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Abstract: Social media platforms have surpassed cultural and linguistic boundaries, thus enabling
online communication worldwide. However, the expanded use of various languages has intensified
the challenge of online detection of hate speech content. Despite the release of multiple Natural
Language Processing (NLP) solutions implementing cutting-edge machine learning techniques, the
scarcity of data, especially labeled data, remains a considerable obstacle, which further requires
the use of semisupervised approaches along with Generative Artificial Intelligence (Generative AI)
techniques. This paper introduces an innovative approach, a multilingual semisupervised model
combining Generative Adversarial Networks (GANs) and Pretrained Language Models (PLMs), more
precisely mBERT and XLM-RoBERTa. Our approach proves its effectiveness in the detection of hate
speech and offensive language in Indo-European languages (in English, German, and Hindi) when
employing only 20% annotated data from the HASOC2019 dataset, thereby presenting significantly
high performances in each of multilingual, zero-shot crosslingual, and monolingual training scenarios.
Our study provides a robust mBERT-based semisupervised GAN model (SS-GAN-mBERT) that
outperformed the XLM-RoBERTa-based model (SS-GAN-XLM) and reached an average F1 score
boost of 9.23% and an accuracy increase of 5.75% over the baseline semisupervised mBERT model.

Keywords: social media; hate speech; semisupervised; GAN; multilingual; PLMs

1. Introduction

Generative Artificial Intelligence (Generative AI) has fundamentally revolutionized
the field of Natural Language Processing (NLP), thus adding outstanding changes in text
summarization, translation, classification, and of course text generation tasks. One of the
major reasons for this paradigm transformation is the release of large-scale models like
Generative Adversarial Networks (GANs) and GPT. For example, GPT-3 has demonstrated
remarkable text generation abilities across different NLP tasks, including storytelling and
coding [1]. Additionally, generative models like XLM-RoBERTa or mBERT have also
participated in advancing machine translation techniques [2]. Moreover, using generative
AI models for data augmentation and semisupervised learning has constructed more robust
models, thus reducing the need for labeled data [3]. Getting deeper into how far Generative
AI can go, it has proven its capacity to generate social media-like content and also to
annotate it [4].

In recent years, social media platforms like Facebook and Twitter have become more
and more famous and widely used for connecting and communicating. These platforms
contribute enormously to creating bridges between different countries and cultures, thus
illustrating multiculturalism and multilingualism [5]. Even though the freedom to commu-
nicate and express opinions is one of the noteworthy aspects on social media, this privilege
is often misused and serves as a means for disseminating hate speech and offensive content
online [6]. An increasing consideration has been shown that many users have reported
encountering hate speech and offensive content on these platforms [7]. In fact, due to the
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anonymity delivered on social media, users are becoming more free to express themselves
and more likely to be engaged in hateful actions [8].

In order to give a detailed overview of the concept, we aim to illustrate the definition
of hate speech on social media. Hate speech is a specific subset of offensive language
that directly targets individuals or groups based on specific features with the intent to
discriminate or incite harm [9]. Generally, hate speech is defined as a conscious and
intended public expression aimed at criticizing a specific group of people, whether based
on race, religion, ethnicity, nationality, gender, sexual identity, or orientation. Recently, the
emergence of social media platforms has intensified the spread of this content. And defining
hate speech in this field becomes challenging due to its different forms of expression,
including symbolic, verbal, nonverbal, etc. [10]. Moreover, online hate speech usually uses
imprecise or metaphorical language, thereby making it more difficult to determine or to
build a unique standard definition to be used worldwide. Particularly, it can be considered
sometimes as socially acceptable to express negative stereotyping [10]. Overall, we provide
a definition of this phenomenon in a survey paper in which we established extensive study,
and we define hate speech as any content that targets individuals or groups based on several
factors such as race, ethnicity, religion, sexual orientation, gender, or other identifiable
characteristics. This concept often reflects the policies and guidelines set by multiple social
media platforms, which are influenced by legal frameworks and societal standards [9].
In addition, the spread of this content exceeds linguistic borders and encompasses more
languages over time. Consequently, there is a crucial need to restrain this viral spread,
especially since it can lead to severe crimes against minorities or vulnerable groups [11].

In the beginning, efforts to moderate the spread of hate speech on social media
depended on strategies like keyword filters and crowdsourcing, along with human mod-
erators who check flagged content to define if it is considered as hateful or not. While
these manual techniques helped in this field, they still require lot of effort, time, and money,
especially with the challenges faced by the growing volume of this content spread online.
As a result, it becomes more and more difficult to manually moderate it. Therefore, there
have been several initiatives to automate the multilingual detection of hateful content,
which remains a challenging task [11]. Among the most common challenges, is the cultural
backgrounds, which affect the interpretation of this content, that impact its perception
across various regions and populations, even within the same language. This complexity
is made by the various dialects within languages like Arabic [9]. Moreover, users are
becoming more familiar with the automatic detection algorithms, and they have discovered
many ways to censor their hateful content to prevent its detection. For example, there
is the likely manipulation of words, such as substituting letters with visually equivalent
numbers (e.g., replacing “l” with “1” or “E” with “3”) [12]. Another example is illustrated
in this research paper [13], which analyzes the Israeli–Palestinian conflict on TikTok and
demonstrates how users try to avoid censorship by manipulating their language.

Most of the existing machine learning solutions (monolingual and multilingual) have
used supervised learning approaches [9,11], where transfer learning techniques, based on
Pretrained Language Models (PLMs), have proven to give outstanding results in multi-
lingual hate speech detection. In fact, transformer-based architectures, such as BERT [14],
have been demonstrated to achieve state-of-the-art performance in a variety of hate speech
detection tasks. As a result, a large number of BERT-based approaches have been presented
in this field [15–18] etc. Moreover, multilingual transformers, particularly mBERT (multi-
lingual BERT) or XLM-RoBERTa, have been implemented in the multilingual domain for
hate speech detection tasks. These models have provided cutting-edge performance in
crosslingual and multilingual settings, where several studies demonstrate their usefulness
in many languages, especially in low-resource ones [19,20].

While supervised NLP text classification approaches have made impressive advances,
they still encounter difficulties in obtaining enough annotated data, which is further compli-
cated in multilingual sentiment analysis tasks like hate speech detection. More specifically,
acquiring such high-quality labeled corpora is expensive and time-consuming [12]. Adding
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to that, multilingual robust models often depend on rich linguistic resources, which are
mostly available in English (as a resource-rich language). As a result, these models meet
generalization issues that yield decreased performance when used with low-resource
languages [21]. As a solution for these deficiencies, semisupervised SS-Learning was
introduced in order to reduce the necessity for labeled data. It helps building efficient
models that are able to use unlabeled corpora while utilizing only small-sized annotated
samples. Thus, SS-Learning was largely used in NLP for hate speech detection tasks [22,23].
One of these SS techniques is the Generative Adversarial Network (GAN) [24], which is
based on an adversarial process, where a “discriminator” learns to distinguish between
real and generated instances produced by a “generator” that simulates data based on
a specific distribution. An extension of GANs is semisupervised SS-GANs, where the
“discriminator” also classifies and assigns a class to each data sample [25]. It becomes a
remarkable solution in semisupervised learning in hate speech detection, which has been
widely used in combination with pretrained language models like SS-GAN-BERT [26]
(non-English language).

In this paper, we extended our previous work [27] by proposing a semisupervised
generative adversarial framework, in which we include PLMs (mBERT and XLM-RoBERTa)
for multilingual hate speech and offensive language detection. This approach leverages the
PLM’s capacity to generate high-quality text representations and to adjust to nonannotated
data, thus contributing to enhancing the GAN’s generalization for hate speech detection in
multiple languages. Even though GAN-BERT has been utilized for different non-English
languages in NLP, the semisupervised GAN-PLM approach remains underexplored, espe-
cially in multilingual hate speech detection tasks. Therefore, this study aims to fill this gap
by proposing the SS-GAN-PLM model for hate speech and offensive language detection
across English, German, and Hindi. The key contributions are as follows:

• Using mBERT [27] and XLM-RoBERTa, we proposed a model, namely SS-GAN-PLM,
in multilingual and zero-shot crosslingual settings, and we compared it with the
baseline semisupervised mBERT, as well as investigated and compared the capacity of
Pretrained Language Models (PLMs) within a generative adversarial framework to
enhance sentiment analysis tasks across diverse linguistic contexts.

• We trained our proposed models across three paradigms: multilingual, crosslingual
(zero-shot learning), and monolingual, thereby aiming to examine linguistic feature
sharing within Indo-European languages, and we demonstrated their crucial role in
enhancing text classification tasks.

• We explored SS-GAN-PLM’s progressive influence in improving performance through
iterative labeled data increases in a multilingual scenario, thus delving into the extent
to which the models can perform independently of labeled data.

2. Literature Review
2.1. GAN for Hate Speech Detection

Generative AI data augmentation is a strategy that applies modifications to a dataset
to improve its size and its diversity. Usually, this technique is especially helpful in classes
with small sample sizes, since it balances the dataset and enhances model generalization.
By producing synthetic data, data augmentation reduces class imbalances, helps avoid
overfitting, and improves model performance [28]. In this context, Cao et al. [29] (2020) de-
veloped HateGAN, a deep generative reinforcement learning network aimed at augmenting
datasets including hateful tweets. HateGAN is built on reinforcement learning and takes
influence from Yu et al.’s study on SeqGAN [30] (2017). Their work introduced a gradient
reward policy that controls the generation function, thus encouraging the generator to
produce more realistic English samples. Their research analyzed text’s hatefulness across
six hateful content dimensions by integrating a pretrained toxicity scorer as a multilabel
classification model. The production of hateful material is directed by these toxicity scores,
which act as feedback signals. These scores are used as rewards to modify the generator’s
parameters, which eventually helps to produce more realistic hateful content. The Hate-
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GAN model was trained using a policy gradient method to overcome sequence generation
issues, and its outcomes highlighted an improvement in the precision of identifying hate
speech. Although the use of reinforcement learning is valued, the authors did not show
obvious improvements in outcomes or offer a thorough explanation of how it affected the
model’s performance. Therefore, at this point, we chose not to apply this methodology to
our strategy.

2.2. GAN-PLM

Aiming to overcome the time-consuming and expensive labeling process, semisupervised
learning has drawn increasing attention as a viable solution. This approach seeks to achieve
equivalent or even better performance than supervised algorithms by employing both
labeled and unlabeled data. A famous technique in this domain is the use of Generative
Adversarial Networks (GANs) [24], which utilize a discriminator to distinguish between
generated and real data and a generator to generate synthetic text samples. In fact, GANs
have proven their ability to improve the generalization and robustness of text classification
models and pretrained language models like BERT, thereby allowing them to efficiently
use unlabeled data [31].

In this context, GAN-BERT was first introduced by Croce et al. [31] (2020) as a viable
solution to deal with the lack of annotated data. They presented a novel method that
uses unlabeled data in a generative adversarial framework to extend the BERT fine-tuning
process. Their approach achieved impressive performance across several text classification
tasks with as little as 50–100 annotated examples, thus significantly reducing the need for
annotated data. Their GAN-BERT model integreated a semisupervised GAN model into a
fine-tuned BERT model, where a generator generates synthetic samples that imitate the
real data distribution, and BERT operates as the discriminator. This hybrid method makes
use of unlabeled data to enhance the model’s generalization capabilities while leveraging
BERT’s capacity to produce high-quality representations of input texts. Furthermore, their
evaluation tests consistently revealed that GAN-BERT improves the robustness of the
model without adding inference cost, because the generator is only used for training, and
the discriminator is only used for inference.

Numerous studies were inspired by this model’s outstanding results, and numerous
approaches were developed for various tasks. In 2022, Cho et al. [32] presented Lin-
guistically Informed Semi-Supervised GAN with Multiple Generators (LMGAN), a novel
approach to semisupervised learning. Their model makes use of BERT’s hidden layers
and includes several generators instead of a single one. More specifically, they used the
linguistically meaningful intermediate hidden layer outputs of BERT to enhance fake data
distribution. Using the hidden layers of BERT (instead of only the last layer) and a basic
generator, they managed to improve the quality of the generated data. In fact, when a
final generator uses BERT’s embeddings from the GAN-BERT model, it transmits informa-
tion about real data distribution that would mislead the trained discriminator. Therefore,
to apply richer representations of generated data, LMGAN uses numerous generators
and the linguistically relevant hidden layers of BERT. Displaying the results of BERT’s
hidden layers, they confirmed the significance of having multiple generators, with up
to 1.8% improvements in the results. Moreover, Auti et al. [33] utilized the GAN-BERT
model for pharmaceuticals text classification tasks. Trained exclusively on biomedical data,
GAN-BioBERT [34] gave the best-performing results.

In 2023, Jain et al. [35] introduced the GAN-BERT model with consumer sentiment
analysis aspect fusion, which adds semisupervised adversarial learning to enhance the
BERT model’s fine-tuning performance. They took different service elements out of cus-
tomer evaluations and combined them with the word sequences before adding them to
the model. The accuracy of the provided model was demonstrated by their examination
of the results and their comparison with other models that have been found in earlier
work. Adding to that, Du et al. [36] presented a novel approach for job recommendation
tasks with Large Language Models (LLMs). They went beyond users’ self-descriptions
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to extract both explicit features and implicit traits derived from their behaviors, thereby
improving the accuracy of user profiling for resume filling. They offered an approach
called LGIR (LLM-based GANs Interactive Recommendation) that uses Generative Adver-
sarial Networks (GANs) along with ChatGLM-6B to align unpaired low-quality resumes
with high-quality resumes in order to address this problem. Moreover, Govers et al. [37]
presented Prompt-GAN, an adversarial method that tunes prompts. Their approach pro-
duces both hateful and nonhateful speech texts. Compared to fine-tuning, Prompt-GAN’s
architecture reduces the requirements for memory and runtime. Their model improved
hate speech categorization F1 scores by up to 10.1%. The Prompt-GAN architecture is
composed of the prompt and vocabulary generator, the GPT2/Neo text generation module,
and the discriminator network, which serves as a policy engine and feeds the input to the
prompt generator.

Multilingual GAN-PLM:
Even though GAN-PLM demonstrated remarkable proficiency in generating and

learning textual English content, multilingual GAN-PLM expands this ability to encom-
pass many other languages. The integration of multilingualism promotes crosscultural
understanding and communication on a worldwide basis, thus gaining benefit from mul-
tilingual PLMs (like mBERT) or PLMs that have been pretrained on a specific language
(like ChouBERT in French, among others). In 2022, Muttaraju et al. [38] introduced a new
approach for binary classification of humorous code-mixed Hindi–English data. Their
model outperformed several methods in code-mixed data classification. They investigated
the fine-tuned HinglishBERT model into GAN, which gave the best overall results, along
with the use of other PLMs such as IndicBERT, MuRIL, and HingBERT within GAN. In
2023, Lora et al. [39] proposed a transformer-based generative adversarial technique for
sarcasm detection in Bengali based on Bangla-BERT. They gathered both sarcastic and
nonsarcastic comments from newspapers and YouTube and manually annotated them in
order to create a dataset. Moreover, Jiang et al. [40] used CamemBERT and ChouBERT in
order to construct generative adversarial models. They worked on exploring varied losses
over modifying the number of annotated and nonannotated samples in several French
datasets to provide a more significant understanding of how to train GAN-BERT models
for domain-specific document categorization.

2.3. GAN-PLM for Hate Speech Detection

Unlike traditional approaches that depend only on PLMs, Generative Adversarial
Networks with Pretrained Language Models (GAN-PLMs) offer a new approach to hate
speech detection tasks. GAN-PLMs not only include generative capabilities to produce
realistic hateful samples, but they can also identify hate speech patterns in several languages
using multilingual PLMs. Through the incorporated use of pretrained language models
and generative adversarial networks, GAN-PLMs improve the detection of hate speech
while enabling inclusive and cultural sentiment analysis approaches.

In fact, in 2022, Tanvir et al. [26] used a GAN-BERT model based on Bangla-BERT to
examine both hate speech and fake news detection in Bengali. They compared the model’s
performance to a baseline Bangla-BERT model in order to illustrate the advantages of
GAN integration, especially when data samples are scarce. They found that, even with
minimally annotated data, their GAN Bangla-BERT model delivered significantly good
performance. The experimental results demonstrate how their model outperformed both
Bangla-Electra and Bangla-BERT, thereby revealing the importance of incorporating GAN
within PLMs. Moreover, using GAN-BERT, Ta et al. [41] developed a method for the
Detection of Aggressive and Violent INCIdents in Spanish (DA-VINCIS). As part of a back
translation data augmentation technique, they used Helsinki Marian models in order to
translate Spanish tweets into English, French, German, and Italian. With each tweet, this
technique yields two new texts: the translated text and its back translation. This approach
effectively balanced the dataset and reduced the deficiencies in the violent labels when
it was specifically applied to the training set across all violent samples. In addition, an
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ensemble of two semisupervised models was introduced by Santos et al. [42] with the aim
to automatically produce a Portuguese hate speech dataset while mitigating bias. The first
model combines a GAN-BERT network with Multilingual BERT (mBERT) and BERTimbau,
while the second model uses label propagation in order to extend labels from existing
annotated datasets to unlabeled ones. With the use of unlabeled data, the GAN-BERT-
based approach seeks to modify the label distribution for annotated data. Contrarily, the
second approach, based on label propagation, uses dataset samples’ similarities to extend
labels to the unlabeled data points.

In 2023, Su et al. [43] introduced SSL-GAN-RoBERTa, a semisupervised model for so-
cial media Anti-Asian COVID-19 hate speech detection. Using RoBERTa as the base model,
their approach learned from several heterogeneous datasets and enhanced performance
accordingly by generating unlabeled data. Their model delivered significant progress in
performance over the RoBERTa baseline. Overall, SSL-GAN-RoBERTa learns Anti-Asian
speech features from unlabeled samples by employing semisupervised learning-based
generative adversarial network technique. Furthermore, the authors managed to show
that SSL-GAN-RoBERTa maintains decreased computational costs while outperforming
crossdomain transfer learning approaches. Lastly, our previous work, which is a shorter
version of the current study [27], presented an innovative approach based on GAN and
mBERT to construct a multilingual semisupervised model. With just 20% of the labeled
data, we managed to detect hate speech in Indo-European languages. We investigated
linguistic feature sharing among these languages and demonstrated its importance for
improving sentiment analysis text classification tasks.

Overall, these previous studies have proved remarkable effectiveness, particularly
in non-English and many low-resource languages. Researchers have concentrated their
efforts on exploring hate speech and offensive language detection in languages like Spanish,
Bengali, Portuguese, German, etc., thus constructing customized BERT-based generative
adversarial model variations (based on ChouBERT, BanglaBERT, etc.) that are optimized for
these linguistic settings. Mostly employed on monolingual techniques, these studies have
underlined how adaptable GAN-BERT frameworks are to different linguistic features in
the domain. However, the utility of these previous studies is not restricted to monolingual
scenarios. In fact, there is a huge trend for utilizing such techniques in multilingual hate
speech and offensive language detection, thus emphasizing the pivotal role of generative
AI in promoting multilingual and crosslingual analyses. Therefore, the objective of our
research paper is to develop an innovative solution in the field, a multilingual and zero-shot
crosslingual PLM-based semisupervised generative adversarial model. With the use of
both unlabeled and labeled datasets, this approach simultaneously trains a mixture of
languages, such as Hindi, English, and German, thus enabling linguistic feature sharing
across Indo-European languages. Our paper aims to enhance and effectively contribute
to multilingual sentiment analysis tasks. Our main objective is to explain the role and
usefulness of GAN-based networks in this NLP field. We aim to investigate the adaptability
of one of the generative AI techniques—Generative Adversarial Networks (GANs)—in a
variety of linguistic contexts. We seek to go beyond traditional supervised machine learning
techniques and study the domain of unlabeled data via a semisupervised approach, which
is especially relevant in situations with small or nonexistent annotated data.

3. Methodology
3.1. Semisupervised Generative Adversarial Network: SS-GAN

The Generative Artificial intelligence (Generative AI) field was ultimately converted
by Generative Adversarial Networks (GANs), which brought a novel method for producing
synthetic data. GANs were first proposed by Goodfellow et al. in 2014 [24], and they are set
on the interchange of two basic parts: the discriminator (D) and the generator (G). These
two neural networks are trained against one another in an adversarial context aiming to
continually improve the performance in the corresponding task (such as text classification).
The generator’s primary role is to generate synthetic data that closely simulates real training
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data. Yet, the discriminator inspects these produced data samples and distinguishes them
from real data. This process goes on iteratively as training runs on until the generator
produces more realistic data, and the discriminator gets better at differentiating between
real and fake generated samples. The adversarial approach in GANs can be recapitulated
by the following equation:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))]

where we define the following:

• G, the generator, minimizes the probability that the discriminator accurately classifies
its generated samples as fake.

• D, the discriminator, maximizes its capability to accurately categorize real data as real
and generated data as fake.

• V(D, G) illustrates the value function that both the generator and discriminator aim
to optimize through adversarial training.

GANs have been demonstrated to be capable of generating data with complex features
and structures, which are similar to real-world datasets. They have shown their adaptability
in many fields, from synthesizing realistic images to constructing text and audio. This
has extended opportunities for applications in computer vision, NLP, and many other
domains [44].

Following the revolutionary work on GANs by Goodfellow et al., there was an interest
in investigating various ways to improve and expand upon the original GAN framework.
Among these evolutions, semisupervised SS-GANs were introduced by Salimans et al. in
2016 [25], which was a significant turning point in the field. Semisupervised learning in
GANs represents a novel case in which the discriminator annotates the data samples in
addition to distinguishing between true and fake samples. This helps GANs to be used for
semisupervised classification tasks, thus extending their capacities beyond only generating.
Compared to separate classifiers and traditional GANs, this hybrid method enables the use
of GANs’ adversarial training in both generative and classification tasks simultaneously.
Adding to that, SS-GANs effectively employ both labeled and unlabeled data, which is
especially valuable in situations where labeled data are not available.

Overall, Table 1 sums up a simple explanation of the roles and related loss functions
in mathematical formulas of both SS-GAN’s discriminator D and generator G. First of
all, let preal and pg denote the real data and generated data distribution, respectively, let
p(ŷ = y|x, y = k + 1) denote the probability that a sample data x is associated with the
fake class, and let p(ŷ = y|x, y ∈ (1...k)) denote the probability that x is considered real.

Table 1. Roles and loss functions for the discriminator D and generator G in SS-GAN frameworks.

Discriminator (D) Generator (G)

Role

Training within (k + 1) labels, D assigns “real”
samples to one of the designated (1, ..., k) labels,
thus allocating the generated samples to an
additional class labeled as k + 1.

Generates samples that are similar to the
real distribution preal as much as possible.

Loss
Function

L = Lsup + Lunsup
where:
Lsup = −Ex,y∼preal log[p(ŷ = y|x, y ∈ (1, . . . , k))]
and
Lunsup = −Ex,y∼preal log[1 − p(ŷ = y|x, y = k + 1)]
−Ex∼G log[p(ŷ = y|x, y = k + 1)]

L is the error of correctly identifying fake
samples by D
L = Lmatching + Lunsup
where:

Lmatching =
∥∥∥Ex∼preal f (x)− Ex∼G f (x)

∥∥∥2

2
and
Lunsup = −Ex∼G log[1 − p(ŷ = y|x = k + 1)]

Lsup is the error in wrongly assigning a label to a real data sample. Lunsup is the error in wrongly assigning a fake
label to a real (unlabeled) data sample. f (x) represents the activation or feature representation on an intermediate
layer of D. Lmatching is the distance between the feature representations of real and generated data.



Entropy 2024, 26, 344 8 of 19

3.2. SS-GAN-PLM

In our study, we used mBERT and XLM-RoBERTa as PLM models in our generative
framework. Starting with a pretrained PLM model, GAN layers were incorporated to
execute semisupervised learning. By training on a dataset comprising both labeled and
unlabeled samples, the resulting model learns to deliver realistic text representations
and yield accurate predictions in text classification tasks. By implementing multilingual
pretrained language models like mBERT or XLM-RoBERTa, this integration presents a
robust framework for leveraging unlabeled data across multiple languages.

In the task of data classification using Multilingual BERT (mBERT) or XLM-RoBERTa,
the model generates a vector representation (hCLS, hs1, . . . , hsn, hSEP), with hCLS serving as
the sentence embedding. Enriching this with a Generative Adversarial Network (GAN),
we present an adversarial generator G and discriminator D to improve the classifica-
tion. In fact, G produces synthetic sentence embeddings to imitate real data, while D
differentiates between real data and those generated embeddings. These synthesized
embeddings, alongside PLM embeddings, are later fed into the discriminator for final
classification. As illustrated in Figure 1, we combined the GAN architecture on top of
mBERT and XLM-RoBERTa by including an adversarial generator G and a discriminator D
for final classification.

Figure 1. Representation of SS-GAN-PLM architecture for multilingual hate speech detection. [PLM
refers to the models we used in our experiments: mBERT and XLM-RoBERTa. “L” denotes the
labeled training data, and “U” denotes the unlabeled training data. The process starts with the GAN
generator G taking a random noise vector as input, which is in our case a 50-dimensional noise
vector. G then generates synthetic data samples, thus yielding fake vectors h f ake ∈ Rd. These output
samples are fed into the discriminator D, alongside the embeddings of both the labeled and unlabeled
data processed by the PLM model, which are represented as hCLS ∈ Rd vectors for each language.
The discriminator D assesses the realism of these inputs, thus distinguishing between real and fake
data and simultaneously classifying them into the ‘Hate and Offensive’ and ‘Normal’ classes. This
setup enables the training of GAN on both labeled and unlabeled data, thereby leveraging PLM
representations to enhance the classification function.
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We utilized a Multilayer Perceptron (MLP) architecture to construct both the generator
G and the discriminator D. Initially, G receives a 50-dimensional noise vector and converts
it into a synthetic data vector h f ake ∈ Rd. Afterward, D evaluates the realism of h f ake, along
with the representation vectors of real data—labeled and unlabeled for each language—
developed by PLMs and denoted as hCLS. The final layer of D incorporates a softmax
activation function, thus giving three vectors of logits corresponding to the three labels in
our study: ’hateful and offensive’, ’normal’, and ’is real or fake?’ classes. More specifically,
during training, if real data are sampled (h = hCLS), D will classify them into the 2 classes of
the hateful data (’hateful and offensive’ or ’normal’); otherwise, if h = h f ake, D will classify
them into all of the three classes.

No cost at inference time: The concept of ’No cost at inference time’ refers to the
efficiency of the model during the inference stage, in which computational resources are
optimized. After the GAN model is trained, the generator G is no longer employed during
this inference phase. Rather, only the PLM model and the discriminator D are maintained
for our classification task. Therefore, since the generator G is no longer engaged, there is
no extra computational resource consumption during the inference phase. This procedure
assures that the model’s performance during the classification task is kept without any
additional resources, which results in more cost-effective and efficient inference [31].

4. Experiments and Results
4.1. Data: HASOC2019 Indo-European Corpora

In the HASOC (Hate Speech and Offensive Content) track at FIRE 2019, Mandl et al. [45]
established comprehensive Indo-European Language corpora for hate speech and offensive
content classification, which were extracted from Twitter and Facebook platforms. Their
work resulted in the collection of three publicly available datasets (https://hasocfire.
github.io/hasoc/2019/ (accessed on 1 September 2023)) in each of the following languages:
English, German, and Hindi. These datasets were created in order to contain a various
scope of linguistic and cultural contexts, thus enabling robust research in multilingual hate
speech and offensive language detection. Particularly, the datasets include 40.82%, 26.63%,
and 32.54% of the total training data for English, German, and Hindi, respectively. As
for the test set, English contains 34.71%, German 25.59%, and Hindi 39.68% of the total
test corpora. For each language, they provide the train and test datasets labeled in three
subtasks. In our study, we consider only the first subtask, in which the data is binary
labeled into (HOF) Hate and Offensive and (NOT) Non Hate-Offensive. Figure 2 displays
the class distribution of each language in the training set.

Figure 2. Class distribution variation across languages in the HASOC2019 training dataset. Note: In
this corpora, English presents 40.82%, German 26.63%, and Hindi 32.54%.

https://hasocfire.github.io/hasoc/2019/
https://hasocfire.github.io/hasoc/2019/
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For our study, we focused on the first subtask of the HASOC2019 track. The training
dataset was first split, with 80% (∼11.5 k) going to the Unlabeled dataset (U) and the
remaining 20% (∼3 k) going to the Labeled dataset (L). Moreover, we made sure that
the actual class distribution was maintained in this division. Our main objective was
to demonstrate that using Generative Adversarial Networks (GANs) to train models on
small, annotated datasets is effective, thereby reducing the need or the dependency on
annotated data. When encountering a deficiency of labeled data, traditional machine
learning techniques sometimes fail to achieve a good performance because they might not
have sufficient data samples to determine robust features in the data. We reproduced a
situation where labeled data were scarce, which is widespread in real-world applications,
by splitting the training set into two parts: a smaller amount for annotated data (L) and
a larger amount for nonannotated data (U). We also aimed to manage the issue of the
imbalanced distribution of data across languages and especially classes. In particular, there
was a shortage of data samples for some languages and labels like the class imbalance
and small size in German training set in this HASOC2019 corpora, which proposes a
severe difficulty for traditional classification models. However, within our SS-GAN-PLM
model, we planned to reduce the effect of data imbalance on model performance. Our
model can overcome these challenges by employing the capacities of PLMs and Generative
Adversarial Networks (GANs) within the semisupervised approach to efficiently learn
from both labeled and unlabeled data. In fact, by combining PLMs and GANs into a
semisupervised learning framework, our model acquires the ability to effectively learn
from both labeled and unlabeled data. More specifically, PLMs serve by providing an
understanding of linguistic nuances across the languages we use. On the other side, GANs
complement PLMs by enabling data augmentation specifically targeted for the multilingual
aspect. GANs help our model to generate synthetic data samples in various languages,
thereby extending the diversity and size of the training dataset. This generation process
is especially beneficial for addressing data imbalances and enhancing the model’s ability
to generalize to unseen languages or linguistic variations (within a zero-shot learning
paradigm). Furthermore, the semisupervised learning technique allows our models to
leverage the knowledge provided in both labeled and unlabeled data during training.
Finally, our model is prepared to effectively address the challenges posed by limited labeled
data and data imbalance. This methodology not only improves the model’s robustness but
also increases its generalization and relevance to real-world scenarios where labeled data
may be scarce or imbalanced.

4.2. Experiments and Interpretations
4.2.1. Training Scenarios

We focused on training three models, SS-GAN-mBERT, SS-GAN-XLM (based on
XLM-RoBERTa pretrained model), and baseline semisupervised mBERT. After yielding
unexpectedly low results from the SS-GAN-XLM model, we considered only the best
overall results, thus only displaying its performance on the multilingual training paradigm
in our paper. We investigated its function and explained the low results it gave in our
analysis. We also considered mBERT as the baseline model because it gave us higher results
compared to the XLM-RoBERTa model in our work. The training scenarios were as follows:

• Multilingual Training Scenario: We used all data from the three languages in our
dataset, English, German, and Hindi, to train both the SS-GAN-PLM and the baseline
semisupervised mBERT models in our multilingual training paradigm. Through the
inclusion of crosslinguistic features and patterns, our aim was to utilize the sharing
features between languages. We could take advantage of the joint linguistic knowledge
that exists inside our multilingual training corpora, which improves our models’
adaptability and generalization among different languages. After training, we utilized
HASOC2019 test sets in order to evaluate each model’s performance for each language.
Figure 3 offers a more clear vision of this training paradigm.
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• Zero-Shot Crosslingual Training Scenario: We employed a crosslingual approach to
train our models in the zero-shot scenario. We fine-tuned our models on the English
dataset, which is larger than the corpora for the other two languages and has richer
linguistic resources. After that, we used a zero-shot learning paradigm to evaluate
these models’ performance on the test sets in Hindi and German. Using this technique,
we investigated the models’ capacity for crosslingual generalization. Figure 3 presents
a more explicit description of the training paradigm.

• Monolingual Training Scenario: For every language in our training data, we fine-
tuned our models in the monolingual training paradigm by training and testing the
models separately on each language. This method contributes to a richer understand-
ing of model behavior across many linguistic contexts by providing insights into the
complexities and difficulties unique to each language.

(a) Multilingual training. (b) Crosslingual zero-shot training scenario.

Figure 3. Multilingual and crosslingual training scenarios.

4.2.2. Models Implementation

Considering the high computational resources employed during the training process,
we developed the architecture of GAN to be as simple and accurate as possible. Toward
that end, we built the model’s generator as a Multilayer Perceptron (MLP) with one hidden
layer. Its role is to generate synthetic data vectors from a given noise vector. In fact,
the generator performs by converting noise vectors sampled from a standard normal
distribution N(0, 1), in which each value is extracted from a distribution with a mean
(µ) of 0 and a standard deviation (σ) of 1. This initial conversion transforms the input
noise vector, more specifically of size 50 in our structure, into a hidden size vector of 512.
Afterward, a 0.2 LeakyReLU activation layer is involved; then, a dropout layer with a
rate of 0.1 is included within the generator in order to prevent overfitting and improve
the model’s robustness. Overall, this simplified structure promotes efficient consumption
of computational resources while enabling the generator to effectively produce synthetic
data vectors.

Keeping with the computational resources allocation, the discriminator is alternatively
built as another hidden layer Multilayer Perceptron (MLP), thus operating together with
the generator. This network has been designed to distinguish between real and fake data
samples, as well as to detect hate speech and offensive language for final classification.
Equivalent to the generator’s structure, the discriminator begins with a linear layer. Then, a
LeakyReLU activation function with a value of 0.2 is incorporated into this layer, alongside a
dropout layer with a 0.1 dropout rate. Finally, the output layer of the discriminator consists
of class logits that include three outputs: one for each of the two classes “Hate and offensive”
and “Normal” class and another output for differentiating between fake and real data
samples. Class probabilities are derived by delivering these logits into a softmax activation
layer. Overall, our final classification outcome is based on this architectural configuration.

In our process, we leveraged the “BERT-Base Multilingual Cased” model (https:
//github.com/google-research/bert/blob/master/multilingual.md (accessed on 1 Septem-
ber 2023)). This version of BERT has been trained on 104 languages and has a struc-

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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ture with 12 layers, 12 attention heads, and a hidden size of 768. This version of the
model is composed of 110 million parameters, which demonstrates how well it can
catch complicated linguistic features. The “Cased” version was chosen because it per-
forms well with languages that use non-Latin alphabets, like Hindi. Adding to that,
our selection of the “BERT-Base Multilingual Cased” model was also influenced by the
computational resources we had. Compared to bigger, more refined large language
models, this model is considered lighter. However, we plan to explore and integrate
these large language models into our upcoming work. Moreover, for the multilingual
scenario, we also integrated XLM-RoBERTa model, more specifically “xlm-roberta-base”
(https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) (accessed on
1 November 2023), in order to obtain a comparison between the effectiveness of this model
along with mBERT model on our SS-GAN framework. This version of XLM-RoBERTa
contains 12 layers, 12 attention heads, and a hidden size of 768, which contains 270 M
parameters and has been trained on over 100 languages [46]. We intend to study the impact
of different pretrained language models on this generative AI method within multilingual
hate speech detection tasks.

Moreover, our models have been implemented using Pytorch (https://pytorch.org/)
(accessed on 1 September 2023) and trained using a batch size of 32 on Google Colab
Pro (https://colab.research.google.com/signup) (accessed on 1 September 2023) (V100 GPU
environment with 32 GB of RAM). We set the maximum length variable to 200, and we trained
our models on five epochs, with a learning rate of 1 × 10−5 and AdamW optimizers for both
the discriminator and the generator. We used accuracy, precision, recall, and F1 macro scores as
the evaluation metrics to measure our models’ results, which are displayed in Table 2.

Table 2. Results in monolingual, zero-shot crosslingual, and multilingual training on
HASOC2019 dataset.

English German Hindi

Acc. Pr. Rec. F1 Acc. Pr. Rec. F1 Acc. Pr. Rec. F1

Monolingual

Baseline
mBERT 0.638 0.605 0.629 0.601 0.842 0.489 0.495 0.485 0.696 0.707 0.697 0.693

SS-GAN-
mBERT 0.731 0.668 0.680 0.673 0.811 0.540 0.537 0.538 0.754 0.756 0.755 0.754

Crosslingual

Baseline
mBERT 0.638 0.605 0.629 0.601 0.657 0.525 0.551 0.502 0.696 0.707 0.697 0.693

SS-GAN-
mBERT 0.731 0.668 0.680 0.673 0.704 0.568 0.637 0.561 0.754 0.756 0.755 0.754

Multilingual

Baseline
mBERT 0.736 0.692 0.726 0.699 0.820 0.582 0.585 0.583 0.737 0.743 0.738 0.736

SS-GAN-
mBERT 0.753 0.700 0.723 0.708 0.771 0.598 0.667 0.609 0.783 0.783 0.783 0.783

SS-GAN-
XLM 0.686 0.594 0.587 0.590 0.863 0.531 0.508 0.495 0.647 0.647 0.647 0.647

In crosslingual training, we used zero-shot learning: training on English and testing on German and Hindi. XLM
refers to XLM-RoBERTa model.

4.2.3. Results and Interpretations

Regarding the three training scenarios—monolingual, zero-shot crosslingual, and
multilingual—the results in Table 2 demonstrate that SS-GAN-mBERT consistently out-
performed the baseline mBERT and SS-GAN-XLM in all the languages. When it comes to
enhancing performance in the multilingual training paradigm, SS-GAN-mBERT proved
to be a highly efficient solution compared to both monolingual and crosslingual training
strategies. More specifically, SS-GAN-mBERT yielded the best results, thereby demonstrat-
ing its capability in our semisupervised text classification task. In fact, our investigation
shows a 6.5% improvement in accuracy and a 6.4% improvement in the F1 score for hate
speech detection tasks in Hindi, over the baseline mBERT model, and a significant rise
of about 17% in both the accuracy and F1 macro score compared to SS-GAN-XLM in the
same training case. These significant gains highlight the SS-GAN-mBERT’s capacity to

https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr
https://pytorch.org/
https://colab.research.google.com/signup
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develop a deeper understanding of the semantic nuances of languages in hate speech
detection task. Even with giving the highest accuracy of about 86% on German data,
SS-GAN-XLM output a low performance. This can be explained by various factors. In fact,
while XLM-RoBERTa proposes multilingual capabilities, its pretraining might not handle
enough the complexities of hate speech detection tasks across the languages used in our
experiments. In addition, differences in data quality and linguistic nuances could also
affect SS-GAN-XLM’s performance.

Similar improvements were also noticed when zero-shot crosslingual training was em-
ployed, which highlights further the effectiveness of SS-GAN-mBERT in various linguistic
contexts. This model achieved the highest progress with an approximately 12% increase
in the accuracy, precision, recall, and F1 macro scores for the hate detection task in Hindi.
This result indicates the model’s strength in transferring knowledge between languages,
even in cases when annotated data in the target language is scarce. Nevertheless, it is also
important to acknowledge the significant results that both the baseline and SS-GAN-mBERT
models within the monolingual scenario achieved, where mBERT indicated an accuracy of
approximately 84% for German classification task.

The constant outperformance of the SS-GAN-mBERT model in comparison to the
baseline mBERT across all of the three training paradigms highlights the rich influence
of adversarial training methods in refining the model’s capacity to distinguish complex
and variant linguistic features. More specifically, this outcome became more noticeable
within the multilingual training process, thus emphasizing the model’s ability to leverage
multilingual corpora effectively. Moreover, regarding the dataset imbalance, we focused
on considering F1 macro scores as a robust evaluation metric in our experiments. Thus,
comparing the languages output, we can say that our models gained the highest perfor-
mance in Hindi. This distinction can be related to the larger size of the corresponding
dataset. Contrarily, the smaller dataset for German showed lower model performance,
as the model may have encountered difficulties in generalizing effectively because of the
narrowed exposure to relevant linguistic features and contexts in this language.

To acquire a more detailed interpretation of how our SS-GAN-mBERT model per-
forms better than the baseline mBERT (the second best performing model), we considered
analyzing the confusion matrices of the best overall results, which in our case are the
multilingual training scenario models tested on Hindi test subset. Figure 4 presents the
two confusion matrices of both the baseline mBERT and SS-GAN-mBERT models of this
training paradigm.

(a) Baseline mBERT confusion matrix (b) SS-GAN-mBERT confusion matrix

Figure 4. Confusion matrices for mBERT and SS-GAN-mBERT in multilingual training scenario
for Hindi.
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As we can witness in Figure 4, SS-GAN mBERT achieved higher classification accuracy
for both the “Hate and Offensive” (HOF) and “NOT hate and offensive” (NOT) classes
compared to the baseline mBERT. Particularly, in the “NOT” class, SS-GAN mBERT reached
an approximately 79.03% True Positive Rate (TPR), while baseline mBERT achieved around
66.72%, thus indicating considerable progress in correctly classifying nonoffensive data
samples in Hindi. Additionally, SS-GAN mBERT presented a more balanced performance
across the two classes, with smaller differences in the TPR between “HOF” and “NOT”,
thus presenting improved overall classification accuracy.

5. Discussions and Future Directions
5.1. Effect of Iterative Labeled Data Increase

Based on the results we obtained, as illustrated in Table 2, we took the best training
paradigm, which is multilingual training tested on Hindi, and we reiterated the training
of both of the models while progressively increasing the size of the annotated dataset L.
We carried a fixed number for the unlabeled dataset U while systematically increasing the
number of labeled samples. This technique was essential for evaluating the performance
and the scalability of the models under various levels of supervision in our semisupervised
approach. Our objective in freezing the number of unlabeled samples was to investigate
the influence of the labeled data size on model performance. This enabled us to examine to
which extent our models could reach acceptable performance independently of annotated
data. We aimed to get closer towards a more unsupervised approach, depending primarily
on unlabeled data, thus reducing the need for extensive data annotation. Initiating with
a small percentage of labeled data samples and progressively increasing it helped us to
observe the learning curve of the models and comprehend their behavior as they were
exposed to more labeled data. For more details, we maintained the same size of unlabeled
material U, then we started by sampling only 1% of L (which presents very few samples at
29 samples) and then increasing the labeled set size with 5%, 10%, 20%, etc. As we already
explained in the previous Section 4.2.3, we considered the F1 macro score metric, along
with the accuracy metric values.

Based on Figure 5, we can observe the difference between the baseline and SS-GAN-
mBERT models, especially when using the smallest percentage of L data, and even with the
use of almost the total amount of labeled data (80–90%), the baseline could not reach the
performance of SS-GAN-mBERT. Moreover, even with almost yielding the same accuracy
for both models, we can witness the difference in the F1 macro score, where it was evident
that SS-GAN-mBERT managed to reach the same performance as the baseline model with a
very small amount of labeled data (e.g., we can see the same F1 macro score attained by SS-
GAN-mBERT with 1% of L, while the baseline needed more than 6% to reach it). Another
aspect to consider is the requirement for labeled data. In fact, in this semisupervised
framework (whether within SS-GAN-mBERT or mBERT alone), we can see that with
the training unlabeled sets provided U, both of the models did not need a big volume
of annotated data. More specifically, as presented in Figure 5, baseline mBERT started
giving an F1 macro score and accuracy of more than 0.7 with ∼40% of L, while SS-GAN-
mBERT needed only ∼30% to reach this performance; this demonstrates the benefits of
implementing semisupervised learning, as it helps to reduce the necessity of data labeling.

Overall, we managed to show through these experiments that the need for annotated
instances is reduced when the GAN structure is applied over semispervised mBERT, and it
can be reduced more when further improving the structure of GAN, which will be our next
step in future work to implement more complex and more advanced GAN structures with
more hidden layers in both the generator and the discriminator.
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Figure 5. F1 score and accuracy progress on Hindi: baseline mBERT vs SS-GAN-mBERT in multilin-
gual training.

5.2. Computational Cost at Inference Time

Considering the cost at inference time, as previously mentioned in Section 3.2, we
executed a comprehensive study of the training times of each of the models across the
training paradigms (multilingual, crosslingual, and monolingual). Since XLM-RoBERTa
has a different number of parameters, it took a very different training time; therefore, we
did not consider it in this part of our analysis. Eventually, we found that there was not a
considerable difference in training duration between the two models: the baseline mBERT
and the SS-GAN-mBERT models. The maximum training time difference marked was
about 16 min in one of the training scenarios. This emphasizes the hypothesis that the
training time of SS-GAN-mBERT remains essentially similar to that of the baseline model
semi-supervised mBERT. This remark indicates that SS-GAN-mBERT offers a viable solu-
tion for scenarios where both robustness and training efficiency are critical aspects. More
specifically, its efficiency in inference time does not require a large extended training dura-
tion. Nevertheless, it is worth noting that this conclusion is related to the simple structure
of our GAN’s generator (as an MLP). Therefore, there is a high probability that the time gap
could broaden when implementing a more complex generator structure, which can help us
to better study the inference time within GANs. Overall, we have a big interest towards
this matter because it is crucial to consider the environmental influences of model training,
particularly in the context of carbon emissions. Our aim is not restricted to revealing the
efficacy of SS-GAN-mBERT but also opening new paths for investigating the environmental
aspect, which remains an interesting field for sustainable AI development. While our study
did not investigate this aspect in detail, the efficiency of SS-GAN-mBERT could eventually
show reduced energy consumption and carbon footprint. Notably, both SS-GAN-mBERT
and mBERT demonstrated similar levels of computational resource consumption, thus
generally ranging from 4.6 to 5.3 MegaBytes (MBytes) depending on the training scenario
and the size of the test set. In the majority of these cases, both models consumed almost
equal amounts of resources. This suggests future research for a deeper analysis of resource
consumption and measurements, thus taking into consideration the existing tools for CO2
energy measurements when training machine learning and large language models [47].

5.3. Future Directions

The future direction of this study can be grouped into three domains as follows:
(1) Generator’s Input: We have used a constant value of the noise vector of dimensions

50 as the input for our generator in the Generative Adversarial Network (GAN). This
option is the optimized value that gave us the best overall results from a comprehensive
examination of the initial experimental outcomes associated with concerns of computational
efficiency. As a result, we were able to balance between the complexity of the model and
the computational resources needed for training. Our goal is to develop procedures that
can optimize the generator to select the most appropriate noise vector size for any given
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dataset. This objective aligns with the idea of improving the adaptability and effectiveness
of our GAN framework. An example of our future work for achieving this objective is
leveraging Wasserstein GAN, which is a variant famous for its capacity to increase the
diversity of generated data samples, thus enabling enhanced stability during training [48].
By incorporating strategies such as Wasserstein GAN into our models, we expect not only to
improve the nature of our synthesized data but also to get better generalization capabilities
of our model to be able to generate more diverse multilingual data closer to the real ones
extracted from social media platforms.

(2) Data Augmentation: We aim to decrease the effects of class imbalance, thus
leveraging new data augmentation techniques that can be considered as a promising future
direction. For instance, we can integrate back translation [41] as one of the solutions,
thus taking advantage of its efficacy in various NLP tasks, especially multilingual tasks.
In fact, besides our efforts to enhance GAN’s accuracy, we consider improving its data
augmentation performance using several techniques, such as Conditional GANs [49].
This strategy has illustrated success in generating high-quality and diverse data samples
prepared on specific details to be set as conditions, which could help in further enhancing
our hate speech detection tasks.

(3) Large Language Models (LLMs): Our future objective opens to accomplishing
better generalization abilities by employing advanced multilingual Large Language Models
(LLMs) instead of mBERT and XLM-RoBERTa, such as BLOOM, GPT-3, LLaMA2, and
Gemma. These LLMs provide richer linguistic features and better contextual understanding,
which potentially can enhance the efficacy of our proposed model. Even though the use of
such LLMs requires much more computational resources, we intend to mitigate resource
limitations gradually. Initially, we plan to start with smaller architectures like GPT-2 and
Distil-GPT [50], thus profiting from their language modeling abilities. Moreover, we seek to
evaluate the influence of these LLMs within the context of the SS-GAN model. By executing
extensive experiments and comparison analyses, we aim to explain and compare the effect
of each LLM on the generative capabilities of our model, thereby giving a clear vision for
decision making and further advancements.

6. Conclusions

In this paper, we have introduced a semisupervised approach, the semisupervised
generative adversarial pretrained language models SS-GAN-mBERT and SS-GAN-XLM,
which displayed remarkable performance in the field of multilingual and zero-shot crosslin-
gual hate speech and offensive language detection across the English, German, and Hindi
languages. Our approach contributes to leveraging semisupervised learning methods to
dive into the challenge of data annotation scarcity. The inclusion of Generative AI, which
in our case is Generative Adversarial Networks (GANs), managed to improve the efficacy
of our approach, thereby demonstrating the benefits of combining semisupervised learning
and generative modeling techniques. Our study investigated multilingual textual hate
speech detection, which presents important challenges in today’s online communication.
By utilizing our SS-GAN-PLM model, we contribute to the proceeding actions in mod-
erating online hate speech content, which is a major sensitive problem widespread in
online social media platforms. Previous studies have focused on monolingual hate speech
and offensive language detection across languages like Bengali, Portuguese, etc., thus
producing specific BERT-based generative adversarial models such as GAN-BanglaBERT
for Bengali [26], GAN-bertTimbau for Portuguese [42], SS-GAN-RoBERTa for English [43],
etc. However, the relevance of these analyses extends beyond monolingual settings. There
is a growing tendency to utilize such techniques for multilingual hate speech detection.
Therefore, our paper introduced multilingual and zero-shot crosslingual GAN-PLMs. Our
focus was on exploring GANs’ adaptability in various linguistic contexts, thus moving
beyond traditional supervised machine learning methods, especially in scenarios with
limited annotated data. Exceeding hate speech detection, the importance of our research
opens to various generative AI fields, and by constructing upon the foundation of GANs,
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we propose an adaptable framework that can be further adjusted and extended to address
generative tasks across other languages. Overall, our paper also underscores the signifi-
cance of integrating semisupervised learning and generative modeling techniques along
with PLMs in addressing real-world challenges such as hate speech detection.

Author Contributions: Conceptualization, K.M. and R.F.; methodology, K.M.; software, K.M.; val-
idation, K.M. and R.F.; formal analysis, K.M.; investigation, K.M.; resources, K.M.; data curation,
K.M.; writing—original draft preparation, K.M.; writing—review and editing, K.M, R.F., and N.C.;
visualization, K.M.; supervision, R.F. and N.C.; project administration, K.M.; funding acquisition,
N.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. In Proceedings of the Advances in Neural Information Processing Systems, Virtual,
6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2020; Volume 33, pp. 1877–1901.

2. Li, J.; Tang, T.; Zhao, W.X.; Nie, J.Y.; Wen, J.R. Pretrained Language Models for Text Generation: A Survey. arXiv 2022,
arXiv:cs.CL/2201.05273.

3. Chen, J.; Tam, D.; Raffel, C.; Bansal, M.; Yang, D. An Empirical Survey of Data Augmentation for Limited Data Learning in NLP.
Trans. Assoc. Comput. Linguist. 2023, 11, 191–211. [CrossRef]

4. Feuerriegel, S.; Hartmann, J.; Janiesch, C.; Zschech, P. Generative ai. Bus. Inf. Syst. Eng. 2024, 66, 111–126. [CrossRef]
5. Eleta, I.; Golbeck, J. Multilingual use of Twitter: Social networks at the language frontier. Comput. Hum. Behav. 2014, 41, 424–432.

[CrossRef]
6. Castaño-Pulgarín, S.A.; Suárez-Betancur, N.; Vega, L.M.T.; López, H.M.H. Internet, social media and online hate speech.

Systematic review. Aggress. Violent Behav. 2021, 58, 101608. [CrossRef]
7. Social Media and Democracy: The State of the Field, Prospects for Reform; SSRC Anxieties of Democracy, Cambridge University Press:

Cambridge, UK, 2020. [CrossRef]
8. Fortuna, P.; Nunes, S. A Survey on Automatic Detection of Hate Speech in Text. ACM Comput. Surv. 2018, 51, 85. [CrossRef]
9. Mnassri, K.; Farahbakhsh, R.; Chalehchaleh, R.; Rajapaksha, P.; Jafari, A.R.; Li, G.; Crespi, N. A survey on multi-lingual offensive

language detection. PeerJ Comput. Sci. 2024, 10, e1934. [CrossRef]
10. Paz, M.A.; Montero-Díaz, J.; Moreno-Delgado, A. Hate speech: A systematized review. Sage Open 2020, 10, 2158244020973022.

[CrossRef]
11. Pamungkas, E.W.; Basile, V.; Patti, V. Towards multidomain and multilingual abusive language detection: A survey. Pers.

Ubiquitous Comput. 2023, 27, 17–43. [CrossRef]
12. Kovács, G.; Alonso, P.; Saini, R. Challenges of hate speech detection in social media: Data scarcity, and leveraging external

resources. SN Comput. Sci. 2021, 2, 95. [CrossRef]
13. Cervi, L.; Marín-Lladó, C. Freepalestine on TikTok: From performative activism to (meaningful) playful activism. J. Int. Intercult.

Commun. 2022, 15, 414–434. [CrossRef]
14. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.

In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

15. Mozafari, M.; Farahbakhsh, R.; Crespi, N. A BERT-based transfer learning approach for hate speech detection in online social
media. In Proceedings of the Complex Networks and Their Applications VIII, Lisbon, Portugal, 10–12 December 2020; Springer:
Cham, Switzerland, 2020; pp. 928–940.

16. Mozafari, M.; Farahbakhsh, R.; Crespi, N. Hate speech detection and racial bias mitigation in social media based on BERT model.
PLoS ONE 2020, 15, e0237861. [CrossRef] [PubMed]

17. Mnassri, K.; Rajapaksha, P.; Farahbakhsh, R.; Crespi, N. BERT-based ensemble approaches for hate speech detection. In
Proceedings of the IEEE GLOBECOM, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 4649–4654. [CrossRef]

18. Mnassri, K.; Rajapaksha, P.; Farahbakhsh, R.; Crespi, N. Hate Speech and Offensive Language Detection using an Emotion-aware
Shared Encoder. arXiv 2023, arXiv:2302.08777.

19. Mozafari, M.; Farahbakhsh, R.; Crespi, N. Cross-Lingual Few-Shot Hate Speech and Offensive Language Detection Using Meta
Learning. IEEE Access 2022, 10, 14880–14896. [CrossRef]

20. Farooqi, Z.M.; Ghosh, S.; Shah, R.R. Leveraging transformers for hate speech detection in conversational code-mixed tweets.
arXiv 2021, arXiv:2112.09986.

http://doi.org/10.1162/tacl_a_00542
http://dx.doi.org/10.1007/s12599-023-00834-7
http://dx.doi.org/10.1016/j.chb.2014.05.005
http://dx.doi.org/10.1016/j.avb.2021.101608
http://dx.doi.org/10.1017/9781108890960
http://dx.doi.org/10.1145/3232676
http://dx.doi.org/10.7717/peerj-cs.1934
http://dx.doi.org/10.1177/2158244020973022
http://dx.doi.org/10.1007/s00779-021-01609-1
http://dx.doi.org/10.1007/s42979-021-00457-3
http://dx.doi.org/10.1080/17513057.2022.2131883
http://dx.doi.org/10.1371/journal.pone.0237861
http://www.ncbi.nlm.nih.gov/pubmed/32853205
http://dx.doi.org/10.1109/GLOBECOM48099.2022.10001325
http://dx.doi.org/10.1109/ACCESS.2022.3147588


Entropy 2024, 26, 344 18 of 19

21. Yin, W.; Zubiaga, A. Towards generalisable hate speech detection: A review on obstacles and solutions. PeerJ Comput. Sci. 2021,
7, e598. [CrossRef] [PubMed]

22. D’Sa, A.G.; Illina, I.; Fohr, D.; Klakow, D.; Ruiter, D. Label propagation-based semi-supervised learning for hate speech
classification. In Proceedings of the First Workshop on Insights from Negative Results in NLP, Online, 19 November 2020;
pp. 54–59. [CrossRef]

23. Alsafari, S.; Sadaoui, S. Semi-supervised self-learning for arabic hate speech detection. In Proceedings of the 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 863–868.
[CrossRef]

24. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

25. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X.; Chen, X. Improved techniques for training GANs.
In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.

26. Tanvir, R.; Shawon, M.T.R.; Mehedi, M.H.K.; Mahtab, M.M.; Rasel, A.A. A GAN-BERT based approach for bengali text
classification with a few labeled examples. In Proceedings of the Distributed Computing and Artificial Intelligence, 19th
International Conference, L’Aquila, Italy, 13–15 July 2022; pp. 20–30.

27. Mnassri, K.; Farahbakhsh, R.; Crespi, N. Multilingual Hate Speech Detection Using Semi-supervised Generative Adversarial
Network. In Complex Networks & Their Applications XII; Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M., Eds.; Springer Nature:
Cham, Switzerland, 2024; pp. 192–204. Available online: https://link.springer.com/chapter/10.1007/978-3-031-53503-1_16
(accessed on 29 February 2024).

28. Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Text data augmentation for deep learning. J. Big Data 2021, 8, 101. [CrossRef] [PubMed]
29. Cao, R.; Lee, R.K.W. HateGAN: Adversarial generative-based data augmentation for hate speech detection. In Proceedings of the

28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp. 6327–6338. [CrossRef]
30. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 2852–2858.
31. Croce, D.; Castellucci, G.; Basili, R. GAN-BERT: Generative adversarial learning for robust text classification with a bunch of

labeled examples. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July
2020; pp. 2114–2119. [CrossRef]

32. Cho, W.; Choi, Y. LMGAN: Linguistically Informed Semi-Supervised GAN with Multiple Generators. Sensors 2022, 22, 8761.
[CrossRef]

33. Auti, T.; Sarkar, R.; Stearns, B.; Ojha, A.K.; Paul, A.; Comerford, M.; Megaro, J.; Mariano, J.; Herard, V.; McCrae, J.P. Towards
classification of legal pharmaceutical text using gan-bert. In Proceedings of the First Computing Social Responsibility Workshop
within the 13th Language Resources and Evaluation Conference, Marseille, France, 20–25 June 2022; pp. 52–57.

34. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 2019, 36, 1234–1240. [CrossRef]

35. Jain, P.K.; Quamer, W.; Pamula, R. Consumer sentiment analysis with aspect fusion and GAN-BERT aided adversarial learning.
Expert Syst. 2023, 40, e13247. [CrossRef]

36. Du, Y.; Luo, D.; Yan, R.; Liu, H.; Song, Y.; Zhu, H.; Zhang, J. Enhancing job recommendation through llm-based generative
adversarial networks. arXiv 2023, arXiv:2307.10747.

37. Govers, J.; Feldman, P.; Dant, A.; Patros, P. Prompt-GAN–Customisable hate speech and extremist datasets via radicalised neural
language models. In Proceedings of the ICCAI ’23: 2023 9th International Conference on Computing and Artificial Intelligence,
Tianjin, China, 17–20 March 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 515–522. [CrossRef]

38. Muttaraju, C.; Singh, A.; Kabber, A.; Mamatha, H.R. Semi-supervised and unsupervised detection of humour in code-mixed
hindi-english tweets. In Proceedings of the Third International Workshop on NLP Solutions for Under Resourced Languages
(NSURL 2022) co-located with ICNLSP 2022, Virtual, 18 December 2022; pp. 8–13.

39. Lora, S.K.; Jahan, I.; Hussain, R.; Shahriyar, R.; Islam, A.A.A. A transformer-based generative adversarial learning to detect
sarcasm from Bengali text with correct classification of confusing text. Heliyon 2023, 9, e22531. [CrossRef]

40. Jiang, S.; Cormier, S.; Angarita, R.; Rousseaux, F. Improving text mining in plant health domain with GAN and/or pre-trained
language model. Front. Artif. Intell. 2023, 6, 1072329. [CrossRef] [PubMed]

41. Ta, H.T.; Rahman, A.B.S.; Najjar, L.; Gelbukh, A. GAN-BERT: Adversarial learning for detection of aggressive and violent
incidents from social media. In Proceedings of the IberLEF, CEUR-WS, A Coruña, Spain, 20 September 2022.

42. Santos, R.B.; Matos, B.C.; Carvalho, P.; Batista, F.; Ribeiro, R. Semi-supervised annotation of portuguese hate speech across
social media domains. In Proceedings of the 11th SLATE Conference, Covilhã, Portugal, 14–15 July 2022; Cordeiro, J.A., Pereira,
M.J.A., Rodrigues, N.F., Pais, S.A., Eds.; Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Wadern, Germany, 2022; Volume 104,
pp. 11:1–11:14. [CrossRef]

43. Su, X.; Li, Y.; Branco, P.; Inkpen, D. SSL-GAN-RoBERTa: A robust semi-supervised model for detecting Anti-Asian COVID-19
hate speech on social media. Nat. Lang. Eng. 2023, 1–20. [CrossRef]

44. Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications.
IEEE Trans. Knowl. Data Eng. 2023, 35, 3313–3332. [CrossRef]

http://dx.doi.org/10.7717/peerj-cs.598
http://www.ncbi.nlm.nih.gov/pubmed/34239978
http://dx.doi.org/10.18653/v1/2020.insights-1.8
http://dx.doi.org/10.1109/SMC52423.2021.9659134
http://dx.doi.org/10.1145/3422622
https://link.springer.com/chapter/10.1007/978-3-031-53503-1_16
http://dx.doi.org/10.1186/s40537-021-00492-0
http://www.ncbi.nlm.nih.gov/pubmed/34306963
http://dx.doi.org/10.18653/v1/2020.coling-main.557
http://dx.doi.org/10.18653/v1/2020.acl-main.191
http://dx.doi.org/10.3390/s22228761
http://dx.doi.org/10.1093/bioinformatics/btz682
http://dx.doi.org/10.1111/exsy.13247
http://dx.doi.org/10.1145/3594315.3594366
http://dx.doi.org/10.1016/j.heliyon.2023.e22531
http://dx.doi.org/10.3389/frai.2023.1072329
http://www.ncbi.nlm.nih.gov/pubmed/36895200
http://dx.doi.org/10.4230/OASIcs.SLATE.2022.11
http://dx.doi.org/10.1017/S1351324923000396
http://dx.doi.org/10.1109/TKDE.2021.3130191


Entropy 2024, 26, 344 19 of 19

45. Mandl, T.; Modha, S.; Majumder, P.; Patel, D.; Dave, M.; Mandlia, C.; Patel, A. Overview of the HASOC track at FIRE 2019: Hate
speech and offensive content identification in indo-european languages. In Proceedings of the 11th Annual Meeting of the Forum
for Information Retrieval Evaluation, Kolkata, India, 12–15 December 2019; Association for Computing Machinery: New York,
NY, USA, 2019; pp. 14–17. [CrossRef]

46. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; Stoyanov,
V. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, Online, 5–10 July 2010; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 8440–8451. [CrossRef]

47. Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon emissions and large
neural network training. arXiv 2021, arXiv:2104.10350.

48. de Rosa, G.H.; Papa, J.a.P. A Survey on Text Generation Using Generative Adversarial Networks. Pattern Recogn. 2021, 119,
108098. [CrossRef]

49. Silva, K.; Can, B.; Sarwar, R.; Blain, F.; Mitkov, R. Text Data Augmentation Using Generative Adversarial Networks—A Systematic
Review. J. Comput. Appl. Linguist. 2023, 1, 6–38. [CrossRef]

50. Yu, Z.Z.; Jaw, L.J.; Jiang, W.Q.; Hui, Z. Fine-tuning Language Models with Generative Adversarial Feedback. arXiv 2023,
arXiv:2305.06176.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3368567.3368584
http://dx.doi.org/10.18653/v1/2020.acl-main.747
http://dx.doi.org/10.1016/j.patcog.2021.108098
http://dx.doi.org/10.33919/JCAL.23.1.1

	Introduction
	Literature Review
	GAN for Hate Speech Detection
	GAN-PLM
	GAN-PLM for Hate Speech Detection

	Methodology
	Semisupervised Generative Adversarial Network: SS-GAN
	SS-GAN-PLM

	Experiments and Results
	Data: HASOC2019 Indo-European Corpora
	Experiments and Interpretations
	Training Scenarios
	Models Implementation
	Results and Interpretations


	Discussions and Future Directions
	Effect of Iterative Labeled Data Increase
	Computational Cost at Inference Time
	Future Directions

	Conclusions
	References

