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Abstract: Fully substituted olefin generation via metathesis is presented. Catalyst 

development, optimization of reaction conditions and substrate screening are included.  

In addition, asymmetric alkene metathesis, the cross metathesis reaction for this 

transformation and its application in natural products will be discussed. 
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1. Introduction 

As an alternative technology for olefin generation, the metathesis reaction has been focused on 

since its recent and rapid development [1,2]. This transformation allows the efficient production of 

otherwise readily unavailable olefins including medium-sized heterocycles, carbocycles, trisubstituted 

olefins and heteroatom-substituted olefins (Scheme 1) using structurally diverse catalysts (Figure 1) [3,4]. 

Nowadays, the protocol is widely utilized to synthesize valuable polymers, natural products and 

medicinal compounds for humans [5–7]. 

Scheme 1. Metathesis reaction and its basic transformation. 
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Figure 1. Representative structures of metathesis catalysts. 

 

Although metathesis is a fascinating technology for alkene synthesis, this reaction still needs 

improvement in terms of reactivity and selectivity [1]. The general pattern that the more substituted a 

substrate is, the less reactive it is, shows that steric bulkiness hampers the incorporation of metal 

carbenoids in the substrate. For the selectivity issue of alkene geometry, various methodologies have 

been developed to control the E or Z geometry of the resulting olefins [8–12]. However, the general 

problems of E- or Z-selective alkene metathesis haven’t yet been solved when it comes to the case of 

tetrasubstituted olefins (Figure 2). 

Figure 2. Difficulty in the generation of tetrasubstituted olefins via metathesis. 

 

For the reasons mentioned above, a great effort has already been devoted to the efficient generation 

of tetrasubsituted alkenes via metathesis. A variety of catalysts, reaction conditions including solvents, 

substrate screening and applications have been tried. This article presents an overview of these 

endeavors. 

2. Results and Discussion 

2.1. Early Studies with a Molybdenum Catalyst 

Actually, tetrasubstituted alkene generation via metathesis was first reported two decades ago,  

when the rapid ring closing metathesis (RCM) of the substrate to form the sterically encumbered 

medium-sized ring skeletons 1–4 using a highly reactive molybdenum catalyst (A) was described  

(Scheme 2) [13–15]. These results indicate that the molybdenum carbenoid can be incorporated into 
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the sterically hindered substrates easily. However, this molybdenum metal species was soon replaced by 

the ruthenium catalysts B–D, because of their air and moisture stability and wide utility. Consequently, 

tetrasubstituted alkene generation via ruthenium catalysts was also studied. 

Scheme 2. Early utilization of a Mo catalyst A in tetrasubstituted olefins. 

 

2.2. Early Studies with a Ruthenium Catalyst 

The most challenging obstacle to the utilization of ruthenium carbenoids to produce tetrasubstituted 

alkenes was the reactivity of the ruthenium species. Unlike the molybdenum species A which 

catalyzed the transformation of the diene 3' into the corresponding product 3 in high yield, the 

ruthenium catalyst E couldn’t perform the same role (Scheme 2 and Equation 3 in Scheme 3) [16]. 

Scheme 3. Unsuccessful RCM and successful relay RCM. 
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Considering that the relay-RCM of dienyne 5' to the corresponding diene product 5 was reported 

using the same catalyst E, the incorporation of the ruthenium carbenoid into the substrate was regarded 

as a rate determining step in this process (Scheme 3). Definitely, more reactive ruthenium catalysts 

were necessary.  

2.3. New Catalyst Design and Its Application 

As is well known, dramatic improvement of ruthenium catalyst reactivity was achieved by replacing 

the tricyclohexylphosphine (PCy3) ligand with an N-heterocyclic carbine (NHC) ligand [17]. Actually, 

it was reported that a similar ruthenium catalyst F with an imidazolylidene ligand could produce 

tetrasubstituted cycloalkenes or pyrroline products (Entry 1, Scheme 4) [18]. Furthermore, the same 

imidazolylidene with a more sterically demanding dimesityl group was introduced to catalyze the 

medium-sized RCM of tetrasubstituted alkenes (Entry 2, Scheme 4) [19]. The Grubbs-Hoveyda 

catalyst D also showed a high performance in producing furans 10 and 11 (Entry 3, Scheme 4) [20]. 

Scheme 4. Development of new catalysts and their application. 

 

2.4. Optimization of Reaction Conditions 

In addition to catalyst development, other reaction conditions such as solvents and substrate were 

optimized (Scheme 5). In 2001, Furstner et al. utilized supercritical CO2 to improve the RCM 
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procedure. This unique condition showed improved results for the fully substituted alkenes 6 and 3 [21]. 

Another research carried out studied the substrate. Using the established Grubbs 2nd generation catalyst, 

Haufe et al. achieved efficient RCM of a fluoride-substituted alkene 12. Due to the biological 

importance of fluoride-containing molecules, this paper was highlighted and later applied to the 

synthesis of other natural products (Scheme 10, vide infra) [22]. A polymer-supported metathesis 

catalyst H was also utilized for this type of conversion. An azepine structure 13 could be constructed 

using the polymer-supported catalyst H, which could be reused [23]. More dramatic advances were 

achieved when Blecher et al. changed solvents from normal benzene to hexafluorobenzene. This 

solvent change allowed the highly efficient RCM of medium-sized heterocycles in high yield [24]. 

After optimizing reaction conditions, a large improvement in the tetrasubstituted olefin metathesis 

reaction was achieved. However, this type of RCM still needed generality for various substrates. 

Scheme 5. Optimization of the metathesis reaction in tetrasubstituted alkenes. 

 

2.5. Further Catalyst Development 

More advanced catalyst development research began with the Grubbs-Hoveyda catalyst D. Grela et al. 

reported that the NO2-substituted aromatic ligand activates the catalyst J in the tetrasubstituted olefin 
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metathesis reaction (Entry 1, Scheme 6) [25]. It seems that the electronic effect facilitates the insertion 

of olefin in the ruthenium carbenoid. However, a more outstanding advance was achieved with the 

sterically less-demanding liganded catalyst K. 

Scheme 6. Development of more advanced catalysts J–M. 

 
a MTBE = methyl t-butyl ether. 
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Replacement of the mesityl substituent of the toluene moiety made the catalyst K much more 

reactive than the original catalyst D [26]. Actually, the catalyst K was so reactive that it was sufficient 

to produce azacycles 19 and 20 at low catalyst loading (Entry 3) [27]. Due to this high performance, 

the catalyst K was used by Stoltz et al. to synthesize elatol, a bioactive natural product [28]. 

Research on catalyst optimization is still ongoing. In 2010, Plenio et al. reported the bis-NHC 

liganded catalyst L. In particular, this electron-deficient ligand helped the catalyst to produce various 

tetrasubstituted olefins by RCM (Entry 5, Scheme 6) [29]. A 6-membered ring ligand was also 

reported recently. Substitution of imidazoline on the pymidine ligand also showed potential RCM in 

fully substituted olefins 3 (Entry 6) [30]. Although its chemical yield is relatively low, it is an 

impressive result as it provides possibilities for ligand modification. 

2.6. Asymmetric RCM in Tetrasubstituted Alkenes 

As seen in Scheme 7, an experiment on asymmetric RCM was also investigated. Collins et al. tried 

to utilize the metathesis reaction for the introduction of tetrasubstituted asymmetric alkenes. After a set 

of ligand screens, desymmetrization of the triene 23' to the optically active dihydropyran 23 could be 

carried out successfully. It was also reported that the optically active dihydrofuran skeleton could be 

produced through the same desymmetrization reaction [31].  

Scheme 7. Asymmetric RCM of 23' to 23. 

 

2.7. Cross Metathesis in Tetrasubstituted Alkenes 

As research on RCM in tetrasubstituted alkenes proceeds, experiments on utilizing this reaction for 

cross metathesis were also attempted. Howell et al. reported cross metathesis of the terminal alkene 24' 

with β-lactam 25 to obtain the tetrasubstituted unsaturated β-lactam 24 in high yield using the  

Grubbs-Hoveyda catalyst D (Scheme 8). The reaction was quite rapid when utilized for the generation 

of biologically important structures with various substituents, hydroxyl, aliphatic, silyl and aromatic 

groups, although the olefin geometry of the product was unselective. Further results showed that the 

electron-rich β-lactam didn’t produce the same conversion under the same conditions, indicating that 

the electronic factors are important for this conversion [32]. 
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Scheme 8. Cross metathesis in tetrasubstituted alkenes 24. 

 

2.8. Application of Metathesis in Tetrasubstituted Alkenes 

Due to little success of metathesis in tetrasubstituted alkenes, its application has been also limited. 

However, some results show that this conversion can be applied to the synthesis of interesting 

molecules when it is utilized appropriately. Actually, Yoshida et al. showed an example. A 

dimethylene compound 26' could be converted into 26'' via the alkene metathesis reaction under the 

catalysis of Grubbs 2nd catalyst. Once 26'' formed, it was aromatized into the phenol 26 by 

spontaneous tautomerization in situ (Scheme 9) [33]. This reaction could be carried out in both CH2Cl2 

and benzene, although the later showed better yield despite the slow reaction rate. 

Scheme 9. RCM in tetrasubstituted alkenes and its aromatization. 
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Another application of this RCM reaction in the total synthesis of elatol, a bioactive natural product, 

was achieved by Stoltz et al. [28]. A fused bicycle 27 was produced from bis-terminal methylene 27' 

through catalysis of the less sterically demanding ruthenium carbenoid K, described above (Scheme 10). 

The chloroalkene 27 could be obtained at a 97% yield and 1.3 g scale, because this procedure was so 

practical. It is interesting that 27 could be produced using the 2nd generation Grubbs catalyst B at  

85% after 24 h. This intermediate 27 could be transformed into (+)-elatol via simple functional  

group interconversion. 

Scheme 10. RCM in tetrasubstituted alkenes and its application to natural product synthesis. 
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These two examples show that RCM in tetrasubstituent alkenes is a highly efficient technology for 

the synthesis of complex molecules. More research to expand its generality is still ongoing. 

3. Conclusions  

Since the development of molybdenum and ruthenium catalysts, the metathesis reaction has served 

as a key carbon-carbon bond transformation. It has also allowed us to obtain otherwise unavailable 

tetrasubstituted alkene skeletons in an effective manner, although its substrate scope and low chemical 

yield hampers its wide utilization. Nowadays, however, challenges to overcome these limitations and 

expand its efficiency into the enantioselective reaction and the synthesis of natural products are 

actively ongoing. It is envisioned that this effort will result in outstanding advances in the synthesis of 

tetrasubstituted alkenes. 
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