Supplementary Materials

NMR spectra of compounds 4, 5, and 6. NMR spectra of compound 10 at different temperatures.

SI1. NMR spectra of Compound 4.

Figure S3. 2D ¹H-NMR COSY spectrum of 4, in D₂O. 500 MHz.

Figure S4. 2D ¹H-NMR TOCSY spectrum of **4**, in D_2O . 500 MHz.

SI2. NMR spectra of Compound 5.

Figure S7. 2D ¹H-NMR COSY spectrum of **5**, in D₂O. 600 MHz.

SI3. NMR spectra of Compound 6.

Figure S9. 2D ¹H-NMR COSY spectrum of 6, in D₂O. 600 MHz.

SI4. Comparison of NMR spectra of compounds 6 and 10 at different temperatures.

Table S1. ¹H-NMR chemical shift differences (in Hz) at 303 and 328 K for the anomeric protons of compounds **10** and **6**. D_2O , 500 MHz.

Hexamer Ring	A	В	С	D	E	F
Δδ	20-23	17	7.5	nd	13	20-23
Tetramer Ring		Α	В	С	D	
Δδ		22	6.5	nd	17	