ambient temperature (entries 2 and 7). In the case of 

benzoylacetonitrile (1g), an increase in the amount of Tf2NH (procedure C) improved the yield of 5f 

up to 69% at ambient temperature for 24 h (entry 11). Although the dicarbonyl compounds 4a,b 

required the long time (72–139 h) to give good yields of products through procedure B (entries 12 and 14), 

procedure C reduced the reaction times (3 h) giving rise to 5a–c in 67–83% yields (entries 13, 15 and 

17). Bicyclic oxazole 5d could be formed by procedure C, albeit in only 40% yield after 167 h  
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(entry 18). Unfortunately, p-methoxyacetophenone and 4-phenyl-2-butanone did not give the desired 

products with any of the procedures. By procedure A, the reaction of acetophenone (1a) in 

propionitrile (EtCN) or benzonitrile (PhCN) instead of MeCN smoothly proceeded at 80 °C for 4 h to 

yield the corresponding oxazole 6 or 7 in good yields (Scheme 1). The procedure C could be applied to 

the reaction of dicarbonyl compounds 4a–c in EtCN or PhCN (Table 4). 

Table 3. The reactions of 1 or 4 in MeCN by the means of procedures A, B, or C [a]. 

 

Entry 1 or 4 R1 R2 Procedure (°C) (h) 2 or 5 Yield (%) [b] 

1 1a Ph H A 80 3 2a 88 

2 1a   B rt 3 2a 86 

3 1b m-Me-C6H4 H A 80 3 2b 75 

4 1c p-Cl-C6H4 H A 80 3 2c 86 

5 1d p-NO2-C6H4 H A 80 3 2d 73 

6 1e Ph Me A 80 3 2e 94 

7 1e   B rt 2 2e 91 

8 1f Ph Cl A 80 49 2f 68 

9 1g Ph CN A 80 20 2g 53 

10 1g   B 80 20 2g 38 

11 1g   C rt 24 2g 69 

12 4a Ph OEt B 80 72 5a 78 

13 4a   C 80 3 5a 81 

14 4b Ph Ph B 80 139 5b 89 

15 4b   C 80 3 5b 83 

16 4c Me Me B 80 120 5c 35 

17 4c   C 80 3 5c 67 

18 4d -(CH2)4- C 80 167 5d 40 
[a] Procedure A: 3 equiv. TfOH was used as a Brønsted acid. Procedure B: 3 equiv. Tf2NH was used 
as a Brønsted acid. Procedure C: 6 equiv. Tf2NH was used as a Brønsted acid; [b] Isolated yields. 

Scheme 1. The reactions of 1a in EtCN or PhCN by the means of procedure A. 
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Table 4. The reactions of 4a–c in EtCN or PhCN by the means of procedure C. 

 

Entry 4 R1 R2 R3 (h) 2 or 5 Yield (%) [a] 

1 4a Ph OEt Et 2 8a 83 
2 4a   Ph 3 9a 72 
3 4b Ph Ph Et 3 8b 89 
4 4b   Ph 3 9b 67 
5 4c Me Me Et 20 8c 56 
6 4c   Ph 20 9c 60 

[a] Isolated yields. 

2.3. Mechanistic Considerations 

Since it has been known that PhI=O reacts with two equiv. of TfOH in CH2Cl2 to produce to the 

oxidant 10 [30], to better understand the present oxazole formation, we examined the reaction of 

acetophenone (1a) with 10 (Scheme 2). Thus, under conditions similar to those of entry 7 in Table 1, 

1a was treated with 10 (0.75 equiv.) instead of PhI=O (1.5 equiv.) and TfOH (3 equiv.) in MeCN to 

give 2a in only 11% yield at 80 °C for 3 h. Therefore, 10 would not be considered to take part in the 

present oxazole formation.  

Scheme 2. Preparation of 10 and the reaction of 1a with 10. 

 

On the basis of abovementioned observations and the previous reports about the iodine(III)-mediated 

synthesis of oxazoles [21–23], the mechanism for the present oxazole formation from ketones 1 or 4 

with nitriles as shown in Scheme 3 is proposed. That is, -iodanyl ketone Int-A, which is generated 

from 1 or 4 with PhI=O and H-X (TfOH or Tf2NH), would be converted to Int-B by the Ritter-type 

reaction with R3CN. Int-C generated by the reductive elimination of ArI might also be a possible 

intermediate for the formation of Int-B, and the subsequent cyclization of Int-B gives oxazoles 2 or 5. 

The formation of Int-A and/or Int-C is supported by the formation of -tosyloxy ketone 3 (69%) in 

the case of TsOH as an acid (Table 1, entry 3) [19,23]. 
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Scheme 3. Proposed reaction mechanism of direct synthesis of oxazoles. 

 

3. Experimental 

3.1. General 

All starting materials and reagents were commercially available. Dried organic solvents were 

purchased and used without further drying. Unless otherwise stated, all reactions were conducted under 

an argon atmosphere. Melting points were measured on a Yanaco SP-M1 melting point apparatus 

(Yanagimoto Co.) and were uncorrected. IR spectra were recorded on a HORIBA FT-710 FT-IR 

spectrometer. 1H and 13C-NMR spectra were measured in CDCl3 with a Bruker AV300M FT NMR 

spectrometer at 300 and 75 MHz, and the chemical shifts are given in ppm using CHCl3 (7.26 ppm) for 
1H-NMR and CDCl3 (77.0 ppm) for 13C-NMR as an internal standard, respectively. Mass spectra and 

HRMS were recorded by FAB method on a JMS-HX110 Mass spectrometer. Elemental analysis was 

measured on a Perkin-Elmer 240B or Elemental Vavio EL. For the TLC analysis, Merck precoated 

TLC plates (silica gel 60 F254) were used. Column chromatography was performed on Silica gel 60N 

(63–200 m, Kanto Kagaku Co., Ltd.). 

3.2. General Procedure for the Iodine(III)-Mediated Synthesis of Oxazoles 

Ketone 1 or 4 (0.4 mmol) was added to a solution of iodosobenzene (132 mg, 0.6 mmol) and 

trifluoromethanesulfonic acid (106 L, 1.2 mmol) or bis(trifluoromethanesulfonyl)imide (337 or  

675 mg, 1.2 or 2.4 mmol), which were premixed in acetonitrile, propionitrile, or benzonitrile (2 mL) at 

0 °C for 5 min, and the reaction mixture was stirred at ambient temperature or 80 °C until the 

consumption of substrate by TLC analysis. The mixture was diluted with ether and filtered through a 

short alumina column. After concentration of the filtrate to dryness, the subsequent purification gave 

the corresponding oxazole 2 or 5. 2a [21], 2c [21], 2d [31], 2e [21], 6 [21], 7 [32], and 9a–c [33] were 

identified by the comparison with 1H-NMR spectra reported in the appropriate literature. 

2-Methyl-5-(3′-methylphenyl)oxazole (2b). Colorless oil. IR (neat)  cm−1; 3054, 2925, 2863, 1610, 

1560, 1519, 784, 748. 1H-NMR (CDCl3)  2.38 (s, 3H), 2.51 (s, 3H), 7.02(d, J = 7.6 Hz, 1H), 7.18  

(s, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.40 (d, J = 9.2 Hz, 2H). 13C-NMR (CDCl3)14.0, 21.4, 121.0, 
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121.6, 124.5, 128.0, 128.7, 128.9, 138.5, 151.2. FAB-LM m/z: 174.2 (M++H). FAB-HM Calcd for 

C11H12NO: 174.0919, Found: 174.0906. 

4-Chloro-2-methyl-5-phenyloxazole (2e). White solid. Mp 56 °C. IR (KBr)  cm−1; 3050, 3002, 2923, 

2856, 1438, 1378. 1H-NMR (CDCl3)  2.50 (s, 3H), 7.30–7.36 (m, 1H), 7.41–7.46 (m, 2H), 7.83–7.84 

(m, 2H). 13C-NMR (CDCl3)14.2, 124.8, 127.0, 128.7, 143.8, 159.4. FAB-LM m/z: 194.1 (M++H). 

FAB-HM Calcd for C10H9ClNO: 194.0373, Found: 194.0383. Anal. Calcd for C10H8ClNO: C, 62.03; 

H, 4.06; N, 7.23. Found: C, 62.21; H, 4.47; N, 7.23. 

4-Cyano-2-methyl-5-phenyloxazole (2f). White solid. Mp 49 °C. IR (KBr)  cm−1; 3062, 2927, 2854, 

2225. 1H-NMR (CDCl3)  2.56 (s, 3H), 7.48–7.50 (m, 3H), 7.89–7.92 (m, 2H). 13C-NMR (CDCl3)  13.9, 

108.0, 113.8, 125.2, 125.5, 129.3, 130.9, 157.8, 161.1. FAB-LM m/z: 185.2 (M++H). Anal. Calcd for 

C11H8N2O: C, 71.73; H, 4.38; N, 15.21. Found: C, 71.91; H, 4.39; N, 15.02. 

4-Ethoxycarbonyl-2-methyl-5-phenyloxazole (5a). White solid. Mp 64 °C. IR (KBr)  cm−1; 3054, 

3006, 2977, 2927, 2857, 1598, 1560, 1488. 1H-NMR (CDCl3)  1.38 (t, J = 7.1 Hz, 3H), 2.54 (s, 3H), 

4.40 (q, J = 7.1 Hz, 2H), 7.43–7.45 (m, 3H), 8.02–8.05 (m, 2H). 13C-NMR (CDCl3) 13.9, 14.3, 61.3, 

106.9, 127.1, 128.3, 128.3, 130.1, 155.3, 159.9, 162.2. FAB-LM m/z: 232.2 (M++H). FAB-HM Calcd 

for C13H14NO3: 232.0974, Found: 232.0977. Anal. Calcd for C13H13NO3: C, 67.52; H, 5.67; N, 6.06. 

Found: C, 67.80; H, 5.81; N, 5.89. 

4-Benzoyl-2-methyl-5-phenyloxazole (5b). Colorless oil. IR (neat)  cm−1; 3031, 2965, 2927, 2927, 

2856, 1710. 1H-NMR (CDCl3)  (s, 3H), 7.40–7.47 (m, 5H), 7.47–7.55 (m, 1H), 7.95–7.98 (m, 2H), 

8.05–8.08 (m, 2H). 13C-NMR (CDCl3) ; 13.8, 127.3, 127.6, 128.1, 128.4, 130.0, 130.2, 132.9, 133.7, 

137.5, 154.7, 159.0. FAB-LM m/z: 264.2 (M++H). FAB-HM Calcd for C18H14NO2: 264.1025, Found: 

264.1014. Anal. Calcd for C17H13NO2: C, 77.55; H, 4.98; N, 5.32. Found: C, 77.38; H, 5.16; N, 5.40. 

4-Acetyl-2,5-dimethyloxazole (5c). White solid. Mp 39 °C. IR (KBr)  cm−1; 1681. 1H-NMR (CDCl3)  

2.73 (s, 3H), 2.43 (s, 3H), 2.50 (s, 3H). 13C-NMR (CDCl3)  12.0, 13.6, 27.8, 134.5, 154.2, 158.4, 

194.7. EI-LM m/z: 139.1 (M+). Anal. Calcd for C7H9NO2: C, 60.42; H, 6.52; N, 10.07. Found: C, 

60.02; H, 6.16; N, 9.82. 

6,7-Dihydro-2-methylbenzo[d]oxazole-4(5H)-one (5d). Colorless oil. IR (neat)  cm−1; 2952, 2927, 

2854, 1682. 1H-NMR (CDCl3)  2.12–2.20 (m, 2H), 2.52 (s, 3H), 2.57 (t, J = 5.9 Hz, 2H), 2.81 (t,  

J = 6.1 Hz, 2H). 13C-NMR (CDCl3)  14.4, 23.2, 23.8, 38.0, 144.2, 156.1, 165.9, 185.8. FAB-HM 

Calcd for C8H10NO2: 152.0712, Found: 152.0697. 

4-Ethoxycarbonyl-2-ethyl-5-phenyloxazole (8a). White solid. Mp 37 °C. IR (KBr)  cm−1; 3066, 2983, 

2933, 2875, 1714, 1240, 1189. 1H-NMR (CDCl3)  1.38 (t, J = 7.1 Hz, 3H), 1.39 (t, J = 7.6 Hz, 3H), 2.88 

(q, J = 7.6 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 7.42–7.47 (m, 3H), 8.01–8.04 (m, 2H). 13C-NMR 

(CDCl3)  11.2, 14.3, 21.6, 61.3, 126.7, 127.1, 128.3, 130.0, 155.0, 162.2, 164.1. FAB-LM m/z: 264.2 

(M++H). FAB-HM Calcd for C14H16NO3: 246.1130, Found: 246.1126. Anal. Calcd for C14H15NO3: C, 

68.56; H, 6.16; N, 5.71. Found: C, 68.79; H, 6.06; N, 5.61. 
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4-Benzoyl-2-ethyl-5-phenyloxazole (8b). Colorless oil. IR (neat)  cm−1; 3064, 2981, 2937, 1656.  

1H-NMR (CDCl3)  1.43 (t, J = 7.6 Hz, 3H), 2.92 (q, J = 7.6 Hz, 2H), 7.40–7.45 (m, 5H), 7.53–7.58 

(m, 1H), 7.94–7.97 (m, 2H), 8.06–8.10 (m, 2H). 13C-NMR (CDCl3) 11.3, 21.7, 127.5, 127.7, 128.2, 

128.5, 130.0, 130.4, 133.0, 133.7, 137.5, 154.5, 163.4. FAB-LM m/z: 278.2 (M++H). FAB-HM Calcd 

for C18H16NO2: 278.1181, Found: 278.1177. Anal. Calcd for C18H15NO2: C, 77.96; H, 5.45; N, 5.05. 

Found: C, 77.95; H,5.42; N,5.10. 

4-Acetyl-2-ethyl-5-menyloxazole (8c). Colorless oil. IR (neat)  cm−1; 1685. 1H-NMR (CDCl3) 1.25 

(t, J = 7.6 Hz, 3H), 2.42 (s, 3H), 2.50 (s, 3H), 2.68(q, J = 7.6 Hz, 2H). 13C-NMR (CDCl3) ; 11.1, 12.1, 

21.4, 27.8, 134.4, 154.0, 162.7, 194.9. FAB-LM m/z: 154.1 (M++H). FAB-HM Calcd for C8H12NO2: 

154.0868, Found: 154.0873.  

3.3. Formation of -Tosyloxy Ketone 3 under the Iodine(III)-Mediated Conditions 

Ketone 1a (47 L, 0.4 mmol) was added to a solution of iodosobenzene (132 mg, 0.6 mmol) and  

p-toluenesulfonic acid monohydrate (114 mg, 0.6 mmol), which were premixed in MeCN (2 mL) at  

0 °C for 5min, and the reaction mixture was stirred at 80 °C for 18 h. The mixture was diluted with 

ether and filtered through a short alumina column. After concentration of the filtrate to dryness, the 

subsequent purification gave 3 (73.2 mg, 0.25 mmol, 63%). Compound 3 was identified by the 

comparison with the 1H-NMR spectrum reported in the literature [20]. 

4. Conclusions 

We have demonstrated the single-step synthesis of highly substituted oxazoles from ketones and 

nitriles by the use of iodosobenzene with trifluoromethanesulfonic acid or bis(trifluoromethane-

sulfonyl)imide. The present procedure could be applied not only to monocarbonyl compounds, but also 

to dicarbonyl ones. In particular, we believe that the reactivity of iodosobenzene with bis(trifluoro-

methanesulfonyl)imide sheds light on a new possibility for the use of hypervalent iodine compounds in 

organic synthesis. 
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